Lithium-Sodium Separation by a Lithium Composite Membrane Used in Electrodialysis Process: Concept Validation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membranes
2.3. Electrodialysis Cells
2.4. Analyses
3. Results and Discussion
3.1. Determination of the Limiting Current Density
3.2. ED Using Two-Compartment Cell
3.3. ED with Four-Compartment Cell
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quinteros-Condoretty, A.R.; Golroudbary, S.R.; Albareda, L.; Barbiellini, B.; Soyer, A. Impact of Circular Design of Lithium-Ion Batteries on Supply of Lithium for Electric Cars towards a Sustainable Mobility and Energy Transition. Procedia CIRP 2021, 100, 73–78. [Google Scholar] [CrossRef]
- Heredia, F.; Martinez, A.L.; Urtubey, V.S. The Importance of Lithium for Achieving a Low-Carbon Future: Overview of the Lithium Extraction in the ‘Lithium Triangle’. J. Energy Nat. Resour. Law 2020, 38, 213–236. [Google Scholar] [CrossRef]
- Tabelin, C.; Dallas, J.; Casanova, S.; Pelech, T.; Bournival, G.; Saydam, S.; Canbulat, I. Towards a Low-Carbon Society: A Review of Lithium Resource Availability, Challenges and Innovations in Mining, Extraction and Recycling, and Future Perspectives. Miner. Eng. 2021, 163, 106743. [Google Scholar] [CrossRef]
- Meshram, P.; Pandey, B.D.; Mankhand, T.R. Extraction of Lithium from Primary and Secondary Sources by Pre-Treatment, Leaching and Separation: A Comprehensive Review. Hydrometallurgy 2014, 150, 192–208. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Mineral Commodity Summaries 2021; U.S. Geological Survey: Reston, VA, USA, 2021; p. 200.
- Swain, B. Recovery and Recycling of Lithium: A Review. Sep. Purif. Technol. 2017, 172, 388–403. [Google Scholar] [CrossRef]
- Bae, H.; Kim, Y. Technologies of Lithium Recycling from Waste Lithium Ion Batteries: A Review. Mater. Adv. 2021, 2, 3234–3250. [Google Scholar] [CrossRef]
- Sommerville, R.; Shaw-Stewart, J.; Goodship, V.; Rowson, N.; Kendrick, E. A Review of Physical Processes Used in the Safe Recycling of Lithium Ion Batteries. Sustain. Mater. Technol. 2020, 25, e00197. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Mineral Commodity Summaries 2019; U.S. Geological Survey: Reston, VA, USA, 2019.
- Baspineiro, C.F.; Franco, J.; Flexer, V. Performance of a Double-Slope Solar Still for the Concentration of Lithium Rich Brines with Concomitant Fresh Water Recovery. Sci. Total Environ. 2021, 791, 148192. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, Y.; Yu, J. Application of Concentration-Dependent HSDM to the Lithium Adsorption from Brine in Fixed Bed Columns. Sep. Purif. Technol. 2020, 241, 116682. [Google Scholar] [CrossRef]
- Kamran, U.; Park, S.-J. Functionalized Titanate Nanotubes for Efficient Lithium Adsorption and Recovery from Aqueous Media. J. Solid State Chem. 2020, 283, 121157. [Google Scholar] [CrossRef]
