The Biomimetic System of Oleanolic Acid and Oleic Acid at the Air-Water Interface–Interactions in Terms of Nanotechnology-Based Drug Delivery Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Langmuir Experiments
2.3. Analysis of Miscibility
2.4. Brewster Angle Microscopy
2.5. Dilatational Rheology Studies
3. Results
3.1. The Structure of OLA-OA Binary Monolayers
3.2. Interactions among Monolayers–Thermodynamic Analysis of the Miscibility
3.3. Mixed Monolayer Stability Investigated by Relaxations
3.4. Dilatational Rheological Properties of the Mixed Systems
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barkat, M.A.; Harshita; Das, S.S.; Beg, S.; Ahmad, F.J. Nanotechnology-Based Phytotherapeutics: Current Status and Challenges. In Nanophytomedicine; Springer: Singapore, 2020; pp. 1–17. ISBN 9789811549083. [Google Scholar]
- Hesari, M.; Mohammadi, P.; Khademi, F.; Shackebaei, D.; Momtaz, S.; Moasefi, N.; Farzaei, M.H.; Abdollahi, M. Current Advances in the Use of Nanophytomedicine Therapies for Human Cardiovascular Diseases. Int. J. Nanomed. 2021, 16, 3293–3315. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhong, Z.; Tan, W.; Wang, S.; Wang, Y. Recent Advances in Nanoparticle Formulation of Oleanolic Acid. Chin. Med. 2011, 6, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falcão, D.Q.; Oliveira, A.P.; Lima, B.G.; Cardoso, A.C.A.; Almeida, K.B.; Santos, T.C.; Nascimento, L.M.; Desmarais, G.C.; Sanches, P.S.; Araújo, E.M.; et al. Nanotechnology in Phytotherapy: Current Challenges of Lipid-Based Nanocarriers for the Delivery of Natural Products. In Lipid Nanocarriers for Drug Targeting; William Andrew: Norwich, NY, USA, 2018; ISBN 9780128136874. [Google Scholar]
- Brezesinski, G.; Vollhardt, D. Model Studies of the Interfacial Ordering of Oleanolic Acid in the Cuticula. ChemPhysChem 2008, 9, 1670–1672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brezesinski, G.; Vollhardt, D.; Iimura, K.; Cölfen, H. Structural Features of Mixed Monolayers of Oleanolic Acid and Stearic Acid. J. Phys. Chem. C 2008, 112, 15777–15783. [Google Scholar] [CrossRef]
- Teixeira, A.C.T.; Fernandes, A.C.; Garcia, A.R.; Ilharco, L.M.; Brogueira, P.; Gonçalves da Silva, A.M.P.S. Microdomains in Mixed Monolayers of Oleanolic and Stearic Acids: Thermodynamic Study and BAM Observation at the Air-Water Interface and AFM and FTIR Analysis of LB Monolayers. Chem. Phys. Lipids 2007, 149, 1–13. [Google Scholar] [CrossRef]
- Aminfar, Z.; Rabiei, B.; Tohidfar, M.; Mirjalili, M.H. Identification of Key Genes Involved in the Biosynthesis of Triterpenic Acids in the Mint Family. Sci. Rep. 2019, 9, 15826. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Aparicio, Á.; Perona, J.S.; Castellano, J.M.; Correa-Rodríguez, M.; Schmidt-Riovalle, J.; González-Jiménez, E. Oleanolic Acid-Enriched Olive Oil Alleviates the Interleukin-6 Overproduction Induced by Postprandial Triglyceride-Rich Lipoproteins in Thp-1 Macrophages. Nutrients 2021, 13, 3471. [Google Scholar] [CrossRef]
- Franco-Ávila, T.; Moreno-González, R.; Juan, M.E.; Planas, J.M. Table Olive Elicits Antihypertensive Activity in Spontaneously Hypertensive Rats. J. Sci. Food Agric. 2022, 103, 64–72. [Google Scholar] [CrossRef]
