Effects of the Water Matrix on the Degradation of Micropollutants by a Photocatalytic Ceramic Membrane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Photocatalytic Degradation Experiments
2.3. Analytical Methods
2.4. 1D Transport and Surface Reaction Model and Diffusion Coefficient
3. Results and Discussion
3.1. Membrane Retention
3.2. MPs Degradation and Transport and Surface Reaction Model
MP Abbr. | k [10 L·mol·s] | k [10 L·mol·s] | pK, pK | Charge at pH > 6 |
---|---|---|---|---|
DCF | 9.29 ± 0.09 [36] | 1.53 ± 0.03 [36] | 4.15 [37] | negative |
INN | 3.42 ± 0.28 [38] | 33.7± 0.5 [38] | 10.7 [39] | positive |
MB | 11 [40] | 25 [32] | 3.14 [41] | positive |
MTP | 8.39 ± 0.06 [42] | 0.173 ± 0.003 [42] | 9.67, 14.09 [43] | positive |
3.3. Effect of the Water Matrix on the Photocatalytic Degradation of MPs in a Mixture
3.3.1. MPs Mixture Degradation
3.3.2. Effect of Bicarbonate
3.3.3. Effect of Chloride
3.3.4. MPs Degradation at Low Concentration in a Mixture and the Effect of Tap Water
3.4. Comparison of the Photocatalytic Degradation Rate with Different Water Matrices
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AOP | Advanced Oxidation Process |
B | Sodium Bicarbonate in the background [23.4 mg·L] |
DCF | Diclorofenac |
INN | Iopamidol |
MB | Methylene Blue |
MPs | Micropollutants |
MTP | Metoprolol |
LC | Low concentration |
PMR | Photocatalytic Membrane Reactor |
pzc | Point of zero charge |
ROS | Reactive oxygen species |
TW | Tap water |
Appendix A. Tap Water Composition
Parameter | Unit | Stock Solution |
---|---|---|
Cl | mg·L | 46.2 |
NO2 | mg·L | <0.10 |
NO3 | mg·L | 10.4 |
PO4 | mg·L | <0.10 |
SO4 | mg·L | 0.58 |
TC | mg·L | 65.3 |
NPOC | mg·L | 3.83 |
IC | mg·L | 48.6 |
Ca | g·L | 33,700 |
Cu | g·L | 14.3 |
Ca | g·L | 33,700 |
Fe | g·L | <5.00 |
K | g·L | 2330 |
Mg | g·L | 9343 |
Na | g·L | 69,550 |
Appendix B. Feed and Permeate pH
Solution | pH | pH |
---|---|---|
DCF + S | 6.6 ± 0.2 | 6.6 ± 0.9 |
INN + S | 6.97 ± 0.02 | 6.2 ± 0.3 |
MB | 7.10 ± 0.06 | - |
MB + S | 6.37 ± 0.06 | 6.49 ± 0.04 |
MB + B | 7.4 ± 0.1 | 7.1 ± 0.1 |
MTP | 6.47 ± 0.08 | 6.0 ± 0.3 |
Na2SO4 | 5.91 ± 0.05 | - |
MPs mixture + S | 6.2 ± 0.2 | 6.89 ± 0.08 |
MPs mixture + S + HCO3− 45 mg·L | 7.8 ± 0.1 | 7.9 ± 0.07 |
MPs mixture + S + HCO3− 215 mg·L | 8.00 ± 0.03 | 8.3 ± 0.1 |
MPs mixture + B + Cl− 61 mg·L | 7.54 ± 0.09 | 7.5 ± 0.3 |
MPs mixture + B + Cl− 607 mg·L | 7.3 ± 0.1 | 6.5 ± 0.1 |
MPs LC mixture + B | 7.24 ± 0.02 | 7.4 ± 0.2 |
MPs LC mixture in tap water | 8.01 ± 0.04 | 8.23 ± 0.01 |
Appendix C. Membranes Characterization
Appendix D. Absorption Spectrum
References
- Bolong, N.; Ismail, A.; Salim, M.; Matsuura, T. A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 2009, 239, 229–246. [Google Scholar] [CrossRef]
- Tokumura, M.; Sugawara, A.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Masunaga, S. Comprehensive study on effects of water matrices on removal of pharmaceuticals by three different kinds of advanced oxidation processes. Chemosphere 2016, 159, 317–325. [Google Scholar] [CrossRef]