- Wahib, S.A.; Da’na, D.A.; Zaouri, N.; Hijji, Y.M.; Al-Ghouti, M.A. Adsorption and Recovery of Lithium Ions from Groundwater Using Date Pits Impregnated with Cellulose Nanocrystals and Ionic Liquid. J. Hazard. Mater. 2022, 421, 126657. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, L.; Chao, Y.; Chen, W.; Luo, J.; Xiong, J.; Zhu, F.; Chu, X.; Li, H.; Zhu, W. Amorphous TiO2-Derived Large-Capacity Lithium Ion Sieve for Lithium Recovery. Chem. Eng. Technol. 2020, 43, 1784–1791. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Yang, Y.; Lin, S.; Li, P. Preparation of Granular Titanium-Type Lithium-Ion Sieves and Recyclability Assessment for Lithium Recovery from Brines with Different PH Value. Sep. Purif. Technol. 2021, 267, 118613. [Google Scholar] [CrossRef]
- Quezada, G.R.; Toledo, P.G. Complexation of Alkali and Alkaline-Earth Metal Cations at Spodumene-Saltwater Interfaces by Molecular Simulation: Impact on Oleate Adsorption. Minerals 2021, 11, 12. [Google Scholar] [CrossRef]
- Zhang, Q.; Zeng, Y.-H.; Ye, S.-H.; Liu, S. Inclusion Complexation Enhanced Cycling Performance of Iodine/Carbon Composites for Lithium–Iodine Battery. J. Power Sources 2020, 463, 228212. [Google Scholar] [CrossRef]
- Oral, I.; Abetz, V. A Highly Selective Polymer Material Using Benzo-9-Crown-3 for the Extraction of Lithium in Presence of Other Interfering Alkali Metal Ions. Macromol. Rapid Commun. 2021, 42, 2000746. [Google Scholar] [CrossRef]
- Swain, B. Separation and Purification of Lithium by Solvent Extraction and Supported Liquid Membrane, Analysis of Their Mechanism: A Review. J. Chem. Technol. Biotechnol. 2016, 91, 2549–2562. [Google Scholar] [CrossRef]
- Han, B.; Haq, R.A.U.; Louhi-Kultanen, M. Lithium Carbonate Precipitation by Homogeneous and Heterogeneous Reactive Crystallization. Hydrometallurgy 2020, 195, 105386. [Google Scholar] [CrossRef]
- An, J.W.; Kang, D.J.; Tran, K.T.; Kim, M.J.; Lim, T.; Tran, T. Recovery of Lithium from Uyuni Salar Brine. Hydrometallurgy 2012, 117, 64–70. [Google Scholar] [CrossRef]
- Lu, J.; Stevens, G.W.; Mumford, K.A. Development of Heterogeneous Equilibrium Model for Lithium Solvent Extraction Using Organophosphinic Acid. Sep. Purif. Technol. 2021, 276, 119307. [Google Scholar] [CrossRef]
- Yu, L.-Y.; Wu, K.-J.; He, C.-H. Tailoring Hydrophobic Deep Eutectic Solvent for Selective Lithium Recovery from Dilute Aqueous Solutions. Sep. Purif. Technol. 2022, 281, 119928. [Google Scholar] [CrossRef]
- Li, X.; Mo, Y.; Qing, W.; Shao, S.; Tang, C.Y.; Li, J. Membrane-Based Technologies for Lithium Recovery from Water Lithium Resources: A Review. J. Membr. Sci. 2019, 591, 117317. [Google Scholar] [CrossRef]
- Xu, W.; Liu, D.; He, L.; Zhao, Z. A Comprehensive Membrane Process for Preparing Lithium Carbonate from High Mg/Li Brine. Membranes 2020, 10, 371. [Google Scholar] [CrossRef]
- Huang, T.; Song, J.; He, H.; Zhang, Y.-B.; Li, X.-M.; He, T. Impact of SPEEK on PEEK Membranes: Demixing, Morphology and Performance Enhancement in Lithium Membrane Extraction. J. Membr. Sci. 2020, 615, 118448. [Google Scholar] [CrossRef]
