Enhanced Separation Performance of Polyamide Thin-Film Nanocomposite Membranes with Interlayer by Constructed Two-Dimensional Nanomaterials: A Critical Review
Abstract
:1. Introduction
2. Two-Dimensional Nanomaterial’s Interlayers
2.1. Graphene Oxide
2.2. Mxenes
2.3. Molybdenum Disulfide
3. Interlayers from Emerging Nanosheets
3.1. MOF Nanosheets
3.2. COF Nanosheets
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Zuo, K.; Wang, K.; DuChanois, R.M.; Fang, Q.; Deemer, E.M.; Huang, X.; Xin, R.; Said, I.A.; He, Z.; Feng, Y.; et al. Selective membranes in water and wastewater treatment: Role of advanced materials. Mater. Today 2021, 50, 516–532. [Google Scholar] [CrossRef]
- Lau, W.J.; Ismail, A.F.; Misdan, N.; Kassim, M.A. A recent progress in thin film composite membrane: A review. Desalination 2012, 287, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Nazir, A.; Khan, K.; Maan, A.; Zia, R.; Giorno, L.; Schroën, K. Membrane separation technology for the recovery of nutraceuticals from food industrial streams. Trends Food Sci. Technol. 2019, 86, 426–438. [Google Scholar] [CrossRef]
- Ravanchi, M.T.; Kaghazchi, T.; Kargari, A. Application of membrane separation processes in petrochemical industry: A review. Desalination 2009, 235, 199–244. [Google Scholar] [CrossRef]
- Tijing, L.D.; Dizon, J.R.C.; Ibrahim, I.; Nisay, A.R.N.; Shon, H.K.; Advincula, R.C. 3D printing for membrane separation, desalination and water treatment. Appl. Mater. Today 2020, 18, 100486. [Google Scholar] [CrossRef]
- Lau, W.; Gray, S.; Matsuura, T.; Emadzadeh, D.; Chen, J.P.; Ismail, A. A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches. Water Res. 2015, 80, 306–324. [Google Scholar] [CrossRef]
- Eghbalazar, T.; Shakeri, A. High-Performance Thin-Film nanocomposite forward osmosis membranes modified with Poly(dopamine) coated UiO66-(COOH)(2). Sep. Purif. Technol. 2021, 277, 119438. [Google Scholar] [CrossRef]
- Inurria, A.; Cay-Durgun, P.; Rice, D.; Zhang, H.; Seo, D.-K.; Lind, M.L.; Perreault, F. Polyamide thin-film nanocomposite membranes with graphene oxide nanosheets: Balancing membrane performance and fouling propensity. Desalination 2019, 451, 139–147. [Google Scholar] [CrossRef]
- Asempour, F.; Akbari, S.; Kanani-Jazi, M.H.; Atashgar, A.; Matsuura, T.; Kruczek, B. Chlorine-resistant TFN RO membranes containing modified poly(amidoamine) dendrimer-functionalized halloysite nanotubes. J. Membr. Sci. 2021, 623, 119039. [Google Scholar] [CrossRef]
- Xue, S.-M.; Ji, C.-H.; Xu, Z.-L.; Tang, Y.-J.; Li, R.-H. Chlorine resistant TFN nanofiltration membrane incorporated with octadecylamine-grafted GO and fluorine-containing monomer. J. Membr. Sci. 2018, 545, 185–195. [Google Scholar] [CrossRef]
- Jeong, B.-H.; Hoek, E.M.; Yan, Y.; Subramani, A.; Huang, X.; Hurwitz, G.; Ghosh, A.K.; Jawor, A. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes. J. Membr. Sci. 2007, 294, 1–7. [Google Scholar] [CrossRef]
