Designing Multi-Stage 2 A/O-MBR Processes for a Higher Removal Rate of Pollution in Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Experimental Setup
2.3. Test Methods and Operating Parameters
2.4. Analytical Method
2.4.1. Sewage Analysis
2.4.2. Membrane Fouling Analysis
2.4.3. Analysis of Microbial Community Structure
3. Results and Discussion
3.1. Effective Removal of Pollutants
3.2. Membrane Fouling
3.3. Microbial Community Structure Analysis
4. Conclusions
- (1)
- The effluent quality of the 2(A/O)-MBR process is better than that obtained with the other two processes. The average removal rates of COD, NH-N, TP and TN are 95.29%, 89.47%, 83.55% and 78.58%, respectively.
- (2)
- The A/O-MBR process suffers from the highest membrane fouling, while the 3(A/O)-MBR process shows the lowest. Considering the effluent quality and cost issues, the 2(A/O)-MBR process can be selected in practical applications.
- (3)
- The analysis of the microbial community structure shows that the samples from this study have the largest abundance of γ-Proteobacteria, and Thaurea in the Proteobacteria is the key bacteria genus that dominates and affects the degradation of ammonia nitrogen and total nitrogen in the reactor.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Wang, P.; Gojenko, B.; Yu, J.; Wei, L.; Luo, D.; Xiao, T. A review of water pollution arising from agriculture and mining activities in Central Asia: Facts, causes and effects. Environ. Pollut. 2021, 291, 118209. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wei, H.; Wang, Y.; Peng, C.; Dai, J. Chinese industrial water pollution and the prevention trends: An assessment based on environmental complaint reporting system (ECRS). Alex. Eng. J. 2021, 60, 5803–5812. [Google Scholar] [CrossRef]
- Zhang, C.; Li, S.; Ho, S.H. Converting nitrogen and phosphorus wastewater into bioenergy using microalgae-bacteria consortia: A critical review. Bioresour. Technol. 2021, 342, 126056. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huang, G.; Chen, X.; Huang, J.; Li, M.; Yin, J.; Liang, Y.; Yao, Y.; Li, Y. A review on graphitic carbon nitride (g-C3N4) based hybrid membranes for water and wastewater treatment. Sci. Total Environ. 2021, 792, 148462. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, A.; Zhou, J.L.; Navidpour, A.H.; Altaee, A. Progress in osmotic membrane bioreactors research: Contaminant removal, microbial community and bioenergy production in wastewater. Bioresour. Technol. 2021, 330, 124998. [Google Scholar] [CrossRef]
- Liu, Q.; Ren, J.; Lu, Y.; Zhang, X.; Roddick, F.A.; Fan, L.; Wang, Y.; Yu, H.; Yao, P. A review of the current in-situ fouling control strategies in MBR: Biological versus physicochemical. J. Ind. Eng. Chem. 2021, 98, 42–59. [Google Scholar] [CrossRef]
- Ma, J.; Dai, R.; Chen, M.; Khan, S.J.; Wang, Z. Applications of membrane bioreactors for water reclamation: Micropollutant removal, mechanisms and perspectives. Bioresour. Technol. 2018, 269, 532–543. [Google Scholar] [CrossRef]
- Meng, F.; Chae, S.R.; Drews, A.; Kraume, M.; Shin, H.S.; Yang, F. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Res. 2009, 43, 1489–1512. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Bilad, M.R.; Gerards, R.; Vriens, L.; Piasecka, A.; Vankelecom, I.F.J. Comparison of MBR performance and membrane cleaning in a single-stage activated sludge system and a two-stage anaerobic/aerobic (A/A) system for treating synthetic molasses wastewater. J. Membr. Sci. 2012, 394–395, 49–56. [Google Scholar] [CrossRef]