- Roobavannan, S.; Vigneswaran, S.; Naidu, G. Enhancing the Performance of Membrane Distillation and Ion-Exchange Manganese Oxide for Recovery of Water and Lithium from Seawater. Chem. Eng. J. 2020, 396, 125386. [Google Scholar] [CrossRef]
- Hou, J.; Zhang, H.; Thornton, A.W.; Hill, A.J.; Wang, H.; Konstas, K. Lithium Extraction by Emerging Metal–Organic Framework-Based Membranes. Adv. Funct. Mater. 2021, 31, 2105991. [Google Scholar] [CrossRef]
- Kaunda, R.B. Potential Environmental Impacts of Lithium Mining. J. Energy Nat. Resour. Law 2020, 38, 237–244. [Google Scholar] [CrossRef]
- Wang, L.; Rehman, D.; Sun, P.-F.; Deshmukh, A.; Zhang, L.; Han, Q.; Yang, Z.; Wang, Z.; Park, H.-D.; Lienhard, J.H.; et al. Novel Positively Charged Metal-Coordinated Nanofiltration Membrane for Lithium Recovery. ACS Appl. Mater. Interfaces 2021, 13, 16906–16915. [Google Scholar] [CrossRef]
- Gao, L.; Wang, H.; Zhang, Y.; Wang, M. Nanofiltration Membrane Characterization and Application: Extracting Lithium in Lepidolite Leaching Solution. Membranes 2020, 10, 178. [Google Scholar] [CrossRef]
- Al-Absi, R.S.; Abu-Dieyeh, M.H.; Ben-Hamadou, R.; Nasser, M.S.; Al-Ghouti, M.A. Novel Composite Materials of Modified Roasted Date Pits Using Ferrocyanides for the Recovery of Lithium Ions from Seawater Reverse Osmosis Brine. Sci. Rep. 2021, 11, 18896. [Google Scholar] [CrossRef]
- Hoshino, T. Innovative Lithium Recovery Technique from Seawater by Using World-First Dialysis with a Lithium Ionic Superconductor. Desalination 2015, 359, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Hoshino, T. Preliminary Studies of Lithium Recovery Technology from Seawater by Electrodialysis Using Ionic Liquid Membrane. Desalination 2013, 317, 11–16. [Google Scholar] [CrossRef]
- Bajestani, M.B.; Moheb, A.; Dinari, M. Preparation of Lithium Ion-Selective Cation Exchange Membrane for Lithium Recovery from Sodium Contaminated Lithium Bromide Solution by Electrodialysis Process. Desalination 2020, 486, 114476. [Google Scholar] [CrossRef]
- Yang, Z.; Fang, W.; Wang, Z.; Zhang, R.; Zhu, Y.; Jin, J. Dual-Skin Layer Nanofiltration Membranes for Highly Selective Li+/Mg2+ Separation. J. Membr. Sci. 2021, 620, 118862. [Google Scholar] [CrossRef]
- Ying, J.; Luo, M.; Jin, Y.; Yu, J. Selective Separation of Lithium from High Mg/Li Ratio Brine Using Single-Stage and Multi-Stage Selective Electrodialysis Processes. Desalination 2020, 492, 114621. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, G.; Jia, H.; He, L. Sandwiched Liquid-Membrane Electrodialysis: Lithium Selective Recovery from Salt Lake Brines with High Mg/Li Ratio. J. Membr. Sci. 2020, 596, 117685. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Sun, W.; Hu, Y.; Tang, H. Membrane Technologies for Li+/Mg2+ Separation from Salt-Lake Brines and Seawater: A Comprehensive Review. J. Ind. Eng. Chem. 2020, 81, 7–23. [Google Scholar] [CrossRef]
