Response Surface Methodology for Optimization of Rotating Biological Contactor Combined with External Membrane Filtration for Wastewater Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wastewater Preparation and Bioreactor Acclimatization
2.2. Membrane Preparation and Characterization
2.3. Bioreactor Set-Up
2.4. Bioreactor Operation
2.5. Analytical Methods
2.6. Determination of Filtration Performance
2.7. Shear Rate Calculation
2.8. Experimental Design by RSM Method
3. Results and Discussion
3.1. Membrane Characterization
3.2. Biological Performance
3.3. Statistical Analysis and Model Development
3.4. RSM Model Optimization
3.5. Process Analysis
3.6. Process Optimization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ashraf, A.; Ramamurthy, R.; Rene, E.R. Wastewater treatment and resource recovery technologies in the brewery industry: Current trends and emerging practices. Sustain. Energy Technol. Assess. 2021, 47, 101432. [Google Scholar] [CrossRef]
- Mat Nawi, N.I.; Bilad, M.R.; Anath, G.; Nordin, N.A.H.; Kurnia, J.C.; Wibisono, Y.; Arahman, N. The Water Flux Dynamic in a Hybrid Forward Osmosis-Membrane Distillation for Produced Water Treatment. Membranes 2020, 10, 225. [Google Scholar] [CrossRef]
- Liu, R.; Lin, Y.; Xu, G.; Li, Y.; Premalatha, R.; Chandran, K. Optimized hybridized mathematical model for wastewater treatment and energy generation using microbial fuel cells. Sustain. Energy Technol. Assess. 2021, 47, 101348. [Google Scholar] [CrossRef]
- Mat Nawi, N.I.; Chean, H.M.; Shamsuddin, N.; Bilad, M.R.; Narkkun, T.; Faungnawakij, K.; Khan, A.L. Development of hydrophilic PVDF membrane using vapour induced phase separation method for produced water treatment. Membranes 2020, 10, 121. [Google Scholar] [CrossRef] [PubMed]
- Šíma, J.; Pocedič, J.; Hasal, P. Decolorization of reactive orange 16 in rotating drum biological contactor. J. Environ. Chem. Eng. 2016, 4, 4540–4548. [Google Scholar] [CrossRef]
- Vasiliadou, I.; Pariente, M.; Martinez, F.; Melero, J.; Molina, R. Modeling the integrated heterogeneous catalytic fixed-bed reactor and rotating biological contactor system for the treatment of poorly biodegradable industrial agrochemical wastewater. J. Environ. Chem. Eng. 2016, 4, 2313–2321. [Google Scholar] [CrossRef]
- Waqas, S.; Bilad, M.R. A review on rotating biological contactors. Indones. J. Sci. Technol. 2019, 4, 241–256. [Google Scholar] [CrossRef]
- Baneshi, M.M.; Ghaedi, A.M.; Vafaei, A.; Emadzadeh, D.; Lau, W.J.; Marioryad, H.; Jamshidi, A. A high-flux P84 polyimide mixed matrix membranes incorporated with cadmium-based metal organic frameworks for enhanced simultaneous dyes removal: Response surface methodology. Environ. Res. 2020, 183, 109278. [Google Scholar] [CrossRef] [PubMed]
- Sheth, Y.; Dharaskar, S.; Khalid, M.; Sonawane, S. An environment friendly approach for heavy metal removal from industrial wastewater using chitosan based biosorbent: A review. Sustain. Energy Technol. Assess. 2021, 43, 100951. [Google Scholar] [CrossRef]
- Bezirgiannidis, A.; Marinakis, N.; Ntougias, S.; Melidis, P. Membrane bioreactor performance during processing of a low carbon to nitrogen ratio municipal wastewater. Environ. Processes 2018, 5, 87–100. [Google Scholar] [CrossRef]
