Low-Cost High Performance Polyamide Thin Film Composite (Cellulose Triacetate/Graphene Oxide) Membranes for Forward Osmosis Desalination from Palm Fronds
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Cellulose Triacetate from Palm Fronds
2.3. Synthesis of Graphene Oxide (GO)
2.4. CTA Fabricated Membrane
2.5. CTA/GO Membrane Preparation
2.6. Preparation of Polyamide Thin Film Composite on CTA/GO Support
2.7. The Fabricated Membrane’s Performance
2.8. Characterization of Prepared Materials
3. Results and Discussions
3.1. Material’s Characterization
3.1.1. Characterization of CTA
3.1.2. Characterization of Graphene Oxide
3.1.3. Characterization of Prepared CTA and CTA/GO Membrane
Contact Angle Prepared CTA and CTA/GO Membrane
SEM Prepared CTA and CTA/GO Membrane
The Porosity of Prepared CTA/GO Membrane
Mechanical Properties of Prepared CTA/GO Membrane
The Parameters of Fabricated Membranes
3.1.4. The Performance of Fabricated CTA/GO Membranes
The Effect of NaCl Concentration as a Draw Solution
Membrane Orientation and Its Impact on the Performance of the Fabricated Membranes
3.2. Formation of Polyamide Thin Film on CTA/0.3% GO Support
3.2.1. The Performance of Fabricated TFC Membranes
3.2.2. FO Fabricated Membranes and Its Operation in Sea Water Sample
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sidney, L.; Srinivasa, S. High Flow Porous Membranes for Separating Water from Saline Solutions. U.S. Patent 3,133,132, 12 May 1964. [Google Scholar]
- Loeb, S.; Van Hessen, F.; Levi, J.; Ventura, M. The osmotic power plant. In Proceedings of the 11th Intersociety Energy Conversion Engineering Conference, State Line, Nevada, 12–17 September 1976; Volume 1, pp. 51–57. [Google Scholar]
- Shaffer, D.L.; Werber, J.R.; Jaramillo, H.; Lin, S.; Elimelech, M. Forward osmosis: Where are we now? Desalination 2015, 356, 271–284. [Google Scholar] [CrossRef]
- Jiao, Y.; Kang, Y.; Yang, C. Osmosis and Its Applications. Encycl. Microfluid. Nanofluidics 2015, 2622–2633. [Google Scholar] [CrossRef]
- Ali, A.; Tufa, R.A.; Macedonio, F.; Curcio, E.; Drioli, E. Membrane technology in renewable-energy-driven desalination. Renew. Sustain. Energy Rev. 2018, 81, 1–21. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Z.; Nghiem, L.; Li, X.-M.; Xie, M.; Zhao, B.; Zhang, M.; Song, J.; He, T. Treatment of shale gas drilling flowback fluids (SGDFs) by forward osmosis: Membrane fouling and mitigation. Desalination 2015, 366, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; He, T.; Dou, P.; Zhao, S. 2.5 Forward Osmosis and Forward Osmosis Membranes. Chem. Mol. Sci. Chem. Eng. 2017, 2, 95–123. [Google Scholar] [CrossRef]
- Wang, K.Y.; Ong, R.C.; Chung, T.-S. Double-Skinned Forward Osmosis Membranes for Reducing Internal Concentration Polarization within the Porous Sublayer. Ind. Eng. Chem. Res. 2010, 49, 4824–4831. [Google Scholar] [CrossRef]
- Su, J.; Chung, T.-S.; Helmer, B.J.; de Wit, J.S. Enhanced double-skinned FO membranes with inner dense layer for wastewater treatment and macromolecule recycle using Sucrose as draw solute. J. Memb. Sci. 2012, 396, 92–100. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, K.Y.; Chung, T.-S.; Jean, Y.; Chen, H. Molecular design of the cellulose ester-based forward osmosis membranes for desalination. Chem. Eng. Sci. 2011, 66, 2008–2018. [Google Scholar] [CrossRef]
- Ahmed, D.F.; Isawi, H.; Badway, N.A.; Elbayaa, A.; Shawky, H. Graphene oxide incorporated cellulose triacetate/cellulose acetate nanocomposite membranes for forward osmosis desalination. Arab. J. Chem. 2021, 14, 102995. [Google Scholar] [CrossRef]
- Liang, J.; Huang, Y.; Zhang, F.; Zhang, Y.; Li, N.; Chen, Y. The use of graphene oxide membranes for the softening of hard water. Sci. China Ser. E Technol. Sci. 2014, 57, 284–287. [Google Scholar] [CrossRef]