- Razmjou, A.; Hosseini, E.; Cha-Umpong, W.; Korayem, A.H.; Asadnia, M.; Moazzam, P.; Orooji, Y.; Karimi-Maleh, H.; Chen, V. Effect of Chemistry and Geometry of GO Nanochannels on the Li Ion Selectivity and Recovery. Desalination 2020, 496, 114729. [Google Scholar] [CrossRef]
- Tang, C.; Yaroshchuk, A.; Bruening, M.L. Flow through negatively charged, nanoporous membranes separates Li+ and K+ due to induced electromigration. Chem. Commun. 2020, 56, 10954–10957. [Google Scholar] [CrossRef]
- Butylskii, D.Y.; Pismenskaya, N.D.; Apel, P.Y.; Sabbatovskiy, K.G.; Nikonenko, V.V. Highly selective separation of singly charged cations by countercurrent electromigration with a track-etched membrane. J. Membr. Sci. 2021, 635, 119449. [Google Scholar] [CrossRef]
- Ran, J.; Wu, L.; He, Y.; Yang, Z.; Wang, Y.; Jiang, C.; Ge, L.; Bakangura, E.; Xu, T. Ion Exchange Membranes: New Developments and Applications. J. Membr. Sci. 2017, 522, 267–291. [Google Scholar] [CrossRef]
- Liu, L.; Cheng, Q. Mass Transfer Characteristic Research on Electrodialysis for Desalination and Regeneration of Solution: A Comprehensive Review. Renew. Sustain. Energy Rev. 2020, 134, 110115. [Google Scholar] [CrossRef]
- Hoshino, T.; Terai, T. High-Efficiency Technology for Lithium Isotope Separation Using an Ionic-Liquid Impregnated Organic Membrane. Fusion Eng. Des. 2011, 86, 2168–2171. [Google Scholar] [CrossRef]
- Hoshino, T. Lithium Recovery from Seawater by Electrodialysis Using Ionic Liquid-Based Membrane Technology. ECS Trans. 2014, 58, 173. [Google Scholar] [CrossRef]
- Ounissi, T.; Dammak, L.; Larchet, C.; Fauvarque, J.-F.; Hmida, E.S.B.H. Novel Lithium Selective Composite Membranes: Synthesis, Characterization and Validation Tests in Dialysis. J. Mater. Sci. 2020, 55, 16111–16128. [Google Scholar] [CrossRef]
- Ounissi, T.; Dammak, L.; Fauvarque, J.-F.; Hmida, E.S.B.H. Ecofriendly Lithium-Sodium Separation by Diffusion Processes Using Lithium Composite Membrane. Sep. Purif. Technol. 2021, 275, 119134. [Google Scholar] [CrossRef]
- Larchet, C.; Nouri, S.; Auclair, B.; Dammak, L.; Nikonenko, V. Application of Chronopotentiometry to Determine the Thickness of Diffusion Layer Adjacent to an Ion-Exchange Membrane under Natural Convection. Adv. Colloid Interface Sci. 2008, 139, 45–61. [Google Scholar] [CrossRef]
- Li, Y.; He, G.; Wang, S.; Yu, S.; Pan, F.; Wu, H.; Jiang, Z. Recent Advances in the Fabrication of Advanced Composite Membranes. J. Mater. Chem. A 2013, 1, 10058–10077. [Google Scholar] [CrossRef]
- Vinh-Thang, H.; Kaliaguine, S. Predictive Models for Mixed-Matrix Membrane Performance: A Review. Chem. Rev. 2013, 113, 4980–5028. [Google Scholar] [CrossRef]
- Moore, T.T.; Koros, W.J. Non-Ideal Effects in Organic–Inorganic Materials for Gas Separation Membranes. J. Mol. Struct. 2005, 739, 87–98. [Google Scholar] [CrossRef]
