Dynamic Membranes for Enhancing Resources Recovery from Municipal Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Influent and Experimental Design
2.2. DM Pilot Plant
2.3. Lab-Scale DM
2.4. Analytical Methods and Calculations
3. Results and Discussions
3.1. Pilot Plant Operation: Effect of Operating Conditions
3.2. Pilot Plant Operation: Coagulant Dosing
3.3. Lab-Scale Results: Effect of Solids Concentration
3.4. Operating Recommendations
4. Conclusions
- One layer of the supporting material (a flat open monofilament woven polyamide mesh of 1 µm average pore size) was not enough to self-form a DM in the short-term when treating PSE from a full-scale WWTP, showing the limitations of DMs for treating more depurated influents. Nevertheless, a proper DM was self-formed when using two supporting material layers (17 days of operation) or when increasing the operating TSS concentration (8, 6 and 4 days of operation for a TSS concentration of 1.9, 4.7 and 9.2 g L−1).
- Similar permeate qualities were obtained regardless of filtration flux and TSS tested in this study, achieving TSS, COD, TN, TP and turbidity values of 65 mg L−1, 141 mg L−1, 42.3 mg L−1, 4.3 mg L−1 and 86 NTU, respectively.
- Coagulant dosing improved both the required forming time and DM permeate quality. Optimum coagulant (PHLA18) dosing of 10 mg L−1 was determined, achieving a DM forming time of 7 days and a permeate quality of TSS, COD, TN, TP and turbidity of 24 mg L−1, 58 mg L−1, 38.1 mg L−1, 1.2 mg L−1 and 22 NTU, respectively.
- Preliminary energy and economic balances showed that energy recoveries from 0.032 to 0.121 kWh per m3 of treated water at an economic cost of from €0.002 to €0.003 per m3 of treated water can be obtained from the recovered particulate material.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Batstone, D.; Hülsen, T.; Mehta, C.; Keller, J. Platforms for energy and nutrient recovery from domestic wastewater: A review. Chemosphere 2015, 140, 2–11. [Google Scholar] [CrossRef]
- Puyol, D.; Batstone, D.J.; Hülsen, T.; Astals, S.; Peces, M.; Krömer, J. Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects. Front. Microbiol. 2017, 7, 2106. [Google Scholar] [CrossRef] [Green Version]
- Sid, S.; Volant, A.; Lesage, G.; Heran, M. Cost minimization in a full-scale conventional wastewater treatment plant: Associated costs of biological energy consumption versus sludge production. Water Sci. Technol. 2017, 76, 2473–2481. [Google Scholar] [CrossRef] [Green Version]
- Vinardell, S.; Astals, S.; Peces, M.; Cardete, M.A.; Fernández, I.; Mata-Alvarez, J.; Dosta, J. Advances in anaerobic membrane bioreactor technology for municipal wastewater treatment: A 2020 updated review. Renew. Sustain. Energy Rev. 2020, 130, 109936. [Google Scholar] [CrossRef]
- Zhao, Y.-X.; Li, P.; Li, R.-H.; Li, X.-Y. Direct filtration for the treatment of the coagulated domestic sewage using flat-sheet ceramic membranes. Chemosphere 2019, 223, 383–390. [Google Scholar] [CrossRef]
- Hube, S.; Eskafi, M.; Hrafnkelsdóttir, K.F.; Bjarnadóttir, B.; Bjarnadóttir, M.Á.; Axelsdóttir, S.; Wu, B. Direct membrane filtration for wastewater treatment and resource recovery: A review. Sci. Total Environ. 2020, 710, 136375. [Google Scholar] [CrossRef]
- Kimura, K.; Honoki, D.; Sato, T. Effective physical cleaning and adequate membrane flux for direct membrane filtration (DMF) of municipal wastewater: Up-concentration of organic matter for efficient energy recovery. Sep. Purif. Technol. 2017, 181, 37–43. [Google Scholar] [CrossRef]