- You, X.; Zhang, J.; Shen, L.; Li, R.; Xu, Y.; Zhang, M.; Hong, H.; Yang, L.; Ma, Y.; Lin, H. Thermodynamic mechanisms of membrane fouling during filtration of alginate solution in coagulation-ultrafiltration (UF) process in presence of different ionic strength and iron (III) ion concentration. J. Membr. Sci. 2021, 635, 119532. [Google Scholar] [CrossRef]
- Waqas, S.; Bilad, M.R.; Man, Z.B.; Suleman, H.; Nordin, N.A.H.; Jaafar, J.; Othman, M.H.D.; Elma, M. An energy-efficient membrane rotating biological contactor for wastewater treatment. J. Clean. Prod. 2021, 282, 124544. [Google Scholar] [CrossRef]
- Deng, L.; Guo, W.; Ngo, H.H.; Du, B.; Wei, Q.; Tran, N.H.; Nguyen, N.C.; Chen, S.-S.; Li, J. Effects of hydraulic retention time and bioflocculant addition on membrane fouling in a sponge-submerged membrane bioreactor. Bioresour. Technol. 2016, 210, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Sousa, M.R.S.; Lora-García, J.; López-Pérez, M.-F.; Santafé-Moros, A.; Gozálvez-Zafrilla, J.M. Operating conditions optimization via the taguchi method to remove colloidal substances from recycled paper and cardboard production wastewater. Membranes 2020, 10, 170. [Google Scholar] [CrossRef]
- Waqas, S.; Bilad, M.R.; Huda, N.; Harun, N.Y.; Md Nordin, N.A.H.; Shamsuddin, N.; Wibisono, Y.; Khan, A.L.; Roslan, J. Membrane Filtration as Post-Treatment of Rotating Biological Contactor for Wastewater Treatment. Sustainability 2021, 13, 7287. [Google Scholar] [CrossRef]
- Barambu, N.U.; Bilad, M.R.; Huda, N.; Nordin, N.A.H.M.; Bustam, M.A.; Doyan, A.; Roslan, J. Effect of Membrane Materials and Operational Parameters on Performance and Energy Consumption of Oil/Water Emulsion Filtration. Membranes 2021, 11, 370. [Google Scholar] [CrossRef]
- Abdulgader, M.; Yu, Q.J.; Zinatizadeh, A.A.; Williams, P.; Rahimi, Z. Application of response surface methodology (RSM) for process analysis and optimization of milk processing wastewater treatment using multistage flexible fiber biofilm reactor. J. Environ. Chem. Eng. 2020, 8, 103797. [Google Scholar] [CrossRef]
- Belgada, A.; Charik, F.Z.; Achiou, B.; Kambuyi, T.N.; Younssi, S.A.; Beniazza, R.; Dani, A.; Benhida, R.; Ouammou, M. Optimization of phosphate/kaolinite microfiltration membrane using Box-Behnken design for treatment of industrial wastewater. J. Environ. Chem. Eng. 2020, 104972. [Google Scholar] [CrossRef]
- Askari, N.; Farhadian, M.; Razmjou, A. Simultaneous effects of pH, concentration, pressure on dye removal by a polyamide nanofilter membrane; optimization through response surface methodology. Environ. Nanotechnol. Monit. Manag. 2018, 10, 223–230. [Google Scholar] [CrossRef]
- Yang, M.; Yu, D.; Liu, M.; Zheng, L.; Zheng, X.; Wei, Y.; Wang, F.; Fan, Y. Optimization of MBR hydrodynamics for cake layer fouling control through CFD simulation and RSM design. Bioresour. Technol. 2017, 227, 102–111. [Google Scholar] [CrossRef]
- Su, C.; Deng, Q.; Lu, Y.; Qin, R.; Chen, S.; Wei, J.; Chen, M.; Huang, Z. Effects of hydraulic retention time on the performance and microbial community of an anaerobic baffled reactor-bioelectricity Fenton coupling reactor for treatment of traditional Chinese medicine wastewater. Bioresour. Technol. 2019, 288, 121508. [Google Scholar] [CrossRef] [PubMed]
