Molecularly Imprinting Microfiltration Membranes Able to Absorb Diethyl Phthalate from Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Modification Process
2.2.1. Plasma Treatment
2.2.2. Grafting Procedure
2.3. Membrane Characterization
2.3.1. Grafting Yield
2.3.2. Water Flux
2.3.3. Average Pores Size
2.3.4. Rejection Coefficient
2.3.5. Static Sorption
2.3.6. Dynamic Sorption
2.3.7. Sorption Kinetics
2.3.8. Sorption Isotherms
2.3.9. Dynamic Sorption in Real Samples
2.3.10. Selectivity of Membranes
2.3.11. Membrane Stability in Sorption/Desorption Cycles
2.3.12. Contact Angle and Surface Energy
2.3.13. IR Spectroscopy
2.3.14. Scanning Electron Microscopy
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frick, A.; Stern, C.; Muralidharan, V. Practical Testing and Evaluation of Plastics; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Chalmin, P. The history of plastics: From the Capitol to the Tarpeian Rock. Field actions science reports. J. Field Actions 2019, 1, 6–11. [Google Scholar]
- Haider, T.P.; Völker, C.; Kramm, J.; Landfester, K.; Wurm, F.R. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew. Chem. Int. Ed. 2019, 2, 50–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moritz, P. Environment: Perhaps people, not plastics, are the problem. Chem. Aust. 2019, 35. [Google Scholar]
- Zhang, P.; Zhao, Y.; Shi, Q. Characterization of a novel edible film based on gum ghatti: Effect of plasticizer type and concentration. Carbohydr. Polym. 2016, 53, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, G.; Wang, L. Potential toxicity of phthalic acid esters plasticizer: Interaction of dimethyl phthalate with trypsin in vitro. J. Agric. Food Chem. 2015, 1, 75–84. [Google Scholar] [CrossRef]
- Patel, J.P.; Zhao, C.X.; Deshmukh, S.; Zou, G.X.; Wamuo, O.; Hsu, S.L.; Schoch, A.B.; Carleen, S.A.; Matsumoto, D. An analysis of the role of reactive plasticizers in the crosslinking reactions of a rigid resin. Polymer 2016, 19, 12–18. [Google Scholar] [CrossRef]
- Greco, A.; Brunetti, D.; Renna, G.; Mele, G.; Maffezzoli, A. Plasticizer for poly (vinyl chloride) from cardanol as a renewable resource material. Polym. Degrad. Stab. 2010, 11, 2169–2174. [Google Scholar] [CrossRef]
- The Business Research Company Plasticizers Global Market Report 2021: COVID-19 Impact and Recovery to 2030, ID: 5323082. May 2022. Available online: www.researchandmarkets.com (accessed on 16 March 2022).
- Rutkowska, A.; Rachoń, D. Bisphenol A (BPA) and its potential role in the pathogenesis of the polycystic ovary syndrome (PCOS). Gynecol. Endocrinol. 2014, 4, 260–265. [Google Scholar] [CrossRef]
- Huang, P.C.; Liao, K.W.; Chang, J.W.; Chan, S.H.; Lee, C.C. Characterization of phthalates exposure and risk for cosmetics and perfume sales clerks. Environ. Pollut. 2018, 1, 577–587. [Google Scholar] [CrossRef]
- Hlisníková, H.; Petrovičová, I.; Kolena, B.; Šidlovská, M.; Sirotkin, A. Effects and mechanisms of phthalates’ action on reproductive processes and reproductive health: A literature review. Int. J. Environ. Res. Public Health 2020, 1, 6811. [Google Scholar] [CrossRef]
- de Albuquerque Pismel, F.N.; de Andrade, R.C.; Bila, D.M. Regulation of Natural and Synthetic Estrogens in Drinking Water Bodies: Reviewing Emerging Solutions for an Emerging Problem. 2021. Available online: assets.researchsquare.com (accessed on 16 March 2022).