- Tansel, B. Significance of Thermodynamic and Physical Characteristics on Permeation of Ions during Membrane Separation: Hydrated Radius, Hydration Free Energy and Viscous Effects. Sep. Purif. Technol. 2012, 86, 119–126. [Google Scholar] [CrossRef]
- Atkins, P.W.; De Paula, J. Atkins’ Physical Chemistry; Oxford University Press: Oxford, UK; New York, NY, USA, 2006; ISBN 978-0-19-870072-2. [Google Scholar]
- Li, Y.-H.; Gregory, S. Diffusion of Ions in Sea Water and in Deep-Sea Sediments. Geochim. Cosmochim. Acta 1974, 38, 703–714. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Y.; Wan, P.; Gasem, K.; Wang, K.; He, T.; Adidharma, H.; Fan, M. Extraction of Lithium with Functionalized Lithium Ion-Sieves. Prog. Mater. Sci. 2016, 84, 276–313. [Google Scholar] [CrossRef]
- Cukierman, S. Et Tu, Grotthuss! And Other Unfinished Stories. Biochim. Biophys. Acta BBA Bioenerg. 2006, 1757, 876–885. [Google Scholar] [CrossRef] [Green Version]
- Mei, Y.; Yao, Z.; Ji, L.; Toy, P.H.; Tang, C.Y. Effects of Hypochlorite Exposure on the Structure and Electrochemical Performance of Ion Exchange Membranes in Reverse Electrodialysis. J. Membr. Sci. 2018, 549, 295–305. [Google Scholar] [CrossRef]
- Lachachi, Z.; Kameche, M.; Bendjeda, S.; Meddah, K.; Hamani, H.; Boumediene, H.; Innocent, C. Study of Proton Leakage at Interface of Anion-Exchange Membrane in Solutions of Acids, Salts, and Solvents Using Current/Voltage Characteristics. Chem. Eng. Commun. 2016, 203, 566–574. [Google Scholar] [CrossRef]
- Meng, X.; Long, Y.; Tian, Y.; Li, W.; Liu, T.; Huo, S. Electro-Membrane Extraction of Lithium with D2EHPA/TBP Compound Extractant. Hydrometallurgy 2021, 202, 105615. [Google Scholar] [CrossRef]
- Sharma, P.P.; Yadav, V.; Rajput, A.; Gupta, H.; Saravaia, H.; Kulshrestha, V. Sulfonated Poly (Ether Ether Ketone) Composite Cation Exchange Membrane for Selective Recovery of Lithium by Electrodialysis. Desalination 2020, 496, 114755. [Google Scholar] [CrossRef]
- Parsa, N.; Moheb, A.; Mehrabani-Zeinabad, A.; Masigol, M.A. Recovery of Lithium Ions from Sodium-Contaminated Lithium Bromide Solution by Using Electrodialysis Process. Chem. Eng. Res. Des. 2015, 98, 81–88. [Google Scholar] [CrossRef]
- Zhao, L.-M.; Chen, Q.-B.; Ji, Z.-Y.; Liu, J.; Zhao, Y.-Y.; Guo, X.-F.; Yuan, J.-S. Separating and recovering lithium from brines using selective-electrodialysis: Sensitivity to temperature. Chem. Eng. Res. Des. 2018, 140, 116–127. [Google Scholar] [CrossRef]
- Zante, G.; Boltoeva, M.; Masmoudi, A.; Barillon, R.; Trébouet, D. Highly selective transport of lithium across a supported liquid membrane. J. Fluor. Chem. 2020, 236, 109593. [Google Scholar] [CrossRef]
- Chen, Q.-B.; Ji, Z.-Y.; Liu, J.; Zhao, Y.-Y.; Wang, S.-Z.; Yuan, J.-S. Development of recovering lithium from brines by selective-electrodialysis: Effect of coexisting cations on the migration of lithium. J. Membr. Sci. 2018, 548, 408–420. [Google Scholar] [CrossRef]
LCM | AMX | |
---|---|---|
Membrane thickness: l (µm) | 130 | 153 |
