Ionic Liquids-Polymer of Intrinsic Microporosity (PIMs) Blend Membranes for CO2 Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of PIM-1
2.3. Membrane Preparation
2.4. Physicochemical Characterization of Membranes
2.5. Solubility Measurements
2.6. Permeability Measurement
3. Results and Discussion
3.1. Physico-Chemical Properties
3.1.1. Attenuated Total Reflectance (ATR)
3.1.2. FESEM
3.2. Pure CO2 Absorption
3.3. Flow Cell Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Lamb, W.F.; Wiedmann, T.; Pongratz, J.; Andrew, R.; Crippa, M.; Olivier, J.G.J.; Wiedenhofer, D.; Mattioli, G.; Khourdajie, A.A.; House, J.; et al. A Review of Trends and Drivers of Greenhouse Gas Emissions by Sector from 1990 to 2018. Environ. Res. Lett. 2021, 16, 073005. [Google Scholar] [CrossRef]
- Kenarsari, S.D.; Yang, D.; Jiang, G.; Zhang, S.; Wang, J.; Russell, A.G.; Wei, Q.; Fan, M. Review of Recent Advances in Carbon Dioxide Separation and Capture. RSC Adv. 2013, 3, 22739–22773. [Google Scholar] [CrossRef]
- Grassi, G.; House, J.; Kurz, W.A.; Cescatti, A.; Houghton, R.A.; Peters, G.P.; Sanz, M.J.; Viñas, R.A.; Alkama, R.; Arneth, A.; et al. Reconciling Global-Model Estimates and Country Reporting of Anthropogenic Forest CO2 Sinks. Nat. Clim. Chang. 2018, 8, 914–920. [Google Scholar] [CrossRef]
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A.; et al. Carbon Capture and Storage (CCS): The Way Forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef] [Green Version]
- Powell, C.E.; Qiao, G.G. Polymeric CO2/N2 Gas Separation Membranes for the Capture of Carbon Dioxide from Power Plant Flue Gases. J. Memb. Sci. 2006, 279, 1–49. [Google Scholar] [CrossRef]
- Sidhikku Kandath Valappil, R.; Ghasem, N.; Al-Marzouqi, M. Current and Future Trends in Polymer Membrane-Based Gas Separation Technology: A Comprehensive Review. J. Ind. Eng. Chem. 2021, 98, 103–129. [Google Scholar] [CrossRef]
- Budd, P.M.; Elabas, E.S.; Ghanem, B.S.; Makhseed, S.; McKeown, N.B.; Msayib, K.J.; Tattershall, C.E.; Wang, D. Solution-Processed, Organophilic Membrane Derived from a Polymer of Intrinsic Microporosity. Adv. Mater. 2004, 16, 456–459. [Google Scholar] [CrossRef]
- Budd, P.M.; Msayib, K.J.; Tattershall, C.E.; Ghanem, B.S.; Reynolds, K.J.; McKeown, N.B.; Fritsch, D. Gas Separation Membranes from Polymers of Intrinsic Microporosity. J. Memb. Sci. 2005, 251, 263–269. [Google Scholar] [CrossRef]
- Budd, P.M.; McKeown, N.B.; Ghanem, B.S.; Msayib, K.J.; Fritsch, D.; Starannikova, L.; Belov, N.; Sanfirova, O.; Yampolskii, Y.; Shantarovich, V. Gas Permeation Parameters and Other Physicochemical Properties of a Polymer of Intrinsic Microporosity: Polybenzodioxane PIM-1. J. Memb. Sci. 2008, 325, 851–860. [Google Scholar] [CrossRef]
- Bengtson, G.; Neumann, S.; Filiz, V. Membranes of Polymers of Intrinsic Microporosity (PIM-1) Modified by Poly(Ethylene Glycol). Membranes 2017, 7, 28. [Google Scholar] [CrossRef]
- Robeson, L.M. Correlation of Separation Factor versus Permeability for Polymeric Membranes. J. Memb. Sci. 1991, 62, 165–185. [Google Scholar] [CrossRef]
