Efficient Phosphorus Recovery from Municipal Wastewater Using Enhanced Biological Phosphorus Removal in an Anaerobic/Anoxic/Aerobic Membrane Bioreactor and Magnesium-Based Pellets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Municipal Wastewater
2.2. Bench-Scale Anaerobic/Anoxic/Aerobic MBR System
2.3. A Continuous Flow Column Reactor with MgCO3 Pellets
2.4. Characterization of Membrane Biofouling
3. Results and Discussion
3.1. Performance of the Anaerobic/Anoxic/Aerobic MBR System
3.2. Effective Recovery of Phosphorus from the MBR Effluent
3.3. Characteristics of Membrane Fouling under Different Redox Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hao, X.; Wang, C.; van Loosdrecht, M.; Hu, Y. Looking Beyond Struvite for P-Recovery. Environ. Sci. Technol. 2013, 47, 4965–4966. [Google Scholar] [CrossRef]
- Egle, L.; Rechberger, H.; Krampe, J.; Zessner, M. Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Sci. Total Environ. 2016, 571, 522–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Z.; Pratt, S.; Batstone, D. Phosphorus recovery from wastewater through microbial processes. Curr. Opin. Biotechnol. 2012, 23, 878–883. [Google Scholar] [CrossRef]
- Kok, D.-J.D.; Pande, S.; van Lier, J.B.; Ortigara, A.R.C.; Savenije, H.; Uhlenbrook, S. Global phosphorus recovery from wastewater for agricultural reuse. Hydrol. Earth Syst. Sci. 2018, 22, 5781–5799. [Google Scholar] [CrossRef] [Green Version]
- Melia, P.M.; Cundy, A.; Sohi, S.; Hooda, P.; Busquets, R. Trends in the recovery of phosphorus in bioavailable forms from wastewater. Chemosphere 2017, 186, 381–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, G.; Song, Y.; Zeng, P.; Xiao, S.; Duan, L. Phosphorus recovery from fosfomycin pharmaceutical wastewater by wet air oxidation and phosphate crystallization. Chemosphere 2011, 84, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.-H.; Qiu, G.-L.; Yuan, P.; Cui, X.-Y.; Peng, J.-F.; Zeng, P.; Duan, L.; Xiang, L.-C.; Qian, F. Nutrients removal and recovery from anaerobically digested swine wastewater by struvite crystallization without chemical additions. J. Hazard. Mater. 2011, 190, 140–149. [Google Scholar] [CrossRef]
- DeSmidt, E.; Ghyselbrecht, K.; Zhang, Y.; Pinoy, L.; Van Der Bruggen, B.; Verstraete, W.; Rabaey, K.; Meesschaert, B. Global Phosphorus Scarcity and Full-Scale P-Recovery Techniques: A Review. Crit. Rev. Environ. Sci. Technol. 2014, 45, 336–384. [Google Scholar] [CrossRef]
- Köse, T.E.; Kıvanç, B. Adsorption of phosphate from aqueous solutions using calcined waste eggshell. Chem. Eng. J. 2011, 178, 34–39. [Google Scholar] [CrossRef]
- Fang, C.; Zhang, T.; Li, P.; Jiang, R.-F.; Wang, Y.-C. Application of Magnesium Modified Corn Biochar for Phosphorus Removal and Recovery from Swine Wastewater. Int. J. Environ. Res. Public Health 2014, 11, 9217–9237. [Google Scholar] [CrossRef] [Green Version]
