Understanding the Origin of the Hysteresis of High-Performance Solution Processed Polycrystalline SnO2 Thin-Film Transistors and Applications to Circuits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of the Precursor Solutions
2.2. Thin Film Fabrication and Analysis
2.3. Thin Film Transistor Fabrication and Analysis
2.4. Circuit Fabrication
3. Results
3.1. Thin Film Analysis
3.2. Thin Film Transistor and the Origin of Their Hysteresis
3.3. Bias Stress Effect on Poly-SnO2 Thin-Film Transistors
3.4. Application to Circuits: Inverters and Ring Oscillators
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.; Lee, H.-J.; Oh, S.; Park, J.-S. Flexible and High-Performance Amorphous Indium Zinc Oxide Thin-Film Transistor Using Low-Temperature Atomic Layer Deposition. ACS Appl. Mater Interf. 2016, 8, 33821–33828. [Google Scholar] [CrossRef]
- Kim, Y.G.; Kim, T.; Avis, C.; Lee, S.H.; Jang, J. Stable and High-Performance Indium Oxide Thin-Film Transistor by Ga Doping. IEEE Trans. Electron. Dev. 2016, 63, 1078–1084. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Heo, J.-S.; Park, S.; Yoon, M.-H.; Kim, J.; Oh, M.S.; Yi, G.-R.; Noh, Y.-Y.; Park, S.K. Flexible metal oxide devices made by room-temperature photochemical activation of sol-gel films. Nature 2012, 498, 128–132. [Google Scholar] [CrossRef]
- Ruan, D.-B.; Liu, P.-T.; Chiu, Y.-C.; Kan, K.-Z.; Yu, M.-C.; Chien, T.-C.; Chen, Y.-H.; Kuo, P.-Y.; Sze, S.S. Investigation of low operation voltage InZnSnO thin-film transistors with different high-k gate dielectric by physical vapor deposition. Thin Solid Film. 2018, 660, 885–890. [Google Scholar] [CrossRef]
- Saha, J.K.; Billah, M.M.; Jang, J. Triple-Stack ZnO/AlZnO/YZnO Heterojunction Oxide Thin-Film Transistors by Spray Pyrolysis for High Mobility and Excellent Stability. ACS Appl. Mater. Interfaces 2021, 13, 37350–37362. [Google Scholar] [CrossRef]
- Shih, C.; Chin, A.; Lu, C.F.; Su, W.F. Remarkably high mobility ultrathin-film metal-oxide transistor with strongly overlapped orbitals. Sci. Rep. 2016, 6, 19023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortunato, E.; Barquinha, P.; Martins, R. Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances. Adv. Mater. 2012, 24, 2945–2986. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-Y.; Hung, H.-C.; Chen, W.-T. Deposition of InGaZnO by Mist Atmospheric Pressure Chemical Vapor Deposition for Thin-Film Transistor Applications. IEEE Trans Elec. Dev. 2020, 67, 4245–4249. [Google Scholar] [CrossRef]
- Jeong, S.; Jang, S.; Han, H.; Kim, H.; Choi, C. C-axis aligned crystalline indium-gallium-zinc oxide (CAAC-IGZO) and high-k charge trapping film for flash memory application. J. Alloys Comp. 2021, 888, 161440. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Enhanced electron extraction using SnO2 for high efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2017, 2, 1–7. [Google Scholar] [CrossRef]
- Lee, H.B.; Kumar, N.; Ovhal, M.M.; Kim, Y.J.; Song, Y.M.; Kang, J.W. Dopant-Free, Amorphous–Crystalline Heterophase SnO2 Electron Transport Bilayer Enables >20% Efficiency in Triple-Cation Perovskite Solar Cells. Adv. Funct. Mater. 2020, 30, 2001559. [Google Scholar] [CrossRef]
- Huang, G.; Duan, L.; Dong, G.; Zhang, D.; Qiu, Y. High-mobility Solution processed Tin oxide thin-film transistors with high k alumina dielectric working in enhancement mode. ACS Appl. Mater. Interf. 2014, 6, 20786–20794. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Kitsomboonloha, R.; Swisher, S.L.; Park, E.S.; Kang, H.; Subramanian, V. Transparent High performance Thin film transistors from solutionprocessed ZrO2 Gel-like precursors. Adv. Mater. 2013, 25, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Avis, C.; Youn Goo Kim, Y.G.; Jang, J. Amorphous Tin Oxide Applied to Solution Processed Thin-Film Transistors. Materials 2019, 12, 3341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avis, C.; Billah, M.M.; Kim, Y.G.; Siddik, A.B.; Jang, J. Analysis of the Solution-Processed a-SnOX and HfO2 Interface for Applications in Thin-Film Transistors. ACS Appl. Electron. Mater. 2021, 3, 651–657. [Google Scholar] [CrossRef]
- Xu, W.; Wang, H.; Ye, L.; Xu, J. The role of solution-processed high-k gate dielectrics in electrical performance of oxide thin-film transistors. Mater. Chem. C 2014, 2, 5389–5396. [Google Scholar] [CrossRef]
- Egginger, M.; Bauer, S.; Schwodiauer, R.; Neugebauer, H.; Saricifti, N.S. Current versus gate voltage hysteresis in organic field effect transistors. Mon. Chem. 2009, 140, 735–750. [Google Scholar] [CrossRef]