- Costa, F.; Lago, A.; Rocha, V.; Barros, O.; Costa, L.; Vipotnik, Z.; Silva, B.; Tavares, T. A Review on Biological Processes for Pharmaceuticals Wastes Abatement—A Growing Threat to Modern Society. Environ. Sci. Technol. 2019, 53, 7185–7202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batucan, N.S.P.; Tremblay, L.A.; Northcott, G.L.; Matthaei, C.D. Medicating the environment? A critical review on the risks of carbamazepine, diclofenac and ibuprofen to aquatic organisms. Environ. Adv. 2022, 7, 100164. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef] [PubMed]
- Camille, G.; Isabelle, S.; Anne, P.; Pascal, W.W.C.; Guillaume, V.; Nicolas, T.; Nicolas, R.; Pierre, D. From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: A review. Water Res. 2017, 111, 297–317. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Shen, Z.P.; Shi, L.; Cheng, R.; Yuan, D.H. Photocatalytic Membrane Reactors (PMRs) in Water Treatment: Configurations and Influencing Factors. Catalysts 2017, 7, 224. [Google Scholar] [CrossRef] [Green Version]
- Linsebigler, A.L.; Lu, G.; Yates, J.T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95, 735–758. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef]
- Feng, L.; van Hullebusch, E.D.; Rodrigo, M.A.; Esposito, G.; Oturan, M.A. Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. Chem. Eng. J. 2013, 228, 944–964. [Google Scholar] [CrossRef]
- Fernández, R.L.; McDonald, J.A.; Khan, S.J.; Le-Clech, P. Removal of pharmaceuticals and endocrine disrupting chemicals by a submerged membrane photocatalysis reactor (MPR). Sep. Purif. Technol. 2014, 127, 131–139. [Google Scholar] [CrossRef]
- Hu, A.; Zhang, X.; Oakes, K.D.; Peng, P.; Zhou, Y.N.; Servos, M.R. Hydrothermal growth of free standing TiO2 nanowire membranes for photocatalytic degradation of pharmaceuticals. J. Hazard. Mater. 2011, 189, 278–285. [Google Scholar] [CrossRef]
- Arlos, M.J.; Hatat-Fraile, M.M.; Liang, R.; Bragg, L.M.; Zhou, N.Y.; Andrews, S.A.; Servos, M.R. Photocatalytic decomposition of organic micropollutants using immobilized TiO2 having different isoelectric points. Water Res. 2016, 101, 351–361. [Google Scholar] [CrossRef]
- Lotfi, S.; Fischer, K.; Schulze, A.; Schäfer, A.I. Photocatalytic degradation of steroid hormone micropollutants by TiO2-coated polyethersulfone membranes in a continuous flow-through process. Nat. Nanotechnol. 2022, 17, 417–423. [Google Scholar] [CrossRef]
- Wainwright, M.; Crossley, K.B. Methylene Blue—A Therapeutic Dye for All Seasons? J. Chemother. 2002, 14, 431–443. [Google Scholar] [CrossRef]
- Heredia Deba, S.A.; Wols, B.A.; Yntema, D.R.; Lammertink, R.G. Transport and surface reaction model of a photocatalytic membrane during the radical filtration of methylene blue. Chem. Eng. Sci. 2022, 254, 117617. [Google Scholar] [CrossRef]
- Matthews, R.W. Kinetics of photocatalytic oxidation of organic solutes over titanium dioxide. J. Catal. 1988, 111, 264–272. [Google Scholar] [CrossRef]
- Tachikawa, T.; Fujitsuka, M.; Majima, T. Mechanistic Insight into the TiO2 Photocatalytic Reactions: Design of New Photocatalysts. J. Phys. Chem. C 2007, 111, 5259–5275. [Google Scholar] [CrossRef]
- Packer, J.L.; Werner, J.J.; Latch, D.E.; McNeill, K.; Arnold, W.A. Photochemical fate of pharmaceuticals in the environment: Naproxen, diclofenac, clofibric acid, and ibuprofen. Aquat. Sci. 2003, 65, 342–351. [Google Scholar] [CrossRef]