- Samsami, S.; Sarrafzadeh, M.-H.; Ahmadi, A. Surface modification of thin-film nanocomposite forward osmosis membrane with super-hydrophilic MIL-53 (Al) for doxycycline removal as an emerging contaminant and membrane antifouling property enhancement. Chem. Eng. J. 2022, 431, 133469. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Zhang, Y.; Uliana, A.; Zhu, J.; Liu, J.; Van der Bruggen, B. Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets Functionalized Thin Film Nanocomposite Membrane for Enhanced Antimicrobial Performance. ACS Appl. Mater. Interfaces 2016, 8, 25508–25519. [Google Scholar] [CrossRef]
- Lee, T.H.; Oh, J.Y.; Hong, S.P.; Lee, J.M.; Roh, S.M.; Kim, S.H.; Park, H.B. ZIF-8 particle size effects on reverse osmosis performance of polyamide thin-film nanocomposite membranes: Importance of particle deposition. J. Membr. Sci. 2019, 570-571, 23–33. [Google Scholar] [CrossRef]
- Ma, X.-H.; Guo, H.; Yang, Z.; Yao, Z.-K.; Qing, W.-H.; Chen, Y.-L.; Xu, Z.-L.; Tang, C.Y. Carbon nanotubes enhance permeability of ultrathin polyamide rejection layers. J. Membr. Sci. 2019, 570-571, 139–145. [Google Scholar] [CrossRef]
- Dong, H.; Wu, L.; Zhang, L.; Chen, H.; Gao, C. Clay nanosheets as charged filler materials for high-performance and fouling-resistant thin film nanocomposite membranes. J. Membr. Sci. 2015, 494, 92–103. [Google Scholar] [CrossRef]
- Wang, L.; Kahrizi, M.; Lu, P.; Wei, Y.; Yang, H.; Yu, Y.; Wang, L.; Li, Y.; Zhao, S. Enhancing water permeability and antifouling performance of thin-film composite membrane by tailoring the support layer. Desalination 2021, 516, 115193. [Google Scholar] [CrossRef]
- Yin, J.; Zhu, G.; Deng, B. Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination 2016, 379, 93–101. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, P.-F.; Li, X.; Gan, B.; Wang, L.; Song, X.; Park, H.-D.; Tang, C.Y. A Critical Review on Thin-Film Nanocomposite Membranes with Interlayered Structure: Mechanisms, Recent Developments, and Environmental Applications. Environ. Sci. Technol. 2020, 24, 15563–15583. [Google Scholar] [CrossRef]
- Li, X.; Li, Q.; Fang, W.; Wang, R.; Krantz, W.B. Effects of the support on the characteristics and permselectivity of thin film composite membranes. J. Membr. Sci. 2019, 580, 12–23. [Google Scholar] [CrossRef]
- Xu, G.-R.; Xu, J.-M.; Feng, H.-J.; Zhao, H.-L.; Wu, S.-B. Tailoring structures and performance of polyamide thin film composite (PA-TFC) desalination membranes via sublayers adjustment-a review. Desalination 2017, 417, 19–35. [Google Scholar] [CrossRef]
- Lee, J.; Jang, J.H.; Chae, H.-R.; Lee, S.H.; Lee, C.-H.; Park, P.-K.; Won, Y.-J.; Kim, I.-C. A facile route to enhance the water flux of a thin-film composite reverse osmosis membrane: Incorporating thickness-controlled graphene oxide into a highly porous support layer. J. Mater. Chem. A 2015, 44, 22053–22060. [Google Scholar] [CrossRef]
- Pendergast, M.M.; Ghosh, A.K.; Hoek, E. Separation performance and interfacial properties of nanocomposite reverse osmosis membranes. Desalination 2013, 308, 180–185. [Google Scholar] [CrossRef]
- Park, M.J.; Lim, S.; Gonzales, R.R.; Phuntsho, S.; Han, D.S.; Abdel-Wahab, A.; Adham, S.; Shon, H.K. Thin-film composite hollow fiber membranes incorporated with graphene oxide in polyethersulfone support layers for enhanced osmotic power density. Desalination 2019, 464, 63–75. [Google Scholar] [CrossRef]