- Waqas, S.; Bilad, M.R.; Aqsha, A.; Harun, N.Y.; Ayoub, M.; Wirzal, M.D.H.; Jaafar, J.; Mulyati, S.; Elma, M. Effect of membrane properties in a membrane rotating biological contactor for wastewater treatment. J. Environ. Chem. Eng. 2020, 9, 104869. [Google Scholar] [CrossRef]
- Gkotsis, P.; Peleka, E.; Zamboulis, D.; Mitrakas, M.; Tolkou, A.; Zouboulis, A. Wastewater treatment in membrane bioreactors: The use of polyelectrolytes to control membrane fouling. Environ. Processes 2017, 4, 9–21. [Google Scholar] [CrossRef]
- Waqas, S.; Bilad, M.R.; Man, Z.B.; Klaysom, C.; Jaafar, J.; Khan, A.L. An integrated rotating biological contactor and membrane separation process for domestic wastewater treatment. Alexandria Eng. J. 2020, 59, 4257–4265. [Google Scholar] [CrossRef]
- Bilad, M.R.; Guillen-Burrieza, E.; Mavukkandy, M.O.; Al Marzooqi, F.A.; Arafat, H.A. Shrinkage, defect and membrane distillation performance of composite PVDF membranes. Desalination 2015, 376, 62–72. [Google Scholar] [CrossRef]
- Bilad, M.R.; Westbroek, P.; Vankelecom, I.F. Assessment and optimization of electrospun nanofiber-membranes in a membrane bioreactor (MBR). J. Membr. Sci. 2011, 380, 181–191. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association: Washington, DC, USA, 1997. [Google Scholar]
- Bilad, M.R.; Nawi, N.I.M.; Subramaniam, D.D.; Shamsuddin, N.; Khan, A.L.; Jaafar, J.; Nandiyanto, A.B.D. Low-pressure submerged membrane filtration for potential reuse of detergent and water from laundry wastewater. J. Water Process. Eng. 2020, 36, 101264. [Google Scholar] [CrossRef]
- Wu, S.-E.; Hwang, K.-J.; Cheng, T.-W.; Tung, K.-L.; Iritani, E.; Katagiri, N. Structural design of a rotating disk dynamic microfilter in improving filtration performance for fine particle removal. J. Taiwan Inst. Chem. Eng. 2019, 94, 43–52. [Google Scholar] [CrossRef]
- Zulfiqar, M.; Samsudin, M.F.R.; Sufian, S. Modelling and optimization of photocatalytic degradation of phenol via TiO2 nanoparticles: An insight into response surface methodology and artificial neural network. J. Photochem. Photobiol. A Chem. 2019, 384, 112039. [Google Scholar] [CrossRef]
- Malika, M.; Sonawane, S.S. Statistical modelling for the Ultrasonic photodegradation of Rhodamine B dye using aqueous based Bi-metal doped TiO2 supported montmorillonite hybrid nanofluid via RSM. Sustain. Energy Technol. Assess. 2021, 44, 100980. [Google Scholar] [CrossRef]
- Zulfiqar, M.; Chowdhury, S.; Omar, A.A.; Siyal, A.A.; Sufian, S. Response surface methodology and artificial neural network for remediation of acid orange 7 using TiO 2-P25: Optimization and modeling approach. Environ. Sci. Pollut. Res. 2020, 27, 34018–34036. [Google Scholar] [CrossRef] [PubMed]
- Zulfiqar, M.; Sufian, S.; Mansor, N.; Rabat, N.E. Synthesis and characterization of TiO2-based nanostructures via fluorine-free solvothermal method for enhancing visible light photocatalytic activity: Experimental and theoretical approach. J. Photochem. Photobiol. A Chem. 2020, 404, 112834. [Google Scholar] [CrossRef]
- AlMarzooqi, F.A.; Bilad, M.; Mansoor, B.; Arafat, H.A. A comparative study of image analysis and porometry techniques for characterization of porous membranes. J. Mater. Sci. 2016, 51, 2017–2032. [Google Scholar] [CrossRef]