- Pérez Estrada, L.A.; Maldonado, M.; Gernjak, W.; Agüera, A.; Fernández-Alba, A.; Ballesteros, M.; Malato, S. Decomposition of diclofenac by solar driven photocatalysis at pilot plant scale. Catal. Today 2005, 101, 219–226. [Google Scholar] [CrossRef]
- Méndez-Arriaga, F.; Esplugas, S.; Giménez, J. Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation. Water Res. 2008, 42, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Kanakaraju, D.; Motti, C.A.; Glass, B.D.; Oelgemöller, M. Photolysis and TiO2-catalysed degradation of diclofenac in surface and drinking water using circulating batch photoreactors. Environ. Chem. 2014, 11, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Martínez, C.; Canle L., M.; Fernández, M.; Santaballa, J.; Faria, J. Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials. Appl. Catal. B Environ. 2011, 107, 110–118. [Google Scholar] [CrossRef]
- Calza, P.; Sakkas, V.; Medana, C.; Baiocchi, C.; Dimou, A.; Pelizzetti, E.; Albanis, T. Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions. Appl. Catal. B Environ. 2006, 67, 197–205. [Google Scholar] [CrossRef]
- Rizzo, L.; Meric, S.; Kassinos, D.; Guida, M.; Russo, F.; Belgiorno, V. Degradation of diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water Res. 2009, 43, 979–988. [Google Scholar] [CrossRef]
- Wilke, C.R.; Chang, P. Correlation of diffusion coefficients in dilute solutions. AIChE J. 1955, 1, 264–270. [Google Scholar] [CrossRef]
- Yap, C.W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 2010, 32, 1466–1474. [Google Scholar] [CrossRef]
- La-Scalea, M.A.; Souza Menezes, C.M.; Ferreira, E.I. Molecular volume calculation using AM1 semi-empirical method toward diffusion coefficients and electrophoretic mobility estimates in aqueous solution. J. Mol. Struct. THEOCHEM 2005, 730, 111–120. [Google Scholar] [CrossRef]
- Goodarzian, M.; Khalilzade, M.A.; Karimi, F.; Kumar Gupta, V.; Keyvanfard, M.; Bagheri, H.; Fouladgar, M. Square wave voltammetric determination of diclofenac in liquid phase using a novel ionic liquid multiwall carbon nanotubes paste electrode. J. Mol. Liq. 2014, 197, 114–119. [Google Scholar] [CrossRef]
- Miložič, N.; Lubej, M.; Novak, U.; Žnidaršič Plazl, P.; Plazl, I. Evaluation of Diffusion Coefficient Determination using a Microfluidic Device. Chem. Biochem. Eng. Q. J. 2014, 28, 215–223. [Google Scholar] [CrossRef]
- Turchi, C.S.; Ollis, D.F. Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack. J. Catal. 1990, 122, 178–192. [Google Scholar] [CrossRef]
- Buxton, G.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O− in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef] [Green Version]
- Huber, M.M.; Canonica, S.; Park, G.Y.; von Gunten, U. Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes. Environ. Sci. Technol. 2003, 37, 1016–1024. [Google Scholar] [CrossRef]
- Roushenas, P.; Ong, Z.C.; Ismail, Z.; Majidnia, Z.; Ang, B.C.; Asadsangabifard, M.; Onn, C.; Tam, J.H. Operational parameters effects on photocatalytic reactors of wastewater pollutant: A review. Desalin. Water Treat. 2018, 120, 109–118. [Google Scholar] [CrossRef]
- Costa, A.L.; Ortelli, S.; Blosi, M.; Albonetti, S.; Vaccari, A.; Dondi, M. TiO2 based photocatalytic coatings: From nanostructure to functional properties. Chem. Eng. J. 2013, 225, 880–886. [Google Scholar] [CrossRef]