- Avis, C.; Jang, J. Influence of the Curing and Annealing Temperatures on the Properties of Solution Processed Tin Oxide Thin Films. Crystals 2021, 11, 851. [Google Scholar] [CrossRef]
- Tauc, J. Optical properties and electronic structures of amorphous Ge and Si. Mat. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
- Kamiya, T.; Nomura, K.; Hosono, H. Electronic structures above mobility edges in crystalline and amorphous In-Ga-Zn-O: Percolation conduction examined by analytical model. J. Disp. Technol. 2009, 5, 462–467. [Google Scholar] [CrossRef]
- Chen, C.; Yang, B.; Li, G.; Zhou, H.; Huang, B.; Wu, Q.; Zhan, R.; Noh, Y.; Minari, T.; Zhang, S.; et al. Analysis of ultrahigh apparent mobility in oxide field-effect transistors. Adv. Sci. 2019, 6, 1801189. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, M.-C.; Jang, M.; Lee, D.-H.; Bang, H.-J.; Lee, M.; Jeong, J.K.; Yang, H.; Choi, R. Li-assisted Low-temperature phase transistions in solution-processed indium oxide films for high-performance thin film transistor. Sci. Rep. 2015, 6, 25079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Moon, J.; Pi, J.-E.; Ahn, S.-D.; Oh, M.; Kang, S.-Y.; Kwon, K.-H. High mobility ultra-thin crystalline indium oxide thin film transistor using atomic layer deposition. Appl. Phys. Lett. 2018, 113, 112102. [Google Scholar] [CrossRef]
- Wang, M.; Zhan, D.; Wang, X.; Hu, Q.; Gu, C.; Li, X.; Wu, Y. Perofrmance optimization of atomic layer deposited ZnO thin-film transistors by vacuum annealing. IEEE Electron Dev. Lett. 2021, 42, 716–719. [Google Scholar] [CrossRef]
- Cho, H.; Douglas, E.A.; Gila, B.P.; Cracium, V.; Lambers, E.S.; Ren, F.; Pearton, S.J. Band offsets in HfO2/InGaZnO4 heterojunctions. Appl. Phys. Lett. 2012, 100, 012105. [Google Scholar] [CrossRef]
- Robertson, J.; Wallace, R.M. High-K materials and metal gates for CMOS applications. Mater. Sci. Eng. R. Rep. 2015, 88, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Ide, K.; Nomura, K.; Hosono, H.; Kamiya, T. Electronic Defects in Amorphous Oxide Semiconductors: A Review. Phys. Stat. Sol. A 2019, 216, 1800372. [Google Scholar] [CrossRef]
Polycrystalline Oxide Semiconductor | Process | Process Temperature (°C) | Gate Insulator | µ (cm2/Vs) | Hysteresis (V) | Vth (V) | S.S (mV/dec.) | Ref. |
---|---|---|---|---|---|---|---|---|
CAAC-IGZO | Mist-CVD | 450 | Al2O3 | 90.4 | ~0 | 1.5 | 86 | [6] |
CAAC-IGZO | Rf-sputtering | 300 | Al2O3/HfO2/Al2O3 | 39.4 | N/A | −4.46 | 380 | [7] |
In2O3 * | Spin-coating | 250 | ZrO2 | 59.8 * | N/A | 2.02 | 180 | [23] |
In2O3 | Atomic layer deposition | 300 | Al2O3 | 41.8 | ~0.05 | −0.8 | 100 | [24] |
ZnO | Spray-coating | 350 | Al2O3 | 39.26 | N/A | 0.58 | 167 | [8] |
ZnO | ALD | 350 | SiO2 | 43.2 | N/A | 18.7 | N/A | [25] |
SnO2 | Solution process | 450 | Al2O3 | 96.4 | ~1 | 1.72 | 260 | [13] |
SnO2 | Physical vapor deposition | 400 | HfO2 | 147 | N/A | 0.27 | 110 | [9] |
SnO2 | Spin-coating | 350 | HfO2 | 90 | ~0.15 | 0.02 | 113 | This work |
Top of SnO2 Surface | SnO2/HfO2 Interface | ||||||
---|---|---|---|---|---|---|---|
SnO2 Tcuring (°C) | EVBM | ESn3d5/2 | ESn3d5/2-EVBM | Sn3d5/2 | EHf4f | Ehf4f-ESn3d5/2 | ΔEv |
200 | 3.6 (d) | 486.78 (c) | 483.18 | 486.08 (b) | 18.48 (a) | −467.6 | +0.17 |
280 | 3.94 (h) | 487 (g) | 483.06 | 486.32 (f) | 18.82 (e) | −467.5 | +0.19 |
350 | 4.08 (l) | 487.31 (k) | 483.23 | 486.25 (j) | 18.68 (i) | −467.57 | +0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avis, C.; Jang, J. Understanding the Origin of the Hysteresis of High-Performance Solution Processed Polycrystalline SnO2 Thin-Film Transistors and Applications to Circuits. Membranes 2022, 12, 7. https://doi.org/10.3390/membranes12010007
Avis C, Jang J. Understanding the Origin of the Hysteresis of High-Performance Solution Processed Polycrystalline SnO2 Thin-Film Transistors and Applications to Circuits. Membranes. 2022; 12(1):7. https://doi.org/10.3390/membranes12010007
Chicago/Turabian StyleAvis, Christophe, and Jin Jang. 2022. "Understanding the Origin of the Hysteresis of High-Performance Solution Processed Polycrystalline SnO2 Thin-Film Transistors and Applications to Circuits" Membranes 12, no. 1: 7. https://doi.org/10.3390/membranes12010007
APA StyleAvis, C., & Jang, J. (2022). Understanding the Origin of the Hysteresis of High-Performance Solution Processed Polycrystalline SnO2 Thin-Film Transistors and Applications to Circuits. Membranes, 12(1), 7. https://doi.org/10.3390/membranes12010007