- Qin, D.; Liu, Z.; Bai, H.; Sun, D.D. Three-dimensional architecture constructed from a graphene oxide nanosheet–polymer composite for high-flux forward osmosis membranes. J. Mater. Chem. A 2017, 5, 12183–12192. [Google Scholar] [CrossRef]
- Lu, P.; Liang, S.; Zhou, T.; Mei, X.; Zhang, Y.; Zhang, C.; Umar, A.; Wang, H.; Wang, Q. Typical Thin-Film Composite (TFC) Membranes Modified with Inorganic Nanomaterials for Forward Osmosis: A Review. Nanosci. Nanotechnol. Lett. 2016, 8, 906–916. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, K.Y.; Chung, N.T.-S.; Chen, H.; Jean, Y.; Amy, G. Well-constructed cellulose acetate membranes for forward osmosis: Minimized internal concentration polarization with an ultra-thin selective layer. J. Membr. Sci. 2010, 360, 522–535. [Google Scholar] [CrossRef]
- Yip, N.Y.; Tiraferri, A.; Phillip, W.A.; Schiffman, J.D.; Elimelech, M. High performance thin-film composite forward osmosis membrane. Environ. Sci. Technol. 2010, 44, 3812–3818. [Google Scholar] [CrossRef]
- Wang, R.; Shi, L.; Tang, C.Y.; Chou, S.; Qiu, C.; Fane, A.G. Characterization of novel forward osmosis hollow fiber membranes. J. Membr. Sci. 2010, 355, 158–167. [Google Scholar] [CrossRef]
- Ragab, T.I.; Amer, H.; Wasfy, A.A.F.; Hady, M.A.; Mossa, A.T.H.; Liebner, F. Sulfated Cellulose from Agriculture Wastes, Anticoagulant, Fibrinolytic and Toxicological Studies. J. Environ. Sci. Technol. 2014, 7, 266–280. [Google Scholar] [CrossRef] [Green Version]
- Ragab, T.I.; Wasfy, A.A.; Amer, H.; El-Gendi, A.; Abdel-Hady, M.; Liebner, F. Synthesis of Cellulose Acetate Membrane from the Egyptian Rice Straws. J. Appl. Sci. 2014, 14, 3424–3435. [Google Scholar] [CrossRef] [Green Version]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Qiu, C.; Qi, S.; Tang, C.Y. Synthesis of high flux forward osmosis membranes by chemically crosslinked layer-by-layer polyelectrolytes. J. Membr. Sci. 2011, 381, 74–80. [Google Scholar] [CrossRef]
- Li, G.; Li, X.-M.; He, T.; Jiang, B.; Gao, C. Cellulose triacetate forward osmosis membranes: Preparation and characterization. Desalination Water Treat. 2013, 51, 2656–2665. [Google Scholar] [CrossRef]
- Baker, R.W. Membrane Technology and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 1118359690. [Google Scholar]
- Alsvik, I.L.; Nilsen, T.-N.; Haegg, M.-B. Thin Film Composite Polyamide Membranes on a Hydrophilic Cellulose Acetate Support for Pressure Retarded Osmosis. In Proceedings of the Renewable Energy Research Conference 2010, Trondheim, Norway, 6 July–6 August 2010. [Google Scholar]
- Zheng, K.; Zhou, S.; Zhou, X. A low-cost and high-performance thin-film composite forward osmosis membrane based on an SPSU/PVC substrate. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Xu, J.; Lu, J.; Shan, B.; Gao, C. Enhanced performance of cellulose triacetate membranes using binary mixed additives for forward osmosis desalination. Desalination 2017, 405, 68–75. [Google Scholar] [CrossRef]
- Freire, C.S.R.; Silvestre, A.J.D.; Neto, C.P.; Belgacem, M.N.; Gandini, A. Controlled heterogeneous modification of cellulose fibers with fatty acids: Effect of reaction conditions on the extent of esterification and fiber properties. J. Appl. Polym. Sci. 2006, 100, 1093–1102. [Google Scholar] [CrossRef]
- Maneerung, T.; Tokura, S.; Rujiravanit, R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr. Polym. 2008, 72, 43–51. [Google Scholar] [CrossRef]
- Liu, D.; Zhong, T.; Chang, P.R.; Li, K.; Wu, Q. Starch composites reinforced by bamboo cellulosic crystals. Bioresour. Technol. 2010, 101, 2529–2536. [Google Scholar] [CrossRef]
- French, A.D. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 2013, 21, 885–896. [Google Scholar] [CrossRef]
- Hu, W.; Chen, S.; Xu, Q.; Wang, H. Solvent-free acetylation of bacterial cellulose under moderate conditions. Carbohydr. Polym. 2011, 83, 1575–1581. [Google Scholar] [CrossRef]