- Yang, R.; Huang, X.; Dou, J.; Zhai, G.; Lequn, S. Self-Microemulsifying Drug Delivery System for Improved Oral Bioavailability of Oleanolic Acid: Design and Evaluation. Int. J. Nanomed. 2013, 8, 2917–2926. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Rodriguez, R. Oleanolic Acid and Related Triterpenoids from Olives on Vascular Function: Molecular Mechanisms and Therapeutic Perspectives. Curr. Med. Chem. 2015, 22, 1414–1425. [Google Scholar] [CrossRef]
- Kashyap, D.; Sharma, A.; Tuli, H.S.; Punia, S.; Sharma, A.K. Ursolic Acid and Oleanolic Acid: Pentacyclic Terpenoids with Promising Anti-Inflammatory Activities. Recent Pat. Inflamm. Allergy Drug Discov. 2016, 10, 21–33. [Google Scholar] [CrossRef]
- Khwaza, V.; Oyedeji, O.O.; Aderibigbe, B.A. Antiviral Activities of Oleanolic Acid and Its Analogues. Molecules 2018, 23, 2300. [Google Scholar] [CrossRef] [Green Version]
- Lisiak, N.M.; Lewicka, I.; Kaczmarek, M.; Kujawski, J.; Bednarczyk-cwynar, B.; Zaprutko, L.; Rubis, B. Oleanolic Acid’s Semisynthetic Derivatives Himoxol and Br-himolid Show Proautophagic Potential and Inhibit Migration of Her2-positive Breast Cancer Cells in Vitro. Int. J. Mol. Sci. 2021, 22, 11273. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Lv, S.; Li, X.; Feng, Y.; Li, X.; Liu, L.; Li, S.; Li, Y. Preparation, Characterization, and in Vivo Pharmacokinetics of Nanostructured Lipid Carriers Loaded with Oleanolic Acid and Gentiopicrin. Int. J. Nanomed. 2013, 8, 3227–3239. [Google Scholar] [CrossRef] [Green Version]
- Krstić, M.; Medarević, Đ.; Đuriš, J.; Ibrić, S. Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) and Self-Microemulsifying Drug Delivery Systems (SMEDDS) as Lipid Nanocarriers for Improving Dissolution Rate and Bioavailability of Poorly Soluble Drugs. In Lipid Nanocarriers for Drug Targeting; William Andrew: Norwich, NY, USA, 2018; ISBN 9780128136874. [Google Scholar]
- Castellano Orozco, J.M. Olive Oil Enriched with Oleanolic Acid, Process for Its Preparation and Use Thereof 2020. Patent EP3593651A1, 2020. [Google Scholar]
- Zhang, H.; Wang, Z.; Liu, O. Development and Validation of a GC-FID Method for Quantitative Analysis of Oleic Acid and Related Fatty Acids. J. Pharm. Anal. 2015, 5, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Djeziri, F.Z.; Belarbi, M.; Murtaza, B.; Hichami, A.; Benammar, C.; Khan, N.A. Oleanolic Acid Improves Diet-Induced Obesity by Modulating Fat Preference and Inflammation in Mice. Biochimie 2018, 152, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Fatoki, T.H.; Akintayo, C.O.; Ibraheem, O. Bioinformatics Exploration of Olive Oil: Molecular Targets and Properties of Major Bioactive Constituents. OCL—Oilseeds fats, Crop. Lipids 2021, 28, 1–8. [Google Scholar] [CrossRef]
- Teixeira, A.C.T.; Garcia, A.R.; Ilharco, L.M.; Gonçalves Da Silva, A.M.P.S.; Fernandes, A.C. Phase Behaviour of Oleanolic Acid, Pure and Mixed with Stearic Acid: Interactions and Crystallinity. Chem. Phys. Lipids 2010, 163, 655–666. [Google Scholar] [CrossRef]
- Gómez-Pulido, L.D.M.; González-Cano, R.C.; Domínguez, E.; Heredia, A. Structure Determination of Oleanolic and Ursolic Acids: A Combined Density Functional Theory/Vibrational Spectroscopy Methodology. R. Soc. Open Sci. 2021, 8, 210162. [Google Scholar] [CrossRef]
- Perry, S.C. Composition to Retard the Onset of Symptoms of Alzheimer’s Disease 2013. U.S. Patent 8557310, 2013. [Google Scholar]