- Plevri, A.; Mamais, D.; Noutsopoulos, C. Anaerobic MBR technology for treating municipal wastewater at ambient temperatures. Chemosphere 2021, 275, 129961. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.Y.; Tanong, K.; Xu, J.; Shon, H. Microbial community analysis of an aerobic nitrifying-denitrifying MBR treating ABS resin wastewater. Bioresour. Technol. 2011, 102, 5337–5344. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xu, X.; Gong, Z.; Yang, F. Removal of COD, phenols and ammonium from Lurgi coal gasification wastewater using A2O-MBR system. J. Hazard. Mater. 2012, 235–236, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, D.; Liu, H.; Wen, Q. Effects of polyurethane foam carrier addition on anoxic/aerobic membrane bioreactor (A/O-MBR) for coal gasification wastewater (CGW) treatment: Performance and microbial community structure. Sci. Total Environ. 2021, 789, 148037. [Google Scholar] [CrossRef]
- Sun, J.; Wang, X.; Li, R.; Zhu, W.-t.; Li, Y. Hyperhaline Municipal Wastewater Treatment of a Processing Zone through Pilot-Scale A/O MBR, Part II: Nitrogen and Phosphorous Removal. Procedia Environ. Sci. 2011, 8, 781–788. [Google Scholar] [CrossRef] [Green Version]
- Xiao, K.; Liang, S.; Wang, X.; Chen, C.; Huang, X. Current state and challenges of full-scale membrane bioreactor applications: A critical review. Bioresour. Technol. 2019, 271, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Song, Z.; Wen, X.; Huang, X. Using polyaluminum chloride and polyacrylamide to control membrane fouling in a cross-flow anaerobic membrane bioreactor. J. Membr. Sci. 2015, 479, 20–27. [Google Scholar] [CrossRef]
- Qiu, C.; Yang, C.; He, C.; Gong, M.; Hu, Z.; Wang, W. Controlling sludge retention time to alleviate inhibition of nitrosation and nitration by accumulated aluminum in an A/O-MBR. Int. Biodeterior. Biodegrad. 2019, 144, 104755. [Google Scholar] [CrossRef]
- Zhang, J.-j.; Zou, G.-l.; Yang, S.-f.; Ding, X.; Wang, L.; Mao, Q.-z.; Yang, D. Treatment of municipal wastewater using the combined reversed A2/O-MBR process. Huan Jing Ke Xue=Huanjing Kexue 2013, 34, 1828–1834. [Google Scholar]
- Falahti-Marvast, H.; Karimi-Jashni, A. Performance of simultaneous organic and nutrient removal in a pilot scale anaerobic–anoxic–oxic membrane bioreactor system treating municipal wastewater with a high nutrient mass ratio. Int. Biodeterior. Biodegrad. 2015, 104, 363–370. [Google Scholar] [CrossRef]
- Zheng, D.; Sun, Y.; Li, H.; Lu, S.; Shan, M.; Xu, S. Multistage A-O Activated Sludge Process for Paraformaldehyde Wastewater Treatment and Microbial Community Structure Analysis. J. Chem. 2016, 2016, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Li, Y.J.; Xiong, Y.; Tan, W.B.; Zhang, L.Y.; Li, X.; Wang, X.S.; Xu, J.F.; Li, T.T.; Wang, J.S.; et al. Spectroscopic characterization of DOM and the nitrogen removal mechanism during wastewater reclamation plant. PLoS ONE 2017, 12, e0187355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Leung, K.T.; Lin, H.; Liao, B. The biological performance of a novel microalgal-bacterial membrane photobioreactor: Effects of HRT and N/P ratio. Chemosphere 2020, 261, 128199. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Chen, Y.; Hu, Y.; Ohtsu, A.; Ni, J.; Li, Y.; Sakuma, S.; Hojo, T.; Chen, R.; Li, Y.Y. One-year operation of a 20-L submerged anaerobic membrane bioreactor for real domestic wastewater treatment at room temperature: Pursuing the optimal HRT and sustainable flux. Sci. Total Environ. 2021, 775, 145799. [Google Scholar] [CrossRef]
- Lin, Z.; Zhou, J.; He, L.; He, X.; Pan, Z.; Wang, Y.; He, Q. High-temperature biofilm system based on heterotrophic nitrification and aerobic denitrification treating high-strength ammonia wastewater: Nitrogen removal performances and temperature-regulated metabolic pathways. Bioresour. Technol. 2021, 344, 126184. [Google Scholar] [CrossRef]
- Song, T.; Zhang, X.; Li, J.; Wu, X.; Feng, H.; Dong, W. A review of research progress of heterotrophic nitrification and aerobic denitrification microorganisms (HNADMs). Sci. Total Environ. 2021, 801, 149319. [Google Scholar] [CrossRef] [PubMed]