- Lai, L.; Xie, Q.; Chi, L.; Gu, W.; Wu, D. Adsorption of phosphate from water by easily separable Fe 3 O 4 @SiO 2 core/shell magnetic nanoparticles functionalized with hydrous lanthanum oxide. J. Colloid Interface Sci. 2016, 465, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Lalley, J.; Han, C.; Li, X.; Dionysiou, D.D.; Nadagouda, M.N. Phosphate adsorption using modified iron oxide-based sorbents in lake water: Kinetics, equilibrium, and column tests. Chem. Eng. J. 2015, 284, 1386–1396. [Google Scholar] [CrossRef]
- Freitag, F.; Kleinebudde, P. How do roll compaction/dry granulation affect the tableting behaviour of inorganic materials? Comparison of four magnesium carbonates. Eur. J. Pharm. Sci. 2003, 19, 281–289. [Google Scholar] [CrossRef]
- Martin, E.; Lalley, J.; Wang, W.; Nadagouda, M.N.; Sahle-Demessie, E.; Chae, S.-R. Phosphate recovery from water using cellulose enhanced magnesium carbonate pellets: Kinetics, isotherms, and desorption. Chem. Eng. J. 2018, 352, 612–624. [Google Scholar] [CrossRef]
- Oehmen, A.; Lemos, P.C.; Carvalho, G.; Yuan, Z.; Keller, J.; Blackall, L.L.; Reis, M.A. Advances in enhanced biological phosphorus removal: From micro to macro scale. Water Res. 2007, 41, 2271–2300. [Google Scholar] [CrossRef] [PubMed]
- Morse, G.; Brett, S.; Guy, J.; Lester, J. Review: Phosphorus removal and recovery technologies. Sci. Total Environ. 1998, 212, 69–81. [Google Scholar] [CrossRef]
- Acevedo-Juárez, B.; Oehmen, A.; Carvalho, G.; Seco, A.; Borrás, L.; Barat, R. Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage. Water Res. 2012, 46, 1889–1900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, N.; Zhou, Y. Enhanced biological phosphorus removal with different carbon sources. Appl. Microbiol. Biotechnol. 2016, 100, 4735–4745. [Google Scholar] [CrossRef]
- Wang, D.; Zheng, W.; Li, X.; Yang, Q.; Liao, D.; Zeng, G. Evaluation of the Feasibility of Alcohols Serving as External Carbon Sources for Biological Phosphorus Removal Induced by the Oxic/Extended-Idle Regime. Biotechnol. Bioeng. 2013, 110, 827–837. [Google Scholar] [CrossRef]
- Mahoo, F. Methods for Phosphorus Recovery from Waste Water: A Review. J. Biodivers. Environ. Sci. 2018, 13, 2222–3045. [Google Scholar]
- Kodera, H.; Hatamoto, M.; Abe, K.; Kindaichi, T.; Ozaki, N.; Ohashi, A. Phosphate recovery as concentrated solution from treated wastewater by a PAO-enriched biofilm reactor. Water Res. 2013, 47, 2025–2032. [Google Scholar] [CrossRef] [PubMed]
- Liao, B.Q.; Bagley, D.; Kraemer, H.E.; Leppard, G.G.; Liss, S.N. A Review of Biofouling and its Control in Membrane Separation Bioreactors. Water Environ. Res. 2004, 76, 425–436. [Google Scholar] [CrossRef]