- Robeson, L.M. The Upper Bound Revisited. J. Memb. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Yong, W.F.; Li, F.Y.; Xiao, Y.C.; Li, P.; Pramoda, K.P.; Tong, Y.W.; Chung, T.S. Molecular Engineering of PIM-1/Matrimid Blend Membranes for Gas Separation. J. Memb. Sci. 2012, 407–408, 47–57. [Google Scholar] [CrossRef]
- Halder, K.; Khan, M.M.; Grünauer, J.; Shishatskiy, S.; Abetz, C.; Filiz, V.; Abetz, V. Blend Membranes of Ionic Liquid and Polymers of Intrinsic Microporosity with Improved Gas Separation Characteristics. J. Memb. Sci. 2017, 539, 368–382. [Google Scholar] [CrossRef]
- Vázquez, M.I.; Romero, V.; Fontàs, C.; Anticó, E.; Benavente, J. Polymer Inclusion Membranes (PIMs) with the Ionic Liquid (IL) Aliquat 336 as Extractant: Effect of Base Polymer and IL Concentration on Their Physical-Chemical and Elastic Characteristics. J. Memb. Sci. 2014, 455, 312–319. [Google Scholar] [CrossRef]
- Maziarz, K.M.; Monaco, H.L.; Shen, F.; Ratnam, M. Complete Mapping of Divergent Amino Acids Responsible for Differential Ligand Binding of Folate Receptors alpha and beta. J. Biol. Chem. 1999, 274, 11086–11091. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zhang, Z.; Yang, C.; Liu, J.; Shen, H.; Yang, K.; Wang, Z. PIM-Based Mixed-Matrix Membranes Containing MOF-801/Ionic Liquid Nanocomposites for Enhanced CO2 Separation Performance. J. Memb. Sci. 2021, 636, 119581. [Google Scholar] [CrossRef]
- Bocchini, S.; Castro, C.; Cocuzza, M.; Ferrero, S.; Latini, G.; Martis, A.; Pirri, F.; Scaltrito, L.; Rocca, V.; Verga, F.; et al. The Virtuous CO2 Circle or the Three Cs: Capture, Cache, and Convert. J. Nanomater. 2017, 2017, 6594151. [Google Scholar] [CrossRef] [Green Version]
- Davarpanah, E.; Hernández, S.; Latini, G.; Pirri, C.F.; Bocchini, S. Enhanced CO2 Absorption in Organic Solutions of Biobased Ionic Liquids. Adv. Sustain. Syst. 2020, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Latini, G.; Signorile, M.; Rosso, F.; Fin, A.; d’Amora, M.; Giordani, S.; Pirri, F.; Crocellà, V.; Bordiga, S.; Bocchini, S. Efficient and Reversible CO2 Capture in Bio-Based Ionic Liquids Solutions. J. CO2 Util. 2022, 55, 101815. [Google Scholar] [CrossRef]
- Hussan, S.K.P.; Thayyil, M.S.; Rajan, V.K.; Antony, A. The Interplay between Charge Transport and CO2 Capturing Mechanism in [EMIM][SCN] Ionic Liquid: A Broadband Dielectric Study. J. Phys. Chem. B 2019, 123, 6618–6626. [Google Scholar] [CrossRef]
- Maruccia, E.; Lourenço, M.A.O.; Priamushko, T.; Bartoli, M.; Bocchini, S.; Pirri, F.C.; Saracco, G.; Kleitz, F.; Gerbaldi, C. Nanocast Nitrogen-Containing Ordered Mesoporous Carbons from Glucosamine for Selective CO2 Capture. Mater. Today Sustain. 2022, 17, 100089. [Google Scholar] [CrossRef]
- Stern, S.A. The “Barrer” Permeability Unit. J. Polym. Sci. Part A-2 Polym. Phys. 1968, 6, 1933–1934. [Google Scholar] [CrossRef]
- Hao, L.; Liao, K.S.; Chung, T.S. Photo-Oxidative PIM-1 Based Mixed Matrix Membranes with Superior Gas Separation Performance. J. Mater. Chem. A 2015, 3, 17273–17281. [Google Scholar] [CrossRef]
- Cha, S.; Ao, M.; Sung, W.; Moon, B.; Ahlström, B.; Johansson, P.; Ouchi, Y.; Kim, D. Structures of Ionic Liquid-Water Mixtures Investigated by IR and NMR Spectroscopy. Phys. Chem. Chem. Phys. 2014, 16, 9591–9601. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, J.; Tan, L.; Zhou, M.; Zhang, S. Encapsulated Ionic Liquids for CO2 Capture. Mater. Chem. Phys. 2020, 251, 122982. [Google Scholar] [CrossRef]