- Baloyi, N.D.; Tekere, M.; Maphangwa, K.W.; Masindi, V. Insights into the Prevalence and Impacts of Phthalate Esters in Aquatic Ecosystems. Front. Environ. Sci. 2021, 9, 684190. [Google Scholar] [CrossRef]
- Edjere, O.; Asibor, I.G.; Otolo, S.E. Evaluation of the Levels of phthalate Ester Plasticizers in Surface Water of Ethiope River System, Delta State, Nigeria. J. Appl. Sci. Environ. Manag. 2016, 20, 608–614. [Google Scholar] [CrossRef] [Green Version]
- Hashizume, K.; Nanya, J.; Toda, C.; Yasui, T.; Nagano, H.; Kojima, N. Phthalate Esters Detected in Various Water Samples and Biodegradation of the Phthalates by Microbes Isolated from River Water. Biol. Pharm. Bull. 2002, 25, 209–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Zou, D.; Xiao, Z.; Zeng, X.; Zhang, L.; Jiang, L.; Wang, A.; Ge, D.; Zhang, G.; Liu, F. Biochar as a sorbent for emerging contaminants enables improvements in waste management and sustainable resource use. J. Clean. Prod. 2019, 10, 1324–1342. [Google Scholar] [CrossRef]
- Hao, Y.; Gao, Y.; Gao, L.; He, Y.; Niu, Y.; Hussain, S.; Gao, R.; Pfefferle, L.D.; Shahidm, M.; Wang, S. Amphiphilic core–shell magnetic adsorbents for efficient removal and detection of phthalate esters. Chem. Eng. J. 2021, 423, 129817. [Google Scholar] [CrossRef]
- Wolska, J.; Bryjak, M. Sorption of phthalates on molecularly imprinted polymers. Sep. Sci. Technol. 2012, 15, 1316–1321. [Google Scholar] [CrossRef]
- Wolska, J.; Kujawska, M.; Cyganowski, P. Selective sorption of diethyl phthalate on pH-responsive, molecularly imprinted polymeric adsorbents. Sep. Sci. Technol. 2019, 55, 2137–2148. [Google Scholar] [CrossRef]
- Wolska, J.; Bryjak, M. Molecularly Imprinted Polymers for Water Polishing. Advanced Separations by Specialized Sorbents; CRC Press: Boca Raton, FL, USA, 2014; Volume 17, pp. 195–208. [Google Scholar]
- Wolska, J.; Bryjak, M. Removal of bisphenol a from aqueous solution by molecularly imprinted polymers. Sep. Sci. Technol. 2014, 11, 1643–1653. [Google Scholar] [CrossRef]
- Alhaddad, F.A.; Abu-Dieyeh, M.; Da’ana, D.; Helaleh, M.; Al-Ghouti, M.A. Occurrence and removal characteristics of phthalate esters from bottled drinking water using silver modified roasted date pits. J. Environ. Health Sci. Eng. 2021, 1, 733–751. [Google Scholar] [CrossRef]
- Hong, Z.H.; Chengwu, Y.I.; Rongjie, Y.I.; Huijuan, W.A.; Lanlan, Y.I.; Muhammad, I.N.; Zhongfei, M.A. Research on the degradation mechanism of dimethyl phthalate in drinking water by strong ionization discharge. Plasma Sci. Technol. 2018, 20, 035503. [Google Scholar]
- Notardonato, I.; Protano, C.; Vitali, M.; Avino, P. Phthalates and bisphenol-A determination and release from different beverage plastic containers by dispersive liquid-liquid microextraction and GC-IT/MS analysis. Food Anal. Methods 2019, 11, 2562–2571. [Google Scholar] [CrossRef]
- Pang, X.; Skillen, N.; Gunaratne, N.; Rooney, D.W.; Robertson, P.K. Removal of phthalates from aqueous solution by semiconductor photocatalysis: A review. J. Hazard. Mater. 2021, 402, 123461. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.H.; Yang, L.; Xia, Y.; Ding, Z.F.; Niu, J.H.; Liu, D.P.; Zhao, Y.; Ji, L.F.; Song, Y.; Lin, X.S. Removal of dimethyl phthalate in water by non-thermal air plasma treatment. Environ. Sci. Water Res. Technol. 2019, 5, 920–930. [Google Scholar] [CrossRef]