- Huang, J.; Shi, Y.; Zeng, G.; Gu, Y.; Chen, G.; Shi, L.; Hu, Y.; Tang, B.; Zhou, J. Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: An overview. Chemosphere 2016, 157, 137–151. [Google Scholar] [CrossRef] [PubMed]
- So-Ryong, C.; Yongtae, A.; Yuhoon, H.; Duksoo, J.; Fangang, M.; Jeffrey, S.; Sang-Hyup, L.; Hang-Sik, S. Membrane Biological Reactors: Theory, Modeling, Design, Management and Applications to Wastewater Reuse; IWA Publishing: London, UK, 2019. [Google Scholar]
- Chae, S.; Murugesan, B.; Kim, H.; Duvvuru, D.K.; Lee, T.; Choi, Y.-H.; Baek, M.-H.; Nadagouda, M.N. Advanced Phosphorus Recovery from Municipal Wastewater using Anoxic/Aerobic Membrane Bioreactors and Magnesium Carbonate-Based Pellets. ACS ES&T Water 2021, 1, 1657–1664. [Google Scholar] [CrossRef]
- Nasir, A.M.; Adam, M.R.; Kamal, S.N.E.A.M.; Jaafar, J.; Othman, M.H.D.; Ismail, A.F.; Aziz, F.; Yusof, N.; Bilad, M.R.; Mohamud, R.; et al. A review of the potential of conventional and advanced membrane technology in the removal of pathogens from wastewater. Sep. Purif. Technol. 2022, 286, 120454. [Google Scholar] [CrossRef]
- Battistoni, P.; Cola, E.; Fatone, F.; Bolzonella, D.; Eusebi, A.L. Micropollutants Removal and Operating Strategies in Ultrafiltration Membrane Systems for Municipal Wastewater Treatment: Preliminary Results. Ind. Eng. Chem. Res. 2007, 46, 6716–6723. [Google Scholar] [CrossRef]
- Kitanou, S.; Tahri, M.; Bachiri, B.; Mahi, M.; Hafsi, M.; Taky, M.; Elmidaoui, A. Comparative study of membrane bioreactor (MBR) and activated sludge processes in the treatment of Moroccan domestic wastewater. Water Sci. Technol. 2018, 78, 1129–1136. [Google Scholar] [CrossRef] [Green Version]
- Lerner, M.; Stahl, N.; Galil, N. Comparative study of MBR and activated sludge in the treatment of paper mill wastewater. Water Sci. Technol. 2007, 55, 23–29. [Google Scholar] [CrossRef] [PubMed]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Shen, Y.-X.; Xiao, K.; Liang, P.; Ma, Y.-W.; Huang, X. Improvement on the modified Lowry method against interference of divalent cations in soluble protein measurement. Appl. Microbiol. Biotechnol. 2013, 97, 4167–4178. [Google Scholar] [CrossRef]
- Nielsen, S.S. Correction to: Food Analysis Laboratory Manual; Springer: Cham, Switzerland, 2019; pp. C1–C2. [Google Scholar] [CrossRef]
- Felz, S.; Vermeulen, P.; van Loosdrecht, M.C.; Lin, Y.M. Chemical characterization methods for the analysis of structural extracellular polymeric substances (EPS). Water Res. 2019, 157, 201–208. [Google Scholar] [CrossRef]
- Meng, F.; Chae, S.-R.; Drews, A.; Kraume, M.; Shin, H.-S.; Yang, F. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Res. 2009, 43, 1489–1512. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Zhang, S.; Oh, Y.; Zhou, Z.; Shin, H.-S.; Chae, S. Fouling in membrane bioreactors: An updated review. Water Res. 2017, 114, 151–180. [Google Scholar] [CrossRef] [PubMed]