- Bilad, M.R.; Declerck, P.; Piasecka, A.; Vanysacker, L.; Yan, X.; Vankelecom, I.F. Treatment of molasses wastewater in a membrane bioreactor: Influence of membrane pore size. Sep. Purif. Technol. 2011, 78, 105–112. [Google Scholar] [CrossRef]
- Waqas, S.; Bilad, M.R.; Man, Z.B. Performance and Energy Consumption Evaluation of Rotating Biological Contactor for Domestic Wastewater Treatment. Indones. J. Sci. Technol. 2021, 6, 101–112. [Google Scholar] [CrossRef]
- Waqas, S.; Bilad, M.R.; Man, Z.B. Effect of organic and nitrogen loading rate in a rotating biological contactor for wastewater treatment. In Proceedings of the 1st International Recent Trends in Technology, Engineering and Computing Conference (IRTTEC) 2020, Kuala Lumpur, Malaysia, 30 September 2020; p. 012063. [Google Scholar]
- Sayess, R.R.; Saikaly, P.E.; El-Fadel, M.; Li, D.; Semerjian, L. Reactor performance in terms of COD and nitrogen removal and bacterial community structure of a three-stage rotating bioelectrochemical contactor. Water Res. 2013, 47, 881–894. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Liang, P.; Chen, Y.; Xia, X.; Huang, X. Simultaneous carbon and nitrogen removal using an oxic/anoxic-biocathode microbial fuel cells coupled system. Bioresour. Technol. 2011, 102, 348–354. [Google Scholar] [CrossRef]
- Waqas, S.; Bilad, M.R.; Man, Z.; Wibisono, Y.; Jaafar, J.; Mahlia, T.M.I.; Khan, A.L.; Aslam, M. Recent progress in integrated fixed-film activated sludge process for wastewater treatment: A review. J. Environ. Manag. 2020, 268, 110718. [Google Scholar] [CrossRef] [PubMed]
- Mannina, G.; Capodici, M.; Cosenza, A.; Di Trapani, D.; Ekama, G.A. The effect of the solids and hydraulic retention time on moving bed membrane bioreactor performance. J. Clean. Prod. 2018, 170, 1305–1315. [Google Scholar] [CrossRef]
- Tawfik, A.; Klapwijk, B.; Van Buuren, J.; El-Gohary, F.; Lettinga, G. Physico-chemical factors affecting the E. coli removal in a rotating biological contactor (RBC) treating UASB effluent. Water Res. 2004, 38, 1081–1088. [Google Scholar] [CrossRef]
- Fu, Z.; Yang, F.; An, Y.; Xue, Y. Simultaneous nitrification and denitrification coupled with phosphorus removal in an modified anoxic/oxic-membrane bioreactor (A/O-MBR). Biochem. Eng. J. 2009, 43, 191–196. [Google Scholar] [CrossRef]
- Syron, E.; Casey, E. Membrane-aerated biofilms for high rate biotreatment: Performance appraisal, engineering principles, scale-up, and development requirements. Environ. Sci. Technol. 2008, 42, 1833–1844. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Wang, G.; Yang, F.; Liu, C.; Kong, L.; Liu, Y. Treatment of municipal sewage with low carbon-to-nitrogen ratio via simultaneous partial nitrification, anaerobic ammonia oxidation, and denitrification (SNAD) in a non-woven rotating biological contactor. Chemosphere 2018, 208, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Pakshirajan, K.; Kheria, S. Continuous treatment of coloured industry wastewater using immobilized Phanerochaete chrysosporium in a rotating biological contactor reactor. J. Environ. Manag. 2012, 101, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Nuansawan, N.; Boonnorat, J.; Chiemchaisri, W.; Chiemchaisri, C. Effect of hydraulic retention time and sludge recirculation on greenhouse gas emission and related microbial communities in two-stage membrane bioreactor treating solid waste leachate. Bioresour. Technol. 2016, 210, 35–42. [Google Scholar] [CrossRef]