- Besnard, M.; Cabaço, M.I.; Chávez, F.V.; Pinaud, N.; Sebastião, P.J.; Coutinho, J.A.P.; Dantena, Y. On the Spontaneous Carboxylation of 1-Butyl-3-Methylimidazolium Acetate by Carbon Dioxide. Chem. Commun. 2012, 48, 1245–1247. [Google Scholar] [CrossRef]
- Zhang, J.; Schott, J.A.; Mahurin, S.M.; Dai, S. Porous Structure Design of Polymeric Membranes for Gas Separation. Small Methods 2017, 1, 1–7. [Google Scholar] [CrossRef]
- Shiflett, M.B.; Drew, D.W.; Cantini, R.A.; Yokozeki, A. Carbon Dioxide Capture Using Ionic Liquid 1-Butyl-3-Methylimidazolium Acetate. Energy Fuels 2010, 24, 5781–5789. [Google Scholar] [CrossRef]
- Guiver, M.D.; Yahia, M.; Dal-Cin, M.M.; Robertson, G.P.; Garakani, S.S.; Du, N.; Tavajohi, N. Gas Transport in a Polymer of Intrinsic Microporosity (PIM-1) Substituted with Pseudo-Ionic Liquid Tetrazole-Type Structures. Macromolecules 2020, 53, 8951–8959. [Google Scholar] [CrossRef]
Membrane | CO2 Solubility 1 |
---|---|
PIM-1 | 0.47 |
PIM-1/[BMIM][Succ] 10/1 | 0.22 |
PIM-1/[BMIM][Succ] 4/1 | 0.33 |
PIM-1/[BMIM][Succ] 2/1 | 0.18 |
PIM-1/[BMIM][Ac] 10/1 | 0.32 |
PIM-1/[BMIM][Ac] 4/1 | 0.86 |
PIM-1/[BMIM][Ac] 2/1 | 0.69 |
Membrane | CO2 Permeability (Barrer 1) |
---|---|
PIM-1 | 5177 |
PIM-1/[BMIM][Succ] 10/1 | 275 |
PIM-1/[BMIM][Succ] 4/1 | 304 |
PIM-1/[BMIM][Succ] 2/1 | 421 |
PIM-1/[BMIM][Ac] 10/1 | 2090 |
PIM-1/[BMIM][Ac] 4/1 | 171 |
PIM-1/[BMIM][Ac] 2/1 | 1053 |
Membrane | CO2 Permeability (Barrer 1) | CO2 Permeability PIM-1 Ref. (Barrer 1) | Ref. |
---|---|---|---|
PIM-1 | 5167 (@1 Bar, 40 °C) | 5167 | This work |
PIM-1/[BMIM][Ac] 10/1 | 2090 (@1 Bar, 40 °C) | 5167 | This work |
PIM-1/[BMIM][Ac] 2/1 | 1053 (@1 Bar, 40 °C) | 5167 | This work |
IL@MOF/PIM−5 % | 9420 (@4 Bar, 35 °C) | 4110 | [17] |
PIM-1 -IL1 (pseudo-IL tetrazole-type) | 1043 (@6.86 Bar, 25 °C) | 7340 | [30] |
PIM-1/Matrimid (95:5) | 3355 (@3.5 Bar, 35 °C) | 3815 | [13] |
PIM-1/Matrimid (50:50) | 155 (@3.5 Bar, 35 °C) | 3815 | [13] |
PIM-1 + 5 wt%[C2mim][Tf2N] | 6650 (@Bar 2, 30 °C) | 7440 | [14] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferraro, G.; Astorino, C.; Bartoli, M.; Martis, A.; Lettieri, S.; Pirri, C.F.; Bocchini, S. Ionic Liquids-Polymer of Intrinsic Microporosity (PIMs) Blend Membranes for CO2 Separation. Membranes 2022, 12, 1262. https://doi.org/10.3390/membranes12121262
Ferraro G, Astorino C, Bartoli M, Martis A, Lettieri S, Pirri CF, Bocchini S. Ionic Liquids-Polymer of Intrinsic Microporosity (PIMs) Blend Membranes for CO2 Separation. Membranes. 2022; 12(12):1262. https://doi.org/10.3390/membranes12121262
Chicago/Turabian StyleFerraro, Giuseppe, Carmela Astorino, Mattia Bartoli, Alberto Martis, Stefania Lettieri, Candido Fabrizio Pirri, and Sergio Bocchini. 2022. "Ionic Liquids-Polymer of Intrinsic Microporosity (PIMs) Blend Membranes for CO2 Separation" Membranes 12, no. 12: 1262. https://doi.org/10.3390/membranes12121262
APA StyleFerraro, G., Astorino, C., Bartoli, M., Martis, A., Lettieri, S., Pirri, C. F., & Bocchini, S. (2022). Ionic Liquids-Polymer of Intrinsic Microporosity (PIMs) Blend Membranes for CO2 Separation. Membranes, 12(12), 1262. https://doi.org/10.3390/membranes12121262