- Chae, S.-R.; Ahn, Y.-T.; Kang, S.-T.; Shin, H.-S. Mitigated membrane fouling in a vertical submerged membrane bioreactor (VSMBR). J. Membr. Sci. 2006, 280, 572–581. [Google Scholar] [CrossRef]
Parameter | Raw Wastewater | Primary Effluent |
---|---|---|
Number of samples | 98 | 98 |
Total suspended solids (TSS), mg/L | 1015 ± 385 | 635 ± 317 |
Total chemical oxygen demand (TCOD), mg/L | 261.2 ± 125.3 | 217 ± 123.8 |
Soluble chemical oxygen demand (SCOD), mg/L | 61 ± 45 | 50 ± 31 |
Total Kjeldahl nitrogen (TKN), mg/L | 19.2 ± 17.8 | 18.1 ± 16.9 |
NH3-N, mg/L | 17.1 ± 8.2 | 16.9 ± 7.3 |
Total phosphorus (TP), mg/L | 5.6 ± 3.3 | 4.1 ± 3.5 |
Orthophosphate, mg/L | 2.2 ± 1.2 | 2.1 ± 1.2 |
Fecal coliform, CFU/100 mL | 17,690 ± 7600 | 10,500 ± 5680 |
Phase | HRT (hr) | Internal Recycle Rate | Flux (LMH) | Ethanol Injection | Membrane Location | P Recovery | Period (days) |
---|---|---|---|---|---|---|---|
1 | 16 | 300% of Q (feed flow rate) | 15 | Not applicable (Soluble COD/NH3-N = 2.5) | Aerobic | No | 30 |
2 | 12 | 15 | Aerobic | No | 30 | ||
3 | 8 | 15 | Aerobic | No | 30 | ||
4 | 8 | 15 | 100 mg/L as COD (Soluble COD/NH3-N = 7.5) | Aerobic | No | 30 | |
5 | 8 | 15 | Aerobic | Using MgCO3 pellets | 30 | ||
6 | 8 | 7.5 | Anoxic/Aerobic | Using MgCO3 pellets | 30 | ||
7 | 8 | 15 | Anoxic | Using MgCO3 pellets | 15 |
Condition/Parameter | Phase 1 | Phase 2 | Phase 3 | Phase 4 |
---|---|---|---|---|
HRT | 16 | 12 | 8 | 8 |
External carbon (ethanol) as COD (mg/L) | 0 | 0 | 0 | 100 |
Number of measurements | 12 | 12 | 12 | 12 |
TSS (mg/L) | ND | ND | ND | ND |
TCOD (mg/L) | 2.5 ± 0.8 | 3.9 ± 0.5 | 4.5 ± 1.0 | 5.2 ± 2.6 |
TN (mg/L) =TKN + NO3-N | 13.8 ± 0.2 | 18.4 ± 0.5 | 19.9 ± 0.5 | 3.5 ± 0.4 |
TP (mg/L) | 1.7 ± 0.3 | 3.3 ± 0.3 | 3.7 ± 0.3 | 2.0 ± 0.3 |
Fecal coliform (CFU/100 mL) | ND | ND | ND | ND |
Parameter | Phase 1 | Phase 2 | Phase 3 | Phase 4 |
---|---|---|---|---|
Number of measurements | 12 | 12 | 12 | 12 |
TSS (Re. %) | >99.9 | >99.9 | >99.9 | >99.9 |
TCOD (Re. %) | 97.4 | 98.1 | 98.2 | 97.7 |
TN (Re. %) = TKN + NO3-N | 20.7 | 26.1 | 29.2 | 80.1 |
TP (Re. %) | 5.6 | 5.7 | 7.5 | 25.9 |
Fecal coliform (Re. %) | >99.999 | >99.999 | >99.999 | >99.999 |
Parameter | MBR Effluent | MBR + MgCO3 Effluent | |||
---|---|---|---|---|---|
In | Out | Re (%) | Out | Re (%) | |
TSS (mg/L) | 585 | ND | >99.9 | ND | >99.9 |
TCOD (mg/L) | 137.0 | 3.4 | 97.5 | 3.0 | 97.8 |
Soluble COD (mg/L) | 51.8 | - | - | ||
NH3-N (mg/L) | 13.7 | 0.1 | 99.2 | ND | >99.9 |
NO2-N and NO3-N (mg/L) | 0.2 | 3.3 | - | 3.3 | - |
TN (NH3-N + NO2-N + NO3-N) | 13.9 | 3.4 | 75.5 | 3.3 | 76.3 |
TP (mg/L) | 2.6 | 1.6 | 38.5 | 0.4 | 84.6 |
Orthophosphate (mg/L) | 1.7 | 1.6 | 0.4 | ||
Fecal coliform (CFU/100 mL) | 2100 | ND | >99.999 | ND | >99.999 |