- Yu, H.; Nie, E.; Xu, J.; Yan, S.; Cooper, W.J.; Song, W. Degradation of Diclofenac by Advanced Oxidation and Reduction Processes: Kinetic Studies, Degradation Pathways and Toxicity Assessments. Water Res. 2013, 47, 1909–1918. [Google Scholar] [CrossRef]
- Sangster, J. LOGKOW Databank; Sangster Research Laboratories: Montreal, QC, Canada, 1994. [Google Scholar]
- Jeong, J.; Jung, J.; Cooper, W.J.; Song, W. Degradation mechanisms and kinetic studies for the treatment of X-ray contrast media compounds by advanced oxidation/reduction processes. Water Res. 2010, 44, 4391–4398. [Google Scholar] [CrossRef]
- O’Neil, M.J. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals; Merck: Whitehouse Station, NJ, USA, 2006; p. 879. [Google Scholar]
- Ohno, S.; Sakumoto, A.; Sasaki, T.; Kawatsura, K.; Furukawa, K. Measurements of Optical Absorption Spectra under 60Co-γ Irradiation. Aqueous Methylene Blue Solutions Containing Oxygen. Bull. Chem. Soc. Jpn. 1971, 44, 3265–3268. [Google Scholar] [CrossRef] [Green Version]
- Wishart, D.S.; Knox, C.; Guo, A.C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M. DrugBank: A knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008, 36, D901–D906. [Google Scholar] [CrossRef]
- Song, W.; Cooper, W.J.; Mezyk, S.P.; Greaves, J.; Peake, B.M. Free Radical Destruction of β-Blockers in Aqueous Solution. Environ. Sci. Technol. 2008, 42, 1256–1261. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J. Quantitative Treatments of Solute/Solvent Interactions: Theoretical and Computational Chemistry Vol. 1; Elsevier: New York, NY, USA, 1994; pp. 291–353. [Google Scholar]
- Guillard, C.; Puzenat, E.; Lachheb, H.; Houas, A.; Herrmann, J.M. Why inorganic salts decrease the TiO2 photocatalytic efficiency. Int. J. Photoenergy 2005, 7, 641208. [Google Scholar] [CrossRef] [Green Version]
- Low, G.K.C.; McEvoy, S.R.; Matthews, R.W. Formation of nitrate and ammonium ions in titanium dioxide mediated photocatalytic degradation of organic compounds containing nitrogen atoms. Environ. Sci. Technol. 1991, 25, 460–467. [Google Scholar] [CrossRef]
- Ku, Y.; Lee, W.H.; Wang, W.Y. Photocatalytic reduction of carbonate in aqueous solution by UV/TiO2 process. J. Mol. Catal. A Chem. 2004, 212, 191–196. [Google Scholar] [CrossRef]
- Lee, B.N.; Liaw, W.D.; Lou, J.C. Photocatalytic decolorization of methylene blue in aqueous TiO2 suspension. Environ. Eng. Sci. 1999, 16, 165–175. [Google Scholar] [CrossRef]
- Neta, P.; Huie, R.E.; Ross, A.B. Rate constants for reactions of inorganic radicals in aqueous solution. J. Phys. Chem. 1988, 17, 1027–1284. [Google Scholar] [CrossRef]
- Lai, W.W.P.; Hsu, M.H.; Lin, A.Y.C. The role of bicarbonate anions in methotrexate degradation via UV/TiO2: Mechanisms, reactivity and increased toxicity. Water Res. 2017, 112, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Feng, Y.; Bruning, H.; Yntema, D.; Rijnaarts, H. Photocatalytic degradation of metoprolol by TiO2 nanotube arrays and UV-LED: Effects of catalyst properties, operational parameters, commonly present water constituents, and photo-induced reactive species. Appl. Catal. B Environ. 2018, 220, 171–181. [Google Scholar] [CrossRef]
- Calza, P.; Pelizzetti, E. Photocatalytic transformation of organic compounds in the presence of inorganic ions. Pure Appl. Chem. 2001, 73, 1839–1848. [Google Scholar] [CrossRef] [Green Version]