- Saikia, C.; Ali, F.; Goswami, T.; Ghosh, A.C. Esterification of high α-cellulose extracted from Hibiscus cannabinus L. Ind. Crops Prod. 1995, 4, 233–239. [Google Scholar] [CrossRef]
- Sun, X.F.; Sun, R.C.; Sun, J.X. Acetylation of sugarcane bagasse using NBS as a catalyst under mild reaction conditions for the production of oil sorption-active materials. Bioresour. Technol. 2004, 95, 343–350. [Google Scholar] [CrossRef]
- Luz, S.M.; Del Tio, J.; Rocha, G.J.M.; Gonçalves, A.R.; Del’Arco, A.P., Jr. Cellulose and cellulignin from sugarcane bagasse reinforced polypropylene composites: Effect of acetylation on mechanical and thermal properties. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1362–1369. [Google Scholar] [CrossRef]
- Shahriary, L.; Athawale, A.A. Graphene oxide synthesized by using modified hummers approach. Int. J. Renew. Energy Environ. Eng. 2014, 2, 58–63. [Google Scholar]
- Somanathan, T.; Prasad, K.; Ostrikov, K.; Saravanan, A.; Krishna, V.M. Graphene Oxide Synthesis from Agro Waste. Nanomaterials 2015, 5, 826–834. [Google Scholar] [CrossRef] [Green Version]
- Du, Q.; Zheng, M.; Zhang, L.; Wang, Y.; Chen, J.; Xue, L.; Dai, W.; Ji, G.; Cao, J. Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors. Electrochim. Acta 2010, 55, 3897–3903. [Google Scholar] [CrossRef]
- Tiraferri, A.; Kang, Y.; Giannelis, E.P.; Elimelech, M. Superhydrophilic Thin-Film Composite Forward Osmosis Membranes for Organic Fouling Control: Fouling Behavior and Antifouling Mechanisms. Environ. Sci. Technol. 2012, 46, 11135–11144. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Tian, M.; Hou, J.; Wang, J.; Lin, J.; Zhang, Y.; Liu, J.; Van der Bruggen, B. Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane. J. Mater. Chem. A 2015, 4, 1980–1990. [Google Scholar] [CrossRef]
- Zinadini, S.; Zinatizadeh, A.A.; Rahimi, M.; Vatanpour, V.; Zangeneh, H. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J. Membr. Sci. 2014, 453, 292–301. [Google Scholar] [CrossRef]
- Ghaemi, N.; Madaeni, S.S.; Alizadeh, A.; Rajabi, H.; Daraei, P. Preparation, characterization and performance of polyethersulfone/organically modified montmorillonite nanocomposite membranes in removal of pesticides. J. Membr. Sci. 2011, 382, 135–147. [Google Scholar] [CrossRef]
- Zhu, J.; Tian, M.; Zhang, Y.; Zhang, H.; Liu, J. Fabrication of a novel “loose” nanofiltration membrane by facile blending with Chitosan–Montmorillonite nanosheets for dyes purification. Chem. Eng. J. 2015, 265, 184–193. [Google Scholar] [CrossRef]
- Mansourpanah, Y.; Madaeni, S.; Rahimpour, A.; Adeli, M.; Hashemi, M.; Moradian, M. Fabrication new PES-based mixed matrix nanocomposite membranes using polycaprolactone modified carbon nanotubes as the additive: Property changes and morphological studies. Desalination 2011, 277, 171–177. [Google Scholar] [CrossRef]
- Wang, X.; Song, M. Toughening of polymers by graphene. Nanomater. Energy 2013, 2, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Rafiee, M.A.; Rafiee, J.; Srivastava, I.; Wang, Z.; Song, H.; Yu, Z.-Z.; Koratkar, N. Fracture and Fatigue in Graphene Nanocomposites. Small 2010, 6, 179–183. [Google Scholar] [CrossRef]
- Khorshidi, B.; Thundat, T.; Fleck, B.; Sadrzadeh, M. A Novel Approach toward Fabrication of High Performance Thin Film Composite Polyamide Membranes. Sci. Rep. 2016, 6, 22069. [Google Scholar] [CrossRef] [Green Version]