Parameter | MBR Effluent from the Aerobic Zone (50% of Q) | MBR Effluent from Anoxic Zone (50% of Q) + MgCO3 Effluent | ||||
---|---|---|---|---|---|---|
In | Out | Re (%) | In | Out | Re (%) | |
TSS (mg/L) | 440 | ND | >99.9 | 440 | ND | >99.9 |
TCOD (mg/L) | 122.2 | 4.2 | 96.6 | 122.2 | 7.6 | 93.8 |
Soluble COD (mg/L) | 38.6 | - | 38.6 | - | ||
NH3-N (mg/L) | 8.5 | 0.1 | 98.8 | 8.5 | 0.1 | 98.8 |
NO2-N and NO3-N (mg/L) | 1.1 | 3.0 | - | 1.1 | 0.3 | - |
TN (mg/L) | 9.6 | 3.1 | 67.7 | 9.6 | 0.4 | 95.8 |
TP (mg/L) | 1.7 | 1.2 | 29.4 | 1.7 | 0.6 | 64.7 |
Orthophosphate (mg/L) | 1.1 | 1.2 | 1.1 | 0.6 |
Parameter | MBR Effluent from the Anoxic Zone | MBR + MgCO3 Effluent | ||||
---|---|---|---|---|---|---|
In | Out | Re (%) | In | Out | Re (%) | |
TSS (mg/L) | 530 | ND | >99.9 | ND | ND | >99.9 |
TCOD (mg/L) | 93.6 | 8.5 | 90.9 | 8.5 | 7.7 | 91.8 |
Soluble COD (mg/L) | 43.2 | - | - | |||
NH3-N (mg/L) | 7.9 | 1.9 | 75.9 | 1.9 | 0.4 | 94.9 |
NO2-N and NO3-N (mg/L) | 1.0 | 2.4 | - | 2.4 | 2.2 | - |
TN (mg/L) | 8.9 | 4.3 | 51.7 | 4.3 | 2.6 | 70.8 |
TP (mg/L) | 2.4 | 3.2 | - | 3.2 | 0.2 | 91.6 |
Orthophosphate (mg/L) | 1.0 | 3.2 | 0.2 | |||
Fecal coliform (CFU/100 mL) | 2800 | ND | >99.999 | ND | ND | >99.999 |
Phase | Water Flux Through the PVDF Membrane (LMH) | Operation Period (day) | Adsorption Capacity (mg P/g MgCO3) |
---|---|---|---|
5 | 15 | 30 | 10.2 |
6 | 7.5 | 30 | 2.6 |
7 | 15 | 15 | 12.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eghombi, E.; Kim, H.; Choi, Y.-H.; Baek, M.-H.; Nadagouda, M.N.; Park, P.-K.; Chae, S. Efficient Phosphorus Recovery from Municipal Wastewater Using Enhanced Biological Phosphorus Removal in an Anaerobic/Anoxic/Aerobic Membrane Bioreactor and Magnesium-Based Pellets. Membranes 2022, 12, 210. https://doi.org/10.3390/membranes12020210
Eghombi E, Kim H, Choi Y-H, Baek M-H, Nadagouda MN, Park P-K, Chae S. Efficient Phosphorus Recovery from Municipal Wastewater Using Enhanced Biological Phosphorus Removal in an Anaerobic/Anoxic/Aerobic Membrane Bioreactor and Magnesium-Based Pellets. Membranes. 2022; 12(2):210. https://doi.org/10.3390/membranes12020210
Chicago/Turabian StyleEghombi, Elvis, Hyunsik Kim, Yang-Hun Choi, Mi-Hwa Baek, Mallikarjuna N. Nadagouda, Pyung-Kyu Park, and Soryong Chae. 2022. "Efficient Phosphorus Recovery from Municipal Wastewater Using Enhanced Biological Phosphorus Removal in an Anaerobic/Anoxic/Aerobic Membrane Bioreactor and Magnesium-Based Pellets" Membranes 12, no. 2: 210. https://doi.org/10.3390/membranes12020210
APA StyleEghombi, E., Kim, H., Choi, Y. -H., Baek, M. -H., Nadagouda, M. N., Park, P. -K., & Chae, S. (2022). Efficient Phosphorus Recovery from Municipal Wastewater Using Enhanced Biological Phosphorus Removal in an Anaerobic/Anoxic/Aerobic Membrane Bioreactor and Magnesium-Based Pellets. Membranes, 12(2), 210. https://doi.org/10.3390/membranes12020210