- Aguedach, A.; Brosillon, S.; Morvan, J.; Lhadi, E.K. Influence of ionic strength in the adsorption and during photocatalysis of reactive black 5 azo dye on TiO2 coated on non woven paper with SiO2 as a binder. J. Hazard. Mater. 2008, 150, 250–256. [Google Scholar] [CrossRef]
- Lair, A.; Ferronato, C.; Chovelon, J.M.; Herrmann, J.M. Naphthalene degradation in water by heterogeneous photocatalysis: An investigation of the influence of inorganic anions. J. Photochem. Photobiol. A Chem. 2008, 193, 193–203. [Google Scholar] [CrossRef]
- Ohtani, B. Titania Photocatalysis beyond Recombination: A Critical Review. Catalysts 2013, 3, 942–953. [Google Scholar] [CrossRef] [Green Version]
- Rioja, N.; Benguria, P.; Peñas, F.J.; Zorita, S. Competitive removal of pharmaceuticals from environmental waters by adsorption and photocatalytic degradation. Environ. Sci. Pollut. Res. Int. 2014, 21, 11168–11177. [Google Scholar] [CrossRef]
- Rioja, N.; Zorita, S.; Peñas, F.J. Effect of water matrix on photocatalytic degradation and general kinetic modeling. Appl. Catal. B Environ. 2016, 180, 330–335. [Google Scholar] [CrossRef]
- Cuperus, F.; Bargeman, D.; Smolders, C. Permporometry: The determination of the size distribution of active pores in UF membranes. J. Membr. Sci. 1992, 71, 57–67. [Google Scholar] [CrossRef]
Micropollutant | D [10 m·s] | D [10 m·s] |
---|---|---|
Diclofenac | 5.90 [29] | 5.28 |
Iopamidol | - | 3.70 |
Methylene Blue | 4.60 [30] | 5.40 |
Metoprolol | - | 4.93 |
Solution | DCF | INN | MB | MTP |
---|---|---|---|---|
DCF + S | 9 ± 1 | - | - | - |
INN + S | - | 2.2 ± 0.3 | - | - |
MB | - | - | 1.3 ± 0.5 | - |
MB + S | - | - | 1.2 ± 0.2 | - |
MB + B | - | - | 2.2 ± 0.5 | - |
MTP + S | - | - | - | 2.4 ± 0.2 |
MPs mixture + S | 4 ± 2 | 0.8 ± 0.1 | 1.6 ± 0.4 | 1.0 ± 0.2 |
MPs mixture + S + HCO3− 45 mg·L | 1.7 ± 0.7 | 1.1 ± 0.3 | 3 ± 1 | 1.6 ± 0.9 |
MPs mixture + S + HCO3− 215 mg·L | 2 ± 1 | 1.0 ± 0.3 | 4 ± 1 | 1.6 ± 0.8 |
MPs mixture + B + Cl− 61 mg·L | 3.0 ± 0.4 | 1.6 ± 0.2 | 7 ± 3 | 2 ± 1 |
MPs mixture + B + Cl− 607 mg·L | 4.0 ± 0.4 | 1.6 ± 0.3 | 4 ± 1 | 1.5 ± 0.2 |
MPs LC mixture + B | 20 ± 3 | 1.9 ± 0.3 | - | 2.9 ± 0.8 |
MPs LC mixture in tap water | 16 ± 2 | 2.9 ± 0.7 | - | 8 ± 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heredia Deba, S.A.; Wols, B.A.; Yntema, D.R.; Lammertink, R.G.H. Effects of the Water Matrix on the Degradation of Micropollutants by a Photocatalytic Ceramic Membrane. Membranes 2022, 12, 1004. https://doi.org/10.3390/membranes12101004
Heredia Deba SA, Wols BA, Yntema DR, Lammertink RGH. Effects of the Water Matrix on the Degradation of Micropollutants by a Photocatalytic Ceramic Membrane. Membranes. 2022; 12(10):1004. https://doi.org/10.3390/membranes12101004
Chicago/Turabian StyleHeredia Deba, Shuyana A., Bas A. Wols, Doekle R. Yntema, and Rob G. H. Lammertink. 2022. "Effects of the Water Matrix on the Degradation of Micropollutants by a Photocatalytic Ceramic Membrane" Membranes 12, no. 10: 1004. https://doi.org/10.3390/membranes12101004
APA StyleHeredia Deba, S. A., Wols, B. A., Yntema, D. R., & Lammertink, R. G. H. (2022). Effects of the Water Matrix on the Degradation of Micropollutants by a Photocatalytic Ceramic Membrane. Membranes, 12(10), 1004. https://doi.org/10.3390/membranes12101004