- Zhang, W.; Grimi, N.; Jaffrin, M.Y.; Ding, L. Leaf protein concentration of alfalfa juice by membrane technology. J. Membr. Sci. 2015, 489, 183–193. [Google Scholar] [CrossRef]
- Luo, J.; Ding, L.; Wan, Y.; Jaffrin, M.Y. Flux decline control in nanofiltration of detergent wastewater by a shear-enhanced filtration system. Chem. Eng. J. 2012, 181, 397–406. [Google Scholar] [CrossRef]
- Huang, Z.; Ong, S.L.; Ng, H.Y. Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: Effect of HRT and SRT on treatment performance and membrane fouling. Water Res. 2011, 45, 705–713. [Google Scholar] [CrossRef]
- Jang, Y.; Kim, H.-S.; Ham, S.-Y.; Park, J.-H.; Park, H.-D. Investigation of critical sludge characteristics for membrane fouling in a submerged membrane bioreactor: Role of soluble microbial products and extracted extracellular polymeric substances. Chemosphere 2021, 271, 129879. [Google Scholar] [CrossRef] [PubMed]
- Berkessa, Y.W.; Yan, B.; Li, T.; Tan, M.; She, Z.; Jegatheesan, V.; Jiang, H.; Zhang, Y. Novel anaerobic membrane bioreactor (AnMBR) design for wastewater treatment at long HRT and high solid concentration. Bioresour. Technol. 2018, 250, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Isma, M.A.; Idris, A.; Omar, R.; Razreena, A.P. Effects of SRT and HRT on treatment performance of MBR and membrane fouling. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 2014, 8, 485–489. [Google Scholar]
Influent | |
---|---|
COD (mg/L) | 282.8 ± 8.3 |
TN (mg/L) | 2.5 ± 0.02 |
Ammonia (mg/L) | 0.64 ± 0.07 |
Nitrate (mg/L) | 0.54 ± 0.02 |
Turbidity (NTU) | 14.6 ± 0.1 |
pH | 6.25 ± 0.03 |
Properties (Unit) | Values |
---|---|
Materials | Polysulfone |
Thickness (mm) | 0.28 ± 0.22 |
Mean flow pore size (µm) | 0.03 µm |
Surface contact angle (°) | 61.8 ± 1.0 |
Cross-section morphology | Asymmetric |
Clean water permeability (L/(m2 h bar) | 817 ± 35 |
Levels | Independent Variable | Unit | Low Level (−1) | Medium Level (0) | High Level (+1) |
---|---|---|---|---|---|
1 | Disk rotational speed | rpm | 30 | 40 | 50 |
2 | HRT | h | 12 | 15 | 18 |
3 | SRT | d | 5 | 10 | 15 |
RBC Effluent | RBC % Removal Efficiency | RBC-ME Effluent | RBC-ME % Removal Efficiency | |
---|---|---|---|---|
COD (mg/L) | 78.2 ± 7.5 | 72.4 ± 2.5 | 35 ± 7.5 | 87.6 ± 2.7 |
TN (mg/L) | 1.54 ± 0.05 | 38.3 ± 1.9 | 1.37 ± 0.06 | 45.2 ± 2.6 |
Ammonia (mg/L) | 0.03 ± 0.01 | 95.6 ± 0.8 | 0.01 ± 0.01 | 98.5 ± 0.07 |
Nitrate (mg/L) | 1.9 ± 0.3 | -- | 1.8 ± 0.2 | -- |
Turbidity (NTU) | 3.3 ± 0.3 | 78.9 ± 0.3 | 0.32 ± 0.03 | 97.8 ± 0.2 |
pH | 6.82 ± 0.03 | -- | 6.95 ± 0.11 | -- |
Independent Variables | Permeability (L/m2 h Bar) | ||||
---|---|---|---|---|---|
Run | (A) Disk Rotational Speed (rpm) | (B) HRT (h) | (C) SRT (d) | Actual Value | Predicted Value |
1 | 40 | 15 | 10 | 138 | 137.33 |
2 | 30 | 12 | 10 | 133 | 133.63 |
3 | 30 | 15 | 15 | 139 | 139.38 |
4 | 50 | 12 | 10 | 120 | 120.63 |
5 | 30 | 15 | 5 | 133 | 132.63 |
6 | 40 | 15 | 10 | 136 | 137.33 |
7 | 40 | 12 | 5 | 131 | 130.75 |