- Jin, Z.; Gong, H.; Temmink, H.; Nie, H.; Wu, J.; Zuo, J.; Wang, K. Efficient sewage pre-concentration with combined coagulation microfiltration for organic matter recovery. Chem. Eng. J. 2016, 292, 130–138. [Google Scholar] [CrossRef]
- Nascimento, T.A.; Fdz-Polanco, F.; Peña, M. Membrane-Based Technologies for the Up-Concentration of Municipal Wastewater: A Review of Pretreatment Intensification. Sep. Purif. Rev. 2020, 49, 1–19. [Google Scholar] [CrossRef]
- Xiong, J.; Yu, S.; Hu, Y.; Yang, Y.; Wang, X. Applying a dynamic membrane filtration (DMF) process for domestic wastewater preconcentration: Organics recovery and bioenergy production potential analysis. Sci. Total Environ. 2019, 680, 35–43. [Google Scholar] [CrossRef]
- Gong, H.; Wang, X.; Zheng, M.; Jin, Z.; Wang, K. Direct sewage filtration for concentration of organic matters by dynamic membrane. Water Sci. Technol. 2014, 70, 1434–1440. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Z.; Xu, Y.; Wang, Q.; Wu, Z.; Grasmick, A. Organic matter recovery from municipal wastewater by using dynamic membrane separation process. Chem. Eng. J. 2013, 219, 190–199. [Google Scholar] [CrossRef]
- Usman, M.; Belkasmi, A.I.; Katsoyiannis, I.A.; Ernst, M. Pre-deposited dynamic membrane adsorber formed of microscale conventional iron oxide-based adsorbents to remove arsenic from water: Application study and mathematical modeling. J. Chem. Technol. Biotechnol. 2021, 96, 1504–1514. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, X.C.; Ngo, H.H.; Sun, Q.; Yang, Y. Anaerobic dynamic membrane bioreactor (AnDMBR) for wastewater treatment: A review. Bioresour. Technol. 2018, 247, 1107–1118. [Google Scholar] [CrossRef]
- Mohan, S.M.; Nagalakshmi, S. A review on aerobic self-forming dynamic membrane bioreactor: Formation, performance, fouling and cleaning. J. Water Process Eng. 2020, 37, 101541. [Google Scholar] [CrossRef]
- Hey, T.; Bajraktari, N.; Davidsson, Å.; Vogel, J.; Madsen, H.T.; Hélix-Nielsen, C.; Jansen, J.L.C.; Jönsson, K. Evaluation of direct membrane filtration and direct forward osmosis as concepts for compact and energy-positive municipal wastewater treatment. Environ. Technol. 2018, 39, 264–276. [Google Scholar] [CrossRef]
- Gong, H.; Jin, Z.; Wang, X.; Wang, K. Membrane fouling controlled by coagulation/adsorption during direct sewage membrane filtration (DSMF) for organic matter concentration. J. Environ. Sci. 2015, 32, 1–7. [Google Scholar] [CrossRef]
- Te Poele, S. Foulants in Ultrafiltration of Wwtp Effluent. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2006. [Google Scholar]
- Ravazzini, A.M. Crossflow Ultrafiltration of Raw Municipal Wastewater. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2008. [Google Scholar]
- Ravazzini, A.; van Nieuwenhuijzen, A.; van der Graaf, J. Direct ultrafiltration of municipal wastewater: Comparison between filtration of raw sewage and primary clarifier effluent. Desalination 2005, 178, 51–62. [Google Scholar] [CrossRef]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water andWastewater, 22nd ed.; American Public Health Association/American Water Works Association/Water Environmental Federation: Washington, DC, USA, 2012. [Google Scholar]
- Darrow, K.; Tidball, R.; Wang, J.; Hampson, A. Catalog of CHP Technologies, U.S. Environmental Protection Agency Combined Heat and Power Partnership; at ICF International (September 2017), with Funding from the U.S. Environmental Protection Agency and the U.S. Department of Energy. Available online: https://www.epa.gov/sites/default/files/2015-07/documents/catalog_of_chp_technologies.pdf (accessed on 9 October 2021).