Membrane conductivity (mS·cm−1) | 0.75 in 0.1 M LiCl solution | 12.6 in 0.1 M NaCl solution |
Water content: Wc (%) * | 11.3 | 24.8 |
Contact angle: θ (°) | 61.3 | 63.0 |
Cations | Hydrated Radius RH (Å) [53] | Mobility u (10−8 m2·s−1·v−1) [54] | Diffusion Coefficients D (10−9 m2·s−1) [55] |
---|---|---|---|
H+ | - | 36.23 | 9.31 |
Na+ | 3.58 | 5.19 | 1.33 |
Li+ | 3.82 | 4.01 | 1.03 |
[Na+]F/[Li+]F | [Li+]F (mg·L−1) | [Na+]F (mg·L−1) | [Li+]R (mg·L−1) | [Na+]R (mg·L−1) | S(Li/Na) | RR(Li+) (%) | RR(Na+) (%) |
---|---|---|---|---|---|---|---|
0.125 | 800 | 100 | 38.14 | 1.26 | 3.8 | 4.77 | 1.26 |
1.0 | 500 | 500 | 36.29 | 1.31 | 27.7 | 7.26 | 0.26 |
10 | 200 | 2000 | 20.10 | 1.79 | 112.3 | 10.05 | 0.09 |
20 | 100 | 2000 | 8.86 | 2.38 | 74.5 | 8.86 | 0.12 |
40 | 100 | 4000 | 6.42 | 3.67 | 70.0 | 6.42 | 0.09 |
Membranes | Feed Composition | S(Li/Na) | RR(Li+) (%) | Reference |
---|---|---|---|---|
IL-i-OM membrane High durability IL-i-OM | [Li+]F = 170 ppb [Na+]F = 10,500 ppm | Very selective | 5.94 22.2 | [34] |
PET track-etched membrane | * [K+]F = 0.13 mol·L−1, [Li+]F = 0.07 mol·L−1 | 0.20 | - | [41] |
Polymer inclusion membrane (PDT-PIM) | [Li+]F = [Na+] F = 20 mg·L−1 | 6.41 | 9.02 | [60] |
Sulfonated poly (ether ether ketone) composite CEM | [Li+]F = [Na+]F = [K+]F = [Mg2+]F = 500 ppm | 2.17 | 84 | [61] |
CR67-MK111 (Homogenous polystyrene/Divinyl benzene) | [Li+]F = 27,800 mg·L−1 [Na+]F = 1350 mg·L−1 | 3.54 | 27.53 | [62] |
Monovalent- cation exchange membrane | [Na+]/[Li+] = 0.75 mol·L−1, [Li+] = 0.05 mol·L−1 | 1.25 | 21.47 | [63] |
Lithium selective cation exchange membrane | Feed: (LiOH·H2O = 1.9857 mol·L−1, NaOH = 0.0587 mol·L−1) | 32.2 | - | [35] |
Supported liquid membrane based on a fluorinated molecule. | LiCl = NaCl = 15.10−3 mol·L−1 | 400 | 99 | [64] |
Monovalent selective ion exchange membrane | LiCl = NaCl = 0.05 mol·L−1 | 7.5 | 74.31 | [65] |
LCM | [Li+]F = 200 mg·L−1 [Na+]F = 2000 mg·L−1 | 112.3 | 10.05 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ounissi, T.; Belhadj Ammar, R.; Larchet, C.; Chaabane, L.; Baklouti, L.; Dammak, L.; Selmane Bel Hadj Hmida, E. Lithium-Sodium Separation by a Lithium Composite Membrane Used in Electrodialysis Process: Concept Validation. Membranes 2022, 12, 244. https://doi.org/10.3390/membranes12020244
Ounissi T, Belhadj Ammar R, Larchet C, Chaabane L, Baklouti L, Dammak L, Selmane Bel Hadj Hmida E. Lithium-Sodium Separation by a Lithium Composite Membrane Used in Electrodialysis Process: Concept Validation. Membranes. 2022; 12(2):244. https://doi.org/10.3390/membranes12020244
Chicago/Turabian StyleOunissi, Takoua, Rihab Belhadj Ammar, Christian Larchet, Lobna Chaabane, Lassaad Baklouti, Lasâad Dammak, and Emna Selmane Bel Hadj Hmida. 2022. "Lithium-Sodium Separation by a Lithium Composite Membrane Used in Electrodialysis Process: Concept Validation" Membranes 12, no. 2: 244. https://doi.org/10.3390/membranes12020244