- Kalhapure, R.S.; Akamanchi, K.G. Oleic Acid Based Heterolipid Synthesis, Characterization and Application in Self-Microemulsifying Drug Delivery System. Int. J. Pharm. 2012, 425, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Peña, L.; El Mojahid, B.Z.; Guzmán, E.; Ortega, F.; Rubio, R.G. Performance of Oleic Acid and Soybean Oil in the Preparation of Oil-in-Water Microemulsions for Encapsulating a Highly Hydrophobic Molecule. Colloids Interfaces 2021, 5, 50. [Google Scholar] [CrossRef]
- Teixeira, A.C.T.; Garcia, A.R.; Ilharco, L.M.; Gonçalves da Silva, A.M.P.S.; Fernandes, A.C. Phase Behaviour of Oleanolic Acid/Stearyl Stearate Binary Mixtures in Bulk and at the Air-Water Interface. Chem. Phys. Lipids 2009, 160, 45–57. [Google Scholar] [CrossRef]
- Hac-Wydro, K.; Jedrzejek, K.; Dynarowicz-Łatka, P. Effect of Saturation Degree on the Interactions between Fatty Acids and Phosphatidylcholines in Binary and Ternary Langmuir Monolayers. Colloids Surf. B Biointerfaces 2009, 72, 101–111. [Google Scholar] [CrossRef]
- Dynarowicz-Łątka, P.; Kita, K. Molecular Interaction in Mixed Monolayers at the Air/Water Interface. Adv. Colloid Interface Sci. 1999, 79, 1–17. [Google Scholar] [CrossRef]
- Fidalgo Rodríguez, J.L.; Dynarowicz-Latka, P.; Miñones Conde, J. How Unsaturated Fatty Acids and Plant Stanols Affect Sterols Plasma Level and Cellular Membranes? Review on Model Studies Involving the Langmuir Monolayer Technique. Chem. Phys. Lipids 2020, 232, 104968. [Google Scholar] [CrossRef]
- Davies, J.T.; Rideal, E.K. Interfacial Phenomena, 2nd ed.; Elsevier: New York, NY, USA, 1961; ISBN 9780122060564. [Google Scholar]
- Marena, G.D.; Fonseca-Santos, B.; Matheus Aparecido dos Santos, R.; dos Santos, K.C.; Bauab, T.M.; Chorilli, M. Incorporation of Ursolic Acid in Liquid Crystalline Systems Improves the Antifungal Activity against Candida sp. J. Pharm. Innov. 2021, 16, 576–586. [Google Scholar] [CrossRef]
- Nuraje, N.; Bai, H.; Su, K. Bolaamphiphilic Molecules: Assembly and Applications. Prog. Polym. Sci. 2013, 38, 302–343. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krajewska, M.; Dopierała, K.; Prochaska, K. The Biomimetic System of Oleanolic Acid and Oleic Acid at the Air-Water Interface–Interactions in Terms of Nanotechnology-Based Drug Delivery Systems. Membranes 2022, 12, 1215. https://doi.org/10.3390/membranes12121215
Krajewska M, Dopierała K, Prochaska K. The Biomimetic System of Oleanolic Acid and Oleic Acid at the Air-Water Interface–Interactions in Terms of Nanotechnology-Based Drug Delivery Systems. Membranes. 2022; 12(12):1215. https://doi.org/10.3390/membranes12121215
Chicago/Turabian StyleKrajewska, Martyna, Katarzyna Dopierała, and Krystyna Prochaska. 2022. "The Biomimetic System of Oleanolic Acid and Oleic Acid at the Air-Water Interface–Interactions in Terms of Nanotechnology-Based Drug Delivery Systems" Membranes 12, no. 12: 1215. https://doi.org/10.3390/membranes12121215
APA StyleKrajewska, M., Dopierała, K., & Prochaska, K. (2022). The Biomimetic System of Oleanolic Acid and Oleic Acid at the Air-Water Interface–Interactions in Terms of Nanotechnology-Based Drug Delivery Systems. Membranes, 12(12), 1215. https://doi.org/10.3390/membranes12121215