- Gesternova Energía, Spanish Electricity Rates (Tarifa Eléctrica España). 2021. Available online: https://gesternova.com/tarifas-luz/tarifas-luz-alta-tension/ (accessed on 9 October 2021).
- Aura Energía, Spanish Electricity Rates (Tarifa Eléctrica España). 2021. Available online: https://www.aura-energia.com/tarifas-luz-industria-peninsula/ (accessed on 9 October 2021).
- Jiang, L.; Yu, Y.; Liu, G. Effects of inorganic particles and their interactions with biofilms on dynamic membrane structure and long-term filtration performance. Sci. Total Environ. 2021, 780, 146639. [Google Scholar] [CrossRef]
- Yu, W.; Xu, L.; Qu, J.; Graham, N. Investigation of precoagulation and powder activate carbon adsorption on ultrafil-tration membrane fouling. J. Membr. Sci. 2014, 459, 157–168. [Google Scholar] [CrossRef]
- Hey, T. Municipal Wastewater Treatment by Microsieving, Microfiltration and Forward Osmosis. Concepts and Potentials. Ph.D. Thesis, Department of Chemical Engineering, Lund University, Lund, Sweden, 2016. [Google Scholar]
- Chen, Y.; Wu, Y.; Wang, D.; Li, H.; Wang, Q.; Liu, Y.; Peng, L.; Yang, Q.; Li, X.; Zeng, G.; et al. Understanding the mechanisms of how poly aluminium chloride inhibits short-chain fatty acids production from anaerobic fermentation of waste activated sludge. Chem. Eng. J. 2018, 334, 1351–1360. [Google Scholar] [CrossRef]
- Hafuka, A.; Takahashi, T.; Kimura, K. Anaerobic digestibility of up-concentrated organic matter obtained from direct membrane filtration of municipal wastewater. Biochem. Eng. J. 2020, 161, 107692. [Google Scholar] [CrossRef]

TMPaverage;
TSS in the membrane tank;
TSS capure efficiency;
TSS in the permeate. The continuous lines represent linear fits.
TMPaverage;
TSS in the membrane tank;
TSS capure efficiency;
TSS in the permeate. The continuous lines represent linear fits.


PHLA10;
PHLA18;
F1;
F2.
PHLA10;
PHLA18;
F1;
F2.
1.9 g L−1;
4.7 g L−1;
9.2 g L−1) on: (a) TSS in the permeate and (b) TSS capture efficiency. Note that the TSS capture efficiency was calculated based on the original influent used (see Table 1).
1.9 g L−1;
4.7 g L−1;
9.2 g L−1) on: (a) TSS in the permeate and (b) TSS capture efficiency. Note that the TSS capture efficiency was calculated based on the original influent used (see Table 1).