- Tian, M.; Wang, Y.-N.; Wang, R.; Fane, A.G. Synthesis and characterization of thin film nanocomposite forward osmosis membranes supported by silica nanoparticle incorporated nanofibrous substrate. Desalination 2017, 401, 142–150. [Google Scholar] [CrossRef]
- Lu, P.; Li, W.; Yang, S.; Wei, Y.; Zhang, Z.; Li, Y. Layered double hydroxides (LDHs) as novel macropore-templates: The importance of porous structures for forward osmosis desalination. J. Membr. Sci. 2019, 585, 175–183. [Google Scholar] [CrossRef]
- Fan, H.; Shan, L.; Meng, H.; Zhang, G. High-throughput production of nanodisperse hybrid membranes on various substrates. J. Membr. Sci. 2018, 552, 177–188. [Google Scholar] [CrossRef]
- Song, X.; Zhou, Q.; Zhang, T.; Xu, H.; Wang, Z. Pressure-assisted preparation of graphene oxide quantum dot-incorporated reverse osmosis membranes: Antifouling and chlorine resistance potentials. J. Mater. Chem. A 2016, 43, 16896–16905. [Google Scholar] [CrossRef]
- Wei, Y.; Yang, Z.; Wang, L.; Yu, Y.; Yang, H.; Jin, H.; Lu, P.; Wang, Y.; Wu, D.; Li, Y.; et al. Facile ZIF-8 nanocrystals interlayered solvent-resistant thin-film nanocomposite membranes for enhanced solvent permeance and rejection. J. Membr. Sci. 2021, 636, 119586. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, F.; Guo, H.; Peng, L.E.; Ma, X.-H.; Song, X.-X.; Wang, Z.; Tang, C.Y. Mechanistic Insights into the Role of Polydopamine Interlayer towards Improved Separation Performance of Polyamide Nanofiltration Membranes. Environ. Sci. Technol. 2020, 18, 11611–11621. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, H.; Liu, Y.; Jian, M.; Gao, L.; Wang, H.; Zhang, X. Thin-Film Nanocomposite Forward-Osmosis Membranes on Hydrophilic Microfiltration Support with an Intermediate Layer of Graphene Oxide and Multiwall Carbon Nanotube. ACS Appl. Mater. Interfaces 2018, 40, 34464–34474. [Google Scholar] [CrossRef]
- Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 2015, 73, 44–126. [Google Scholar] [CrossRef]
- Khan, S.I.U.A.; Khan, U.; Ahmed, N.; Mohyud-Din, S.T.; Khan, I.; Nisar, K.S. Thermal transport investigation in AA7072 and AA7075 aluminum alloys nanomaterials based radiative nanofluids by considering the multiple physical flow conditions. Sci. Rep. 2021, 1, 9837. [Google Scholar]
- Hu, T.; Mei, X.; Wang, Y.; Weng, X.; Liang, R.; Wei, M. Two-dimensional nanomaterials: Fascinating materials in biomedical field. Sci. Bull. 2019, 22, 1707–1727. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Liu, Y.; Zhou, T.; Wang, Q.; Li, Y. Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations. J. Membr. Sci. 2018, 567, 89–103. [Google Scholar] [CrossRef]
- Khorshidi, B.; Biswas, I.; Ghosh, T.; Thundat, T.; Sadrzadeh, M. Robust fabrication of thin film polyamide-TiO2 nanocomposite membranes with enhanced thermal stability and anti-biofouling propensity. Sci. Rep. 2018, 1, 784. [Google Scholar] [CrossRef] [Green Version]
- Vatanpour, V.; Paziresh, S.; Mehrabani, S.A.N.; Feizpoor, S.; Habibi-Yangjeh, A.; Koyuncu, I. TiO2/CDs modified thin-film nanocomposite polyamide membrane for simultaneous enhancement of antifouling and chlorine-resistance performance. Desalination 2022, 525, 115506. [Google Scholar] [CrossRef]