8 | 50 | 18 | 10 | 115 | 114.38 |
9 | 30 | 18 | 10 | 140 | 139.38 |
10 | 50 | 15 | 5 | 109 | 108.63 |
11 | 40 | 18 | 15 | 142 | 142.25 |
12 | 40 | 15 | 10 | 138 | 137.33 |
13 | 50 | 15 | 15 | 125 | 125.28 |
14 | 40 | 18 | 5 | 126 | 127.00 |
15 | 40 | 12 | 15 | 140 | 139.00 |
Source | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F | |
---|---|---|---|---|---|---|
Model | 1393.08 | 9 | 154.79 | 111.89 | <0.0001 | Significant |
A-Disk rotational speed | 722.00 | 1 | 722.00 | 521.93 | <0.0001 | Significant |
B-HRT | 0.1250 | 1 | 0.1250 | 0.0904 | 0.7758 | Not significant |
C-SRT | 276.13 | 1 | 276.13 | 199.61 | <0.0001 | Significant |
AB | 36.00 | 1 | 36.00 | 26.02 | 0.0038 | Significant |
AC | 25.00 | 1 | 25.00 | 18.07 | 0.0081 | Significant |
BC | 12.25 | 1 | 12.25 | 8.86 | 0.0309 | Significant |
A2 | 318.78 | 1 | 318.78 | 230.44 | <0.0001 | Significant |
B2 | 4.01 | 1 | 4.01 | 2.90 | 0.1495 | Not significant |
C2 | 8.78 | 1 | 8.78 | 6.34 | 0.0533 | Not significant |
Residual | 6.92 | 5 | 1.38 | |||
Lack of Fit | 4.25 | 3 | 1.42 | 1.06 | 0.5183 | Not significant |
Pure Error | 2.67 | 2 | 1.33 | |||
Cor Total | 1400.00 | 14 | ||||
Other statistical parameters | ||||||
R2 | Adjusted R2 | S.D. | A.P. | C.V. (%) | ||
0.9951 | 0.9862 | 1.18 | 35.0142 | 0.8978 |
Steady-State Permeability (L/m2 h Bar) | |||||
---|---|---|---|---|---|
Variables | Optimum Values | Predictive | Experimental | Error (%) | Standard Deviation |
Disk rotational speed | 36.1 rpm | 144.6 | 144.5 | 0.44 | 1.18 |
HRT | 18.0 h | ||||
SRT | 14.9 d |
Steady-State Permeability (L/m2 h Bar) | ||||
---|---|---|---|---|
Run | Predictive | Experimental | Error (%) | Standard Deviation |
1 | 143.5 | 143.00 | 0.35 | 0.26 |
2 | 137.3 | 137 | 0.18 | 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waqas, S.; Harun, N.Y.; Bilad, M.R.; Samsuri, T.; Nordin, N.A.H.M.; Shamsuddin, N.; Nandiyanto, A.B.D.; Huda, N.; Roslan, J. Response Surface Methodology for Optimization of Rotating Biological Contactor Combined with External Membrane Filtration for Wastewater Treatment. Membranes 2022, 12, 271. https://doi.org/10.3390/membranes12030271
Waqas S, Harun NY, Bilad MR, Samsuri T, Nordin NAHM, Shamsuddin N, Nandiyanto ABD, Huda N, Roslan J. Response Surface Methodology for Optimization of Rotating Biological Contactor Combined with External Membrane Filtration for Wastewater Treatment. Membranes. 2022; 12(3):271. https://doi.org/10.3390/membranes12030271
Chicago/Turabian StyleWaqas, Sharjeel, Noorfidza Yub Harun, Muhammad Roil Bilad, Taufik Samsuri, Nik Abdul Hadi Md Nordin, Norazanita Shamsuddin, Asep Bayu Dani Nandiyanto, Nurul Huda, and Jumardi Roslan. 2022. "Response Surface Methodology for Optimization of Rotating Biological Contactor Combined with External Membrane Filtration for Wastewater Treatment" Membranes 12, no. 3: 271. https://doi.org/10.3390/membranes12030271
APA StyleWaqas, S., Harun, N. Y., Bilad, M. R., Samsuri, T., Nordin, N. A. H. M., Shamsuddin, N., Nandiyanto, A. B. D., Huda, N., & Roslan, J. (2022). Response Surface Methodology for Optimization of Rotating Biological Contactor Combined with External Membrane Filtration for Wastewater Treatment. Membranes, 12(3), 271. https://doi.org/10.3390/membranes12030271