- Vieira, W.T.; de Farias, M.B.; Spaolonzi, M.P.; da Silva, M.G.; Vieira, M.G. Removal of endocrine disruptors in waters by adsorption, membrane filtration and biodegradation. A review. Environ. Chem. Lett. 2020, 4, 1113–1143. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Mukherjee, D.; Deb, N.; Swarnakar, S.; Banerjee, S. Indigenously developed CuO/TiO2 coated ceramic ultrafiltration membrane for removal of emerging contaminants like phthalates and parabens: Toxicity evaluation in PA-1 cell line. Mater. Chem. Phys. 2021, 258, 123920. [Google Scholar] [CrossRef]
- Sengupta, A.; Jebur, M.; Kamaz, M.; Wickramasinghe, S.R. Removal of Emerging Contaminants from Wastewater Streams Using Membrane Bioreactors: A Review. Membranes 2021, 31, 60. [Google Scholar] [CrossRef]
- Gao, D.W.; Wen, Z.D. Phthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. Sci. Total Environ. 2016, 541, 986–1001. [Google Scholar] [CrossRef]
- Balabanic, D.; Hermosilla, D.; Merayo, N.; Klemencic, A.K.; Blanco, A. Comparison of different wastewater treatments for removal of selected endocrine-disruptors from paper mill wastewaters. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng. 2012, 47, 1350–1363. [Google Scholar] [CrossRef] [Green Version]
- Wolska, J.; Jalilnejad, F.N. Membrane Emulsification Process as a Method for Obtaining Molecularly Imprinted Polymers. Polymers 2021, 13, 2830. [Google Scholar] [CrossRef]
- Wolska, J. Thermoresponsive molecularly imprinted polymer for rapid sorption and desorption of diethyl phthalate. Sep. Sci. Technol. 2016, 51, 2547–2553. [Google Scholar] [CrossRef]
- Smolinska-Kempisty, K.; Ahmad, O.S.; Guerreiro, A.; Karim, K.; Piletska, E.; Piletsky, S. New potentiometric sensor based on molecularly imprinted nanoparticles for cocaine detection. Biosens. Bioelectron. 2017, 15, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Smolinska-Kempisty, K.; Guerreiro, A.; Canfarotta, F.; Cáceres, C.; Whitcombe, M.J.; Piletsky, S.A. Comparison of the performance of molecularly imprinted polymer nanoparticles for small molecule targets and antibodies in the ELISA format. Sci. Rep. 2016, 1, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Liu, H.-B.; Tang, Z.-S.; Qiu, Z.-D.; Zhu, H.-X.; Song, Z.-X.; Jia, A.-L. Synthesis, performance, and application of molecularly imprinted membranes: A review. J. Environ. Chem. Eng. 2021, 9, 106352. [Google Scholar] [CrossRef]
- Xie, W.; Li, T.; Tiraferri, A.; Drioli, E.; Figoli, A.; Crittenden, J.C.; Liu, B. Toward the next generation of sustainable membranes from green chemistry principles. ACS Sustainable Chem. Eng. 2020, 1, 50–75. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Kalsang, T.; Dima, S.O. Molecularly imprinted membranes: Past, present, and future. Chem. Rev. 2016, 116, 11500–11528. [Google Scholar] [CrossRef]
- Trotta, F.; Biasizzo, M.; Caldera, F. Molecularly imprinted membranes. Membranes 2012, 2, 440–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, W.; Ma, Z.; Wang, C.; Lu, J.; Gao, J.; Yu, C.; Lin, X.; Li, C.; Wu, Y. Metal-organic framework based molecularly imprinted nanofiber membranes with enhanced selective recognition and separation performance: A multiple strengthening system. Sep. Purif. Technol. 2021, 278, 119624. [Google Scholar] [CrossRef]
- Bengamra, M.; Grayaa-Jaoued, N.; Khlifi-Riani, A.; Chehimi, M.M.; Kalfat, R. Highly selective molecularly imprinted sol-gel membrane grafted to gold for the detection of melamine. Silicon 2019, 11, 2267–2274. [Google Scholar] [CrossRef]