- Li, D.; Zhang, J.; Ahmed, S.M.; Suo, G.; Wang, W.; Feng, L.; Hou, X.; Yang, Y.; Ye, X.; Zhang, L. Amorphous carbon coated SnO2 nanohseets on hard carbon hollow spheres to boost potassium storage with high surface capacitive contributions. J. Colloid Interface Sci. 2020, 574, 174–181. [Google Scholar] [CrossRef]
- Liang, B.; Zhang, P.; Wang, J.; Qu, J.; Wang, L.; Wang, X.; Guan, C.; Pan, K. Membranes with selective laminar nanochannels of modified reduced graphene oxide for water purification. Carbon 2016, 103, 94–100. [Google Scholar] [CrossRef]
- Sun, P.-F.; Yang, Z.; Song, X.; Lee, J.H.; Tang, C.Y.; Park, H.-D. Interlayered Forward Osmosis Membranes with Ti3C2T x MXene and Carbon Nanotubes for Enhanced Municipal Wastewater Concentration. Environ. Sci. Technol. 2021, 19, 13219–13230. [Google Scholar]
- Sapkota, B.; Liang, W.T.; VahidMohammadi, A.; Karnik, R.; Noy, A.; Wanunu, M. High permeability sub-nanometre sieve composite MoS2 membranes. Nat. Commun. 2020, 1, 2747. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.L.; Zhao, Q.; Chung, T.-S. Fabrication of defect-free thin-film nanocomposite (TFN) membranes for reverse osmosis desalination. Desalination 2021, 516, 115230. [Google Scholar] [CrossRef]
- Yang, C.; Li, S.; Lv, X.; Li, H.; Han, L.; Su, B. Effectively regulating interfacial polymerization process via in-situ constructed 2D COFs interlayer for fabricating organic solvent nanofiltration membranes. J. Membr. Sci. 2021, 637, 119618. [Google Scholar] [CrossRef]
- Ang, M.B.M.Y.; Trilles, C.A.; De Guzman, M.R.; Pereira, J.M.; Aquino, R.R.; Huang, S.-H.; Hu, C.-C.; Lee, K.-R.; Lai, J.-Y. Improved performance of thin-film nanocomposite nanofiltration membranes as induced by embedded polydopamine-coated silica nanoparticles. Sep. Purif. Technol. 2019, 224, 113–120. [Google Scholar] [CrossRef]
- Ahmad, N.A.; Goh, P.S.; Wong, K.C.; Zulhairun, A.K.; Ismail, A.F. Enhancing desalination performance of thin film composite membrane through layer by layer assembly of oppositely charged titania nanosheet. Desalination 2020, 476, 114167. [Google Scholar] [CrossRef]
- Wang, S.; Yi, Z.; Zhao, X.; Zhou, Y.; Gao, C. Aggregation suppressed thin film nanocomposite (TFN) membranes prepared with an in situ generation of TiO2 nanoadditives. RSC Adv. 2017, 42, 26136–26144. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Yang, L.; Meng, F.; Shao, W.; Liu, X.; Li, M. ZIF-8-incorporated thin-film nanocomposite (TFN) nanofiltration membranes: Importance of particle deposition methods on structure and performance. J. Membr. Sci. 2021, 632, 119356. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, L.; Li, P.; Sun, H.; Hou, Y.; Niu, Q.J. Ultrathin Film Composite Membranes Fabricated by Novel In Situ Free Interfacial Polymerization for Desalination. ACS Appl. Mater. Interfaces 2020, 22, 25304–25315. [Google Scholar] [CrossRef]
- Sui, X.; Yuan, Z.; Yu, Y.; Goh, K.; Chen, Y. 2D Material Based Advanced Membranes for Separations in Organic Solvents. Small 2020, 50, 2003400. [Google Scholar] [CrossRef]