- Xi, H.; Zhou, X.; Arslan, M.; Luo, Z.; Wei, J.; Wu, Z.; Gamal El-Din, M. Heterotrophic nitrification and aerobic denitrification process: Promising but a long way to go in the wastewater treatment. Sci. Total Environ. 2022, 805, 150212. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, X.; Zhang, Z.; Luo, W.; Wu, H.; Zhang, L.; Zhang, X.; Zhao, T. Performance and microbial ecology of a novel moving bed biofilm reactor process inoculated with heterotrophic nitrification-aerobic denitrification bacteria for high ammonia nitrogen wastewater treatment. Bioresour. Technol. 2020, 315, 123813. [Google Scholar] [CrossRef]
- Shariati, F.P.; Mehrnia, M.R.; Sarrafzadeh, M.H.; Rezaee, S.; Grasmick, A.; Heran, M. Fouling in a novel airlift oxidation ditch membrane bioreactor (AOXMBR) at different high organic loading rate. Sep. Purif. Technol. 2013, 105, 69–78. [Google Scholar] [CrossRef]
- Vo, T.-D.-H.; Bui, X.-T.; Dang, B.-T.; Nguyen, T.-T.; Nguyen, V.-T.; Tran, D.P.H.; Nguyen, P.-T.; Boller, M.; Lin, K.-Y.A.; Varjani, S.; et al. Influence of organic loading rates on treatment performance of membrane bioreactor treating tannery wastewater. Environ. Technol. Innov. 2021, 24, 101810. [Google Scholar] [CrossRef]
- Zhang, C.-y.; Ding, Y.; Yuan, L.-m.; Zhang, Y.-q.; Xi, D.-l. Characteristics of Membrane Fouling in an Anaerobic-(Anoxic/Oxic)n-MBR Process. J. China Univ. Min. Technol. 2007, 17, 387–392. [Google Scholar] [CrossRef]
- Zhao, F.; Han, X.; Shao, Z.; Li, Z.; Li, Z.; Chen, D. Effects of different pore sizes on membrane fouling and their performance in algae harvesting. J. Membr. Sci. 2022, 641, 119916. [Google Scholar] [CrossRef]
- Qi, T.; Chen, X.; Shi, W.; Wang, T.; Qiu, M.; Da, X.; Wen, J.; Fan, Y. Fouling behavior of nanoporous ceramic membranes in the filtration of oligosaccharides at different temperatures. Sep. Purif. Technol. 2021, 278, 119589. [Google Scholar] [CrossRef]
- Tang, B.; Zhang, Z.; Chen, X.; Bin, L.; Huang, S.; Fu, F.; Yang, H.; Chen, C. Biodiversity and succession of microbial community in a multi-habitat membrane bioreactor. Bioresour. Technol. 2014, 164, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Wen, X.; Zhao, F.; Xia, Y.; Huang, X.; Waite, D.; Guan, J. Effect of temperature variation on membrane fouling and microbial community structure in membrane bioreactor. Bioresour. Technol. 2013, 133, 462–468. [Google Scholar] [CrossRef]
- Cho, K.H.; Kim, J.-O.; Kang, S.; Park, H.; Kim, S.; Kim, Y.M. Achieving enhanced nitrification in communities of nitrifying bacteria in full-scale wastewater treatment plants via optimal temperature and pH. Sep. Purif. Technol. 2014, 132, 697–703. [Google Scholar] [CrossRef]
- Chen, C.; Xu, X.J.; Xie, P.; Yuan, Y.; Zhou, X.; Wang, A.J.; Lee, D.J.; Ren, N.Q. Pyrosequencing reveals microbial community dynamics in integrated simultaneous desulfurization and denitrification process at different influent nitrate concentrations. Chemosphere 2017, 171, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.M.; Cho, H.U.; Lee, D.S.; Park, D.; Park, J.M. Influence of operational parameters on nitrogen removal efficiency and microbial communities in a full-scale activated sludge process. Water Res. 2011, 45, 5785–5795. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yu, M.; Wang, Y.; He, C.; Pang, J.; Wu, J. Operational optimization of a three-stage nitrification moving bed biofilm reactor (NMBBR) by obtaining enriched nitrifying bacteria: Nitrifying performance, microbial community, and kinetic parameters. Sci. Total Environ. 2019, 697, 134101. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hu, Q.; Chen, C.H.; Wang, X.L.; Gao, D.W. Performance and microbial community structure in an integrated anaerobic fluidized-bed membrane bioreactor treating synthetic benzothiazole contaminated wastewater. Bioresour. Technol. 2017, 236, 1–10. [Google Scholar] [CrossRef]