- Moein, M.M.; Abdel-Rehim, A.; Abdel-Rehim, M. Recent applications of molecularly imprinted sol-gel methodology in sample preparation. Molecules 2019, 16, 2889. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, C.; Niu, Y.; Li, S.; Luo, R. Electrochemical sensor based on molecularly imprinted composite membrane of poly (o-aminothiophenol) with gold nanoparticles for sensitive determination of herbicide simazine in environmental samples. Sens. Actuators B Chem. 2017, 249, 747–755. [Google Scholar] [CrossRef]
- Dong, Z.; Lu, J.; Wu, Y.; Meng, M.; Yu, C.; Sun, C.; Chen, M.; Da, Z.; Yan, Y. Antifouling molecularly imprinted membranes for pretreatment of milk samples: Selective separation and detection of lincomycin. Food Chem. 2020, 333, 127477. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tan, X.; Liu, X.; Li, C.; Zeng, S.; Wang, H.; Zhang, S. Fabrication of multilayered molecularly imprinted membrane for selective recognition and separation of artemisinin. ACS Sustain. Chem. Eng. 2018, 7, 3127–3137. [Google Scholar] [CrossRef]
- Wolska, J.; Kujawska, M.; Cyganowski, P. pH responsive molecularly imprinted polymer for sorption and rapid desorption of dibutyl phthalate. Sep. Sci. Technol. 2018, 53, 1076–1087. [Google Scholar]
- Cheong, S.H.; McNiven, S.; Rachkov, A.; Levi, R.; Yano, K.; Karube, I. Testosterone receptor binding mimic constructed using molecular imprinting. Macromolecules 1997, 30, 1317. [Google Scholar] [CrossRef]
- Spivak, D.A. Optimization, evaluation, and characterization of molecularly imprinted polymers. Adv. Drug Deliv. Rev. 2005, 57, 1779. [Google Scholar] [CrossRef] [PubMed]
- Wolska, J.; Cyganowski, P.; Koźlecki, T. Fine polymer imprinted layers for the monitoring of bisphenol A in aqueous solutions. Sep. Sci. Technol. 2018, 53, 206–218. [Google Scholar] [CrossRef]
- Wolska, J.; Smolinska-Kempisty, K. Polypropylene prefilters with surface imprinted layer. Sep. Purif. Technol. 2017, 174, 89–96. [Google Scholar] [CrossRef]
- Mark, J.E. Physical Properties of Polymer Handbook; Springer: Berlin/Heidelberg, Germany, 2007; p. 1076. ISBN 978-0-387-69002-5/0-387-69002-6. [Google Scholar]
- Seymour, R.B.; Owen, D.R.; Stahl, G.A. Poly (methyl methacrylate-co-acrylonitrile). Polymer 1973, 14, 324–326. [Google Scholar] [CrossRef]
- Cela-Pérez, M.C.; Castro-López, M.M.; Lasagabáster-Latorre, A.; López-Vilarino, J.M.; González-Rodriuez, M.V.; Barral-Losada, L.F. Synthesis and characterization of bisphenol-A imprinted polymer as a selective recognition receptor. Anal. Chem. Acta 2011, 706, 275–284. [Google Scholar] [CrossRef]
- Kabay, N.; Sarp, S.; Yuksel, M.; Arar, O.; Bryjak, M. Removal of boron from seawater by selective ion exchange resins. React. Funct. Pol. 2007, 67, 1643–1650. [Google Scholar] [CrossRef]
- Santander, I.P.; Rivas, B.L.; Urbano, B.; Leiton, L.; Yilmaz, I.; Yuksel, M.; Kabay, N.; Bryjak, M. Removal of Cr (VI) by a chelating resin containing N-methyl-D-glucamine. Polym. Bull. 2014, 71, 1813–1825. [Google Scholar] [CrossRef]
- Polowczyk, I.; Urbano, B.F.; Rivas, B.L.; Bryjak, M.; Kabay, N. Equilibrium and kinetic study of chromium sorption on resins with quaternary ammonium and N-methyl-D-glucamine groups. Chem. Eng. J. 2016, 284, 395–404. [Google Scholar] [CrossRef]
- Pilśniak-Rabiega, M.; Wolska, J. Novel functional polymers for recovery of silver. Physicochem. Probl. Miner. Processing 2021, 57, 36–54. [Google Scholar] [CrossRef]
- Bryjak, M.; Gancarz, I.; Smolińska, K. Plasma nanostructuring of porous polymer membranes. Adv. Colloid Interface Sci. 2010, 161, 2–9. [Google Scholar] [CrossRef]