- Liu, P.; Hou, J.; Zhang, Y.; Li, L.; Lu, X.; Tang, Z. Two-dimensional material membranes for critical separations. Inorg. Chem. Front. 2020, 13, 2560–2581. [Google Scholar] [CrossRef]
- Liu, G.; Jin, W.; Xu, N. Two-Dimensional-Material Membranes: A New Family of High-Performance Separation Membranes. Angew. Chem. Int. Ed. 2016, 43, 13384–13397. [Google Scholar] [CrossRef]
- Sun, H.; Dong, J.; Liu, F.; Ding, F. Etching of two-dimensional materials. Mater. Today 2021, 42, 192–213. [Google Scholar] [CrossRef]
- Buelke, C.; Alshami, A.; Casler, J.; Lin, Y.; Hickner, M.; Aljundi, I.H. Evaluating graphene oxide and holey graphene oxide membrane performance for water purification. J. Membr. Sci. 2019, 588, 117195. [Google Scholar] [CrossRef]
- Nie, L.; Chuah, C.Y.; Bae, T.H.; Lee, J.M. Graphene-Based Advanced Membrane Applications in Organic Solvent Nanofiltration. Adv. Funct. Mater. 2021, 6, 2006949. [Google Scholar] [CrossRef]
- Boretti, A.; Al-Zubaidy, S.; Vaclavikova, M.; Al-Abri, M.; Castelletto, S.; Mikhalovsky, S. Outlook for graphene-based desalination membranes. npj Clean Water 2018, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Shao, F.; Su, X.; Shen, X.; Ren, S.; Wang, H.; Yi, Z.; Xu, C.; Yu, L.; Dong, L. Highly improved chlorine resistance of polyamide reverse membrane by grafting layers of graphene oxide. Sep. Purif. Technol. 2021, 254, 117586. [Google Scholar] [CrossRef]
- Makhetha, T.; Moutloali, R. Incorporation of a novel Ag-Cu@ZIF-8@GO nanocomposite into polyethersulfone membrane for fouling and bacterial resistance. J. Membr. Sci. 2021, 618, 118733. [Google Scholar] [CrossRef]
- Chong, J.; Wang, B.; Li, K. Graphene oxide membranes in fluid separations. Curr. Opin. Chem. Eng. 2016, 12, 98–105. [Google Scholar] [CrossRef]
- Shi, J.; Wu, W.; Xia, Y.; Li, Z.; Li, W. Confined interfacial polymerization of polyamide-graphene oxide composite membranes for water desalination. Desalination 2018, 441, 77–86. [Google Scholar] [CrossRef]
- Choi, H.-G.; Shah, A.A.; Nam, S.-E.; Park, Y.-I.; Park, H. Thin-film composite membranes comprising ultrathin hydrophilic polydopamine interlayer with graphene oxide for forward osmosis. Desalination 2019, 449, 41–49. [Google Scholar] [CrossRef]
- Seah, M.Q.; Lau, W.J.; Goh, P.S.; Ismail, A.F. Greener synthesis of functionalized-GO incorporated TFN NF membrane for potential recovery of saline water from salt/dye mixed solution. Desalination 2022, 523, 115403. [Google Scholar] [CrossRef]
- Carey, M.; Barsoum, M. MXene polymer nanocomposites: A review. Mater. Today Adv. 2021, 9, 100120. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y. Potential environmental applications of MXenes: A critical review. Chemosphere 2021, 271, 129578. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Li, C.; Huang, W.; Mei, S.; Lin, H.; Ou, Q.; Zhang, Y.; Guo, J.; Zhang, F.; Xu, S.; et al. MXene/Polymer Membranes: Synthesis, Properties, and Emerging Applications. Chem. Mater. 2020, 5, 1703–1747. [Google Scholar] [CrossRef]
- Gong, K.; Zhou, K.; Qian, X.; Shi, C.; Yu, B. MXene as emerging nanofillers for high-performance polymer composites: A review. Compos. Part B Eng. 2021, 217, 108867. [Google Scholar] [CrossRef]