- Pan, J.R.; Su, Y.-C.; Huang, C.; Lee, H.-C. Effect of sludge characteristics on membrane fouling in membrane bioreactors. J. Membr. Sci. 2010, 349, 287–294. [Google Scholar] [CrossRef]
- Yang, N.; Zhan, G.; Li, D.; Wang, X.; He, X.; Liu, H. Complete nitrogen removal and electricity production in Thauera-dominated air-cathode single chambered microbial fuel cell. Chem. Eng. J. 2019, 356, 506–515. [Google Scholar] [CrossRef]
- Yang, N.; Liu, H.; Zhan, G.-q.; Li, D.-p. Sustainable ammonia-contaminated wastewater treatment in heterotrophic nitrifying/denitrifying microbial fuel cell. J. Clean. Prod. 2020, 245, 118923. [Google Scholar] [CrossRef]
- Xu, X.; Ma, B.; Lu, W.; Feng, D.; Wei, Y.; Ge, C.; Peng, Y. Effective nitrogen removal in a granule-based partial-denitrification/anammox reactor treating low C/N sewage. Bioresour. Technol. 2020, 297, 122467. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Wang, D.; Yang, J.; Zeng, W. The effect of using pig manure as an internal carbon source in a traditional piggery wastewater treatment system for biological denitrification. Ecol. Eng. 2020, 143, 105638. [Google Scholar] [CrossRef]
- Li, Y.-y.; Lin, L.; Li, X.-y. Chemically enhanced primary sedimentation and acidogenesis of organics in sludge for enhanced nitrogen removal in wastewater treatment. J. Clean. Prod. 2020, 244, 118705. [Google Scholar] [CrossRef]
Nutrient | Concentration (mg/mL) |
---|---|
C6H12O6 | 400.00 |
Urea | 80.00 |
KH2PO4 | 25.00 |
NaCl | 200.00 |
MgSO4·7H2O | 4.15 |
FeSO4·7H2O | 0.70 |
ZnSO4·7H2O | 0.23 |
CoCl2·6H2O | 0.34 |
MnSO4·H2O | 0.18 |
Peptone | 35.00 |
Beef extract | 35.00 |
CaCl2 | 0.83 |
Operation Process | The Reaction Cell to Which the Sample Belongs | Serial Number |
---|---|---|
A/O-MBR process | inlet pool, A1, O1, membrane pool | A1, A2, A3, A4 |
2(A/O)-MBR process | inlet pool, A1, O1, A2, O2, membrane pool | B1, B2, B3, B4, B5, B6 |
3(A/O)-MBR process | inlet pool, A1, O1, A2, O2, A3, O3, membrane pool | C1, C2, C3, C4, C5, C6, C7, C8 |
Sample | Chao1 | Goods_Coverage | Observed_Species | Shannon | Simpson |
---|---|---|---|---|---|
A1 | 1800.07 | 0.98 | 1282.40 | 7.14 | 0.96 |
A2 | 2588.13 | 0.97 | 1738.80 | 7.76 | 0.96 |
A3 | 2671.91 | 0.97 | 1851.70 | 8.43 | 0.99 |
A4 | 2458.15 | 0.97 | 1746.80 | 8.46 | 0.99 |
B1 | 1867.12 | 0.98 | 1330.40 | 7.38 | 0.97 |
B2 | 2636.38 | 0.97 | 1814.40 | 8.08 | 0.97 |
B3 | 2494.52 | 0.97 | 1803.20 | 8.27 | 0.98 |
B4 | 2625.58 | 0.97 | 1856.40 | 8.46 | 0.99 |
B5 | 2540.91 | 0.97 | 1787.20 | 8.41 | 0.99 |
B6 | 2354.33 | 0.97 | 1659.40 | 8.29 | 0.99 |
C1 | 2411.03 | 0.97 | 1678.10 | 8.29 | 0.99 |
C2 | 2478.51 | 0.97 | 1786.00 | 8.49 | 0.99 |
C3 | 2401.42 | 0.97 | 1668.80 | 8.32 | 0.99 |
C4 | 2407.11 | 0.97 | 1719.00 | 8.35 | 0.99 |
C5 | 2633.06 | 0.97 | 1915.70 | 8.57 | 0.99 |
C6 | 2527.03 | 0.97 | 1840.90 | 8.51 | 0.99 |
C7 | 2534.66 | 0.97 | 1801.70 | 8.44 | 0.99 |
C8 | 2500.06 | 0.97 | 1761.20 | 8.45 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Zhang, B.; Wang, Q.; Meng, X.; Wu, Q.; Zheng, T.; Huhe, T. Designing Multi-Stage 2 A/O-MBR Processes for a Higher Removal Rate of Pollution in Wastewater. Membranes 2022, 12, 377. https://doi.org/10.3390/membranes12040377
Zhou Z, Zhang B, Wang Q, Meng X, Wu Q, Zheng T, Huhe T. Designing Multi-Stage 2 A/O-MBR Processes for a Higher Removal Rate of Pollution in Wastewater. Membranes. 2022; 12(4):377. https://doi.org/10.3390/membranes12040377
Chicago/Turabian StyleZhou, Zhengzhong, Bin Zhang, Qian Wang, Xiaoshan Meng, Qigang Wu, Tao Zheng, and Taoli Huhe. 2022. "Designing Multi-Stage 2 A/O-MBR Processes for a Higher Removal Rate of Pollution in Wastewater" Membranes 12, no. 4: 377. https://doi.org/10.3390/membranes12040377
APA StyleZhou, Z., Zhang, B., Wang, Q., Meng, X., Wu, Q., Zheng, T., & Huhe, T. (2022). Designing Multi-Stage 2 A/O-MBR Processes for a Higher Removal Rate of Pollution in Wastewater. Membranes, 12(4), 377. https://doi.org/10.3390/membranes12040377