- Gancarz, I.; Poźniak, G.; Bryjak, M.; Frankiewicz, A. Modification of polysulfone membranes. 2. Plasma grafting and plasma polymerization of acrylic acid. Acta Polym. 1999, 50, 317–326. [Google Scholar] [CrossRef]
Series | Monomers Ratio | Monomers Functional: Cross-Linker | Solvent | wt.% DEP | |
---|---|---|---|---|---|
MMA | NIPAM | ||||
A | 1 | 6 | 1:1 | toluene | 5 |
B | cyclohexanol | 5 | |||
C | chloroform | 5 | |||
D | n-octane | 5 | |||
E | 7 | ||||
F | n-octane/toluene 1:1 | 5 | |||
G | 3 | 7 | 4:6 | n-octane | 7 |
H | 4 | 6 | 4:6 | n-octane | 7 |
I | 10 |
Series | MIP | NIP | ||
---|---|---|---|---|
Δm (mg/g) | SS (µmol/g) | Δm (mg/g) | SS (µmol/g) | |
A | 1.098 | 5.70 | 0.809 | 3.86 |
B | 1.002 | 1.004 | 1.104 | 1.12 |
C | 2.659 | 1.98 | 2.55 | 1.66 |
D | 1.792 2.486 | 1.25 4.23 | 2.95 | 3.06 |
E | 1.156 2.584 | 3.48 5.70 | 2.58 | 1.86 |
F | 0.029 3.410 10.57 | 1.908 3.01 6.78 | 1.67 3.27 | 3.35 3.50 |
Series | MIP | NIP | ||
---|---|---|---|---|
Δm (mg/g) | SS (µmol/g) | Δm (mg/g) | SS (µmol/g) | |
G | 1.09 1.85 | 4.90 5.31 | 1.18 1.91 | 1.42 1.44 |
H | 0.49 1.67 | 1.84 4.72 | 0.47 1.56 | 1.79 4.07 |
I | 2.197 | 6.28 | 2.254 | 6.43 |
Membrane | Δm (mg/cm2) | DS in Model Samples (µmol/g) | DS in Real Samples (µmol/g) |
---|---|---|---|
imprinted | 1.79 | 4.12 | 3.09 |
non-imprinted | 1.96 | 1.18 | 1.12 |
Sample | Pseudo-First | Pseudo-Second | ||
---|---|---|---|---|
k1 | R2 | k2 | R2 | |
NIM | 0.13 | 0.978 | 0.05 | 0.992 |
MIM | 0.27 | 0.978 | 0.33 | 0.992 |
Parameter | DEP | DBP |
---|---|---|
KMIP | 8310 | 569 |
KNIP | 3350 | 470 |
αMIP | - | 14.6 |
αNIP | - | 7.1 |
IF | 2.5 | 1.2 |
S | - | 2.1 |
Sample | Langmuir | Freundlich | Dubinin–Radushkevich | |||
---|---|---|---|---|---|---|
R2 | R2 | SSm (mg/g) | SSm (mmol/g) | R2 | E (kJ/mol) | |
MIM | 0.795 | 0.769 | 0.03 | 1.3 × 10−4 | 0.961 | 0.07 |
NIM | 0.256 | 0.234 | NA | NA | 0.333 | NA |
Mass of Grafted Layer Δm (mg/cm2) | Water Flux J (L/m2 h) | Average Pore Size r (µm) | Rejection Coefficient R (%) |
---|---|---|---|
0—non modified | 121 ± 1.71 | 1.29 | 0.90 |
0—after plazma treatment | 130 ± 2.12 | 1.30 | - |
0.026 | 118 ± 1.41 | 1.29 | 8.28 |
0.503 | 99 ± 2.06 | 1.18 | 12.67 |
0.712 | 93 ± 1.14 | 1.16 | 17.98 |
1.261 | 74 ± 1.35 | 1.04 | 26.64 |
1.544 | 68 ± 1.56 | 0.97 | 28.85 |
1.916 | 62 ± 1.34 | 0.93 | 36.12 |
2.088 | 61 ± 1.48 | 0.91 | 35.08 |
NIM—1.359 | - | - | 7.92 |
Membrane | Δm (mg/g) | Contact angle (°) | Surface Energy (mJ/m2) |
---|---|---|---|
non-modified | 0 | 89 | 32.4 |
modified | 0.048 | 68 | 40.6 |
0.353 | 50 | 47.0 | |
1.080 | 36 | 52.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smolinska-Kempisty, K.; Wolska, J.; Bryjak, M. Molecularly Imprinting Microfiltration Membranes Able to Absorb Diethyl Phthalate from Water. Membranes 2022, 12, 503. https://doi.org/10.3390/membranes12050503
Smolinska-Kempisty K, Wolska J, Bryjak M. Molecularly Imprinting Microfiltration Membranes Able to Absorb Diethyl Phthalate from Water. Membranes. 2022; 12(5):503. https://doi.org/10.3390/membranes12050503
Chicago/Turabian StyleSmolinska-Kempisty, Katarzyna, Joanna Wolska, and Marek Bryjak. 2022. "Molecularly Imprinting Microfiltration Membranes Able to Absorb Diethyl Phthalate from Water" Membranes 12, no. 5: 503. https://doi.org/10.3390/membranes12050503
APA StyleSmolinska-Kempisty, K., Wolska, J., & Bryjak, M. (2022). Molecularly Imprinting Microfiltration Membranes Able to Absorb Diethyl Phthalate from Water. Membranes, 12(5), 503. https://doi.org/10.3390/membranes12050503