- Liu, G.; Shen, J.; Liu, Q.; Liu, G.; Xiong, J.; Yang, J.; Jin, W. Ultrathin two-dimensional MXene membrane for pervaporation desalination. J. Membr. Sci. 2018, 548, 548–558. [Google Scholar] [CrossRef]
- Hao, L.; Zhang, H.; Wu, X.; Zhang, J.; Wang, J.; Li, Y. Novel thin-film nanocomposite membranes filled with multi-functional Ti3C2Tx nanosheets for task-specific solvent transport. Compos. Part A Appl. Sci. Manuf. 2017, 100, 139–149. [Google Scholar] [CrossRef]
- Wu, X.; Ding, M.; Xu, H.; Yang, W.; Zhang, K.; Tian, H.; Wang, H.; Xie, Z. Scalable ti3c2t x mxene interlayered forward osmosis membranes for enhanced water purification and organic solvent recovery. ACS Nano 2020, 7, 9125–9135. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, X.; Li, X.; Wang, Z.; Tang, C.Y. Metal-Organic Framework Nanosheets for Thin-Film Composite Membranes with Enhanced Permeability and Selectivity. ACS Appl. Nano Mater. 2020, 9, 9238–9248. [Google Scholar] [CrossRef]
- Dhanjai, S.A.; Tan, B.; Huang, Y.J.; Zhao, H.M.; Dang, X.M.; Chen, J.P.; Jain, R. MoS2 nanostructures for electrochemical sensing of multidisciplinary targets: A review. Trac-Trends Anal. Chem. 2018, 102, 75–90. [Google Scholar]
- Ran, J.; Zhang, P.; Chu, C.; Cui, P.; Ai, X.; Pan, T.; Wu, Y.; Xu, T. Ultrathin lamellar MoS2 membranes for organic solvent nanofiltration. J. Membr. Sci. 2020, 602, 117963. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Fan, K.; Cheng, P.; Xia, S. Nano-Striped Polyamide Membranes Enabled by Vacuum-Assisted Incorporation of Hierarchical Flower-Like Mos2 for Enhanced Nanofiltration Performance. SSRN 2022, 4103185. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, X.; Chen, J.; Li, W.; Zhang, H.; Wang, J. Ultrathin and stable organic-inorganic lamellar composite membrane for high-performance organic solvent nanofiltration. Chem. Eng. Sci. 2020, 228, 116002. [Google Scholar] [CrossRef]
- Zhang, H.; Taymazov, D.; Li, M.-P.; Huang, Z.-H.; Liu, W.-L.; Zhang, X.; Ma, X.-H.; Xu, Z.-L. Construction of MoS2 composite membranes on ceramic hollow fibers for efficient water desalination. J. Membr. Sci. 2019, 592, 117369. [Google Scholar] [CrossRef]
- Kadhom, M.; Deng, B. Metal-organic frameworks (MOFs) in water filtration membranes for desalination and other applications. Appl. Mater. Today 2018, 11, 219–230. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Lu, P.; Jin, H.; Pan, F.; Shi, Z.; Jiang, X.-S.; Chen, C.; Jiang, Z.; Li, Y. Metal-Organic Frameworks Corset with a Thermosetting Polymer for Improved Molecular-Sieving Property of Mixed-Matrix Membranes. ACS Appl. Mater. Interfaces 2020, 49, 55308–55315. [Google Scholar] [CrossRef]
- Van Goethem, C.; Verbeke, R.; Hermans, S.; Bernstein, R.; Vankelecom, I.F.J. Controlled positioning of MOFs in interfacially polymerized thin-film nanocomposites. J. Mater. Chem. A 2016, 42, 16368–16376. [Google Scholar] [CrossRef]
- Vaitsis, C.; Sourkouni, G.; Argirusis, C. Metal Organic Frameworks (MOFs) and ultrasound: A review. Ultrason. Sonochemistry 2019, 52, 106–119. [Google Scholar] [CrossRef]