| Parameter | Units | Mean ± SD |
|---|---|---|
| TSS | mg TSS L−1 | 113 ± 22 |
| COD | mg COD L−1 | 167 ± 42 |
| SCOD | mg COD L−1 | 57 ± 21 |
| TN | mg N L−1 | 45.5 ± 8.5 |
| TP | mg P L−1 | 5.9 ± 1.1 |
| Alk | mg CaCO3 L−1 | 335 ± 67 |
| pH | - | 7.6 ± 0.5 |
| Turbidity | NTU | 109 ± 31 |
| PILOT-PLANT | |||
| Exp. | Supporting Material | Operating Flux (LMH) * | Coagulant Concentration (mg Al2O3 L−1) |
| 1 | 1 layer | 15.4 ± 0.2 | - |
| 2 | 2 layers | 15.1 ± 0.3 | - |
| 3 | 2 layers | 45.3 ± 3.1 | - |
| 4 | 2 layers | 14.7 ± 0.7 | 10 |
| LAB-SCALE | |||
| Exp. | Supporting Material | Operating Flux (LMH) * | Sludge Concentration (g L−1) |
| 1L | 1 layer | 15.3 ± 0.6 | 1.9 |
| 2L | 1 layer | 14.8 ± 0.6 | 4.7 |
| 3L | 1 layer | 14.9 ± 0.9 | 9.2 |
| Coagulant | Product Code | Formula | % Al2O3 | % Cl− | % SO42− |
|---|---|---|---|---|---|
| 1 | PHAL 18 | Al(OH)aClb | 17.0 ± 0.5 | 21.5 ± 1.0 | - |
| 2 | PHAL 10 | Al(OH)aClb(SO4)c | 10.0 ± 0.3 | 12.0 ± 0.5 | 2.1 ± 0.2 |
| 3 | AQUALENC F1 | Al(OH)aClb(SO4)c | 9.5 ± 0.5 | 12.3 ± 1.3 | n.a. |
| 4 | AQUALENC F2 | Al(OH)aClb(SO4)c | 9.0 ± 0.5 | 10.5 ± 0.5 | 1.5 ± 0.5 |
| Exp. | TSS | Turbidity | COD | TN | TP | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| (mg L−1) | (%) * | (NTU) | (%) * | (mg L−1) | (%) * | (mg L−1) | (%) * | (mg L−1) | (%) * | |
| 2 | 65 | 58 | 86 | 79 | 141 | 84 | 42.3 | 93 | 4.3 | 73 |
| 3 | 59 | 52 | 94 | 86 | 138 | 83 | 42.9 | 94 | 4.4 | 75 |
| 4 | 24 | 21 | 22 | 20 | 58 | 35 | 38.1 | 84 | 1.2 | 20 |
| Exp. | Sludge Concentration (g L−1) | Operating Days | Self-Forming Period (Days) | Average TMP (mbar) |
|---|---|---|---|---|
| 1L | 1.9 | 15 | 8 | 56 |
| 2L | 4.7 | 15 | 5 | 198 |
| 3L | 9.2 | 6 | 4 | 384 |
| Exp. Num | MWW Treated | Energy Recovery (kWh m−3) | Energy Costs (€ m−3) | Coagul. Costs (€ m−3) | Costs Output (€ m−3) | Reference |
|---|---|---|---|---|---|---|
| 2 | PSE | 0.029 | −0.002 | - | −0.002 | This study |
| 3 | PSE | 0.032 | −0.002 | - | −0.002 | This study |
| 4 | PSE | 0.121 | −0.009 | 0.012 | 0.003 | This study |
| - | Raw | 0.101 | n.a. | n.a. | n.a. | [10] |
| - | Raw | 0.127 | n.a. | n.a. | n.a. | [12] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchis-Perucho, P.; Aguado, D.; Ferrer, J.; Seco, A.; Robles, Á. Dynamic Membranes for Enhancing Resources Recovery from Municipal Wastewater. Membranes 2022, 12, 214. https://doi.org/10.3390/membranes12020214
Sanchis-Perucho P, Aguado D, Ferrer J, Seco A, Robles Á. Dynamic Membranes for Enhancing Resources Recovery from Municipal Wastewater. Membranes. 2022; 12(2):214. https://doi.org/10.3390/membranes12020214
Chicago/Turabian StyleSanchis-Perucho, Pau, Daniel Aguado, José Ferrer, Aurora Seco, and Ángel Robles. 2022. "Dynamic Membranes for Enhancing Resources Recovery from Municipal Wastewater" Membranes 12, no. 2: 214. https://doi.org/10.3390/membranes12020214
APA StyleSanchis-Perucho, P., Aguado, D., Ferrer, J., Seco, A., & Robles, Á. (2022). Dynamic Membranes for Enhancing Resources Recovery from Municipal Wastewater. Membranes, 12(2), 214. https://doi.org/10.3390/membranes12020214