- Qian, Y.; Zhang, F.; Pang, H. A Review of MOFs and Their Composites-Based Photocatalysts: Synthesis and Applications. Adv. Funct. Mater. 2021, 37, 2104231. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.-P.; Zong, Z.-A.; Lin, R.; Zhang, X.-Y.; Chen, F.-S.; Ding, W.-D.; Zhang, L.-L.; Meng, X.-M.; Hou, J. Thin film nanocomposite membrane incorporated with 2D-MOF nanosheets for highly efficient reverse osmosis desalination. J. Membr. Sci. 2022, 653, 120520. [Google Scholar] [CrossRef]
- Górriz, C.E.; Zapata, J.A.; Etxeberría-Benavides, M.; Téllez, C.; Coronas, J. Polyamide/MOF bilayered thin film composite hollow fiber membranes with tuned MOF thickness for water nanofiltration. Sep. Purif. Technol. 2019, 236, 116265. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, F.-Y.; Zhang, H.-Z.; Xu, Z.-L.; Xue, S.; Ma, X.-H.; Xu, X.-R. In-situ synthetic modified metal-organic framework (MZIF-8) as an interlayer of the composite membranes for ethanol dehydration. J. Membr. Sci. 2020, 601, 117916. [Google Scholar] [CrossRef]
- Li, G.; Zhang, K.; Tsuru, T. Two-Dimensional Covalent Organic Framework (COF) Membranes Fabricated via the Assembly of Exfoliated COF Nanosheets. ACS Appl. Mater. Interfaces 2017, 10, 8433–8436. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, R.; Mondal, S.; Pal, S.C.; Mukherjee, D.; Das, M.C. Covalent-Organic Frameworks (COFs) as Proton Conductors. Adv. Energy Mater. 2021, 39, 2102300. [Google Scholar] [CrossRef]
- Shevate, R.; Shaffer, D.L. Large-Area 2D Covalent Organic Framework Membranes with Tunable Single-Digit Nanopores for Predictable Mass Transport. ACS Nano 2022, 2, 2407–2418. [Google Scholar] [CrossRef]
- Fan, H.; Mundstock, A.; Feldhoff, A.; Knebel, A.; Gu, J.; Meng, H.; Caro, J. Covalent Organic Framework-Covalent Organic Framework Bilayer Membranes for Highly Selective Gas Separation. J. Am. Chem. Soc. 2018, 32, 10094–10098. [Google Scholar] [CrossRef]
- Chandra, S.; Chowdhury, D.R.; Addicoat, M.; Heine, T.; Paul, A.; Banerjee, R. Molecular Level Control of the Capacitance of Two-Dimensional Covalent Organic Frameworks: Role of Hydrogen Bonding in Energy Storage Materials. Chem. Mater. 2017, 5, 2074–2080. [Google Scholar] [CrossRef]
- Sun, Q.; Aguila, B.; Perman, J.; Nguyen, N.; Ma, S. Flexibility Matters: Cooperative Active Sites in Covalent Organic Framework and Threaded Ionic Polymer. J. Am. Chem. Soc. 2016, 48, 15790–15796. [Google Scholar] [CrossRef]
- He, Y.; Lin, X.; Chen, J.; Zhan, H. Fabricating novel high-performance thin-film composite forward osmosis membrane with designed sulfonated covalent organic frameworks as interlayer. J. Membr. Sci. 2021, 635, 119476. [Google Scholar] [CrossRef]
- Yuan, J.; Wu, M.; Wu, H.; Liu, Y.; You, X.; Zhang, R.; Su, Y.; Yang, H.; Shen, J.; Jiang, Z. Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes. J. Mater. Chem. A 2019, 44, 25641–25649. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, S.; Su, J.; Lv, X.; Liu, S.; Su, B. Two dimensional COFs as ultra-thin interlayer to build TFN hollow fiber nanofiltration membrane for desalination and heavy metal wastewater treatment. J. Membr. Sci. 2021, 635, 119523. [Google Scholar] [CrossRef]
- Ji, C.; Zhai, Z.; Jiang, C.; Hu, P.; Zhao, S.; Xue, S.; Yang, Z.; He, T.; Niu, Q.J. Recent advances in high-performance TFC membranes: A review of the functional interlayers. Desalination 2021, 500, 114869. [Google Scholar] [CrossRef]
2D Nanomaterials | Fabrication Methods | Supports | Flux (L m−2 h−1) | Selectivity | Ref. |
---|---|---|---|---|---|
GO | Vacuum filtration | Cellulose | DI-water: 24 (FO: 1 M NaCl draw solution) | NaCl: 99.7% | [59] |
PDA/GO | Immersion | PSf | DI-water: 24.296 (FO: 1 M NaCl draw solution) | NaCl: 0.157 g L−1 | [60] |
AA/GO | Vacuum filtration | PSf | DI-water: 90.72 (RO: 8 bar) | Na2SO4: 95% | [61] |
GO | Electro-static atomization | PEI | Acetone: 146.8 (NF: 1 bar) | Brilliant blue: >95% | [73] |
PDA/MXene | Surface coating | PES | DI-water: 31 (FO: 1 M NaCl draw solution) | NaCl: 0.28 g L−1 | [40] |
MXene | Brush-coating | Nylon | EtOH: 8.1 (FO: 2 M LiCl draw solution) | LiCl: 0.31 g L−1 | [68] |
PEI/MoS2 | Surface coating | TiO2-CHF | DI-water: 27.6 (NF: 6 bar) | MgCl2: 95.5% | [74] |
Interlayers | Fabrication Methods | Supports | Flux (L m−2 h−1) | Selectivity | Ref. |
---|---|---|---|---|---|
ZIF-8 | In-situ growth | PI | Ethanol: 2.35 (OSN: 5 bar) | Polystrene 500: 80.3% | [29] |
ZnTCPP | Vacuum filtration | PES | Pure water: 77.12 (RO: 16 bar) | NaCl: 97.4% | [69] |
ZIF-93 | Microfluidic | PI | Pure water: 1.92 (NF: 8 bar) | Sunset yellow: 98% | [81] |
UiO-66-NH2 | Spray coating | PSf | Pure water: 72.2 (RO: 20 bar) | NaCl: 98.91% | [42] |
COFs | In-situ growth | PI | Ethanol: 6 (NF: 10 bar) | Rhodamine B: 99% | [43] |
SCOFs | Spraying | Nylon | Pure water: 26.7 (FO: 1 M NaCl draw solution) | NaCl: 0.04 g L−1 | [89] |
COFs | Vacuum filtration | PES | Pure water: 107.1 (NF: 2 bar) | Na2SO4: 94.3% | [90] |
COFs | In-situ growth | PSf HF | Pure water: 43.3 (NF: 5 bar) | Na2SO4: 96.6% | [91] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Zhang, X.; Lu, P.; He, D.; Shen, L.; Li, Y. Enhanced Separation Performance of Polyamide Thin-Film Nanocomposite Membranes with Interlayer by Constructed Two-Dimensional Nanomaterials: A Critical Review. Membranes 2022, 12, 1250. https://doi.org/10.3390/membranes12121250
Yu Y, Zhang X, Lu P, He D, Shen L, Li Y. Enhanced Separation Performance of Polyamide Thin-Film Nanocomposite Membranes with Interlayer by Constructed Two-Dimensional Nanomaterials: A Critical Review. Membranes. 2022; 12(12):1250. https://doi.org/10.3390/membranes12121250
Chicago/Turabian StyleYu, Yifei, Xianjuan Zhang, Peng Lu, Dingbin He, Liqiang Shen, and Yanshuo Li. 2022. "Enhanced Separation Performance of Polyamide Thin-Film Nanocomposite Membranes with Interlayer by Constructed Two-Dimensional Nanomaterials: A Critical Review" Membranes 12, no. 12: 1250. https://doi.org/10.3390/membranes12121250
APA StyleYu, Y., Zhang, X., Lu, P., He, D., Shen, L., & Li, Y. (2022). Enhanced Separation Performance of Polyamide Thin-Film Nanocomposite Membranes with Interlayer by Constructed Two-Dimensional Nanomaterials: A Critical Review. Membranes, 12(12), 1250. https://doi.org/10.3390/membranes12121250