- Xiaoxiao, S.; Ja, P. Relating Water/Solute Permeability Coefficients to the Performance of Thin-Film Nanofiber Composite Forward Osmosis Membrane. J. Membr. Sci. Technol. 2016, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Fang, Z.; Zhao, S.; Ng, D.; Zhang, J.; Xie, Z. Dopamine incorporating forward osmosis membranes with enhanced selectivity and antifouling properties. RSC Adv. 2018, 8, 22469–22481. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.-F.; Huang, B.-C.; Wang, Y.-J.; Gong, B.; Lu, X.; Yu, H.-Q. Modification of forward osmosis membrane with naturally-availablehumic acid: Towards simultaneously improved filtration performance and antifouling properties. Environ. Int. 2019, 131, 105045. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Chae, H.-R.; Won, Y.J.; Lee, K.; Lee, C.-H.; Lee, H.H.; Kim, I.-C.; Lee, J.-M. Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment. J. Membr. Sci. 2013, 448, 223–230. [Google Scholar] [CrossRef]
- Li, C.; Song, J.; Dou, P.; Yin, Y.; He, T.; He, W. Effects of low-toxicity solvent and binary mixed additives on the microstructure and performance of cellulose triacetate (CTA) membranes for forward osmosis. Desalination Water Treat. 2018, 130, 44–53. [Google Scholar] [CrossRef]
- Sahebi, S.; Sheikhi, M.; Ramavandi, B.; Ahmadi, M.; Zhao, S.; Adeleye, A.S.; Shabani, Z.; Mohammadi, T. Sustainable management of saline oily wastewater via forward osmosis using aquaporin membrane. Process. Saf. Environ. Prot. 2020, 138, 199–207. [Google Scholar] [CrossRef]
- Akther, N.; Yuan, Z.; Chen, Y.; Lim, S.; Phuntsho, S.; Ghaffour, N.; Matsuyama, H.; Shon, H. Influence of graphene oxide lateral size on the properties and performances of forward osmosis membrane. Desalination 2020, 484, 114421. [Google Scholar] [CrossRef]
- Phuntsho, S.; Sahebi, S.; Majeed, T.; Lotfi, F.; Kim, J.E.; Shon, H.K. Assessing the major factors affecting the performances of forward osmosis and its implications on the desalination process. Chem. Eng. J. 2013, 231, 484–496. [Google Scholar] [CrossRef]
- Li, F.; Sun, M.; Cheng, Q.; Yang, B. Preparation and Characterization of Graphene Oxide/Cellulose Triacetate Forward Osmosis Membranes. In Proceedings of the International Symposium on Materials Application and Engineering (SAME 2016), Chiang Mai, Thailand, 20–21 August 2016; Volume 67, p. 1015. [Google Scholar]
- Wu, Q.-Y.; Xing, X.-Y.; Yu, Y.; Gu, L.; Xu, Z.-K. Novel thin film composite membranes supported by cellulose triacetate porous substrates for high-performance forward osmosis. Polymer 2018, 153, 150–160. [Google Scholar] [CrossRef]
- Alsvik, I.L.; Zodrow, K.; Elimelech, M.; Hägg, M.-B. Polyamide formation on a cellulose triacetate support for osmotic membranes: Effect of linking molecules on membrane performance. Desalination 2013, 312, 2–9. [Google Scholar] [CrossRef]
- Ren, J.; McCutcheon, J.R. A new commercial thin film composite membrane for forward osmosis. Desalination 2014, 343, 187–193. [Google Scholar] [CrossRef]
- Wang, X.; Liu, S.Q.; Hou, S.F.; Lu, P.; Hou, K.; Wang, Z.P.; Wang, L.G. Preparation and characterization of CA/GO mixed matrix forward osmosis membranes. In Proceedings of the International Symposium on Mechanical Engineering and Material Science (Ismems-16), Jeju Island, Korea, 17–19 November 2016; Atlantis Press: Paris, France, 2016. [Google Scholar]
Polymer% | Solvent% | ||
---|---|---|---|
CTA (wt %) | DMF %(wt %) | GO% (wt %) | |
M1 | 20 | 80 | 0 |
M2 | 19.9 | 80 | 0.1 |
M3 | 19.7 | 80 | 0.3 |
M4 | 19.5 | 80 | 0.5 |
GOwt% | Jw (L/m2h) | Js (g/m2h) | Js/Jw g/L | A (Lm−2 h−1bar−1) | B (Lm−2h −1) | B/A (bar) |
---|---|---|---|---|---|---|
0 | 17 | 3.3 | 0.19 | 10.96 | 1.93 | 0.17 |
0.1 | 22 | 4.6 | 0.21 | 14.19 | 2.64 | 0.18 |
0.3 | 27 | 1.8 | 0.06 | 17.41 | 2,765 | 0.16 |
0.5 | 25 | 1.8 | 0.07 | 16.13 | 2.56 | 0.16 |
GOwt% | Jw (L/m2h) | Js (g/m2h) | Js/Jw g/L | A (Lm−2 h−1bar−1) | B (Lm−2h−1) | B/A (bar) | R% |
---|---|---|---|---|---|---|---|
CTA | 17 | 3.3 | 0.19 | 10.96 | 1.93 | 0.17 | 85 |
CTA/0.3% GO | 27 | 1.8 | 0.06 | 17.41 | 2.765 | 0.16 | 86 |
TFC | 35 | 1.1 | 0.03 | 22.5 | 0.11 | 0.05 | 99.5 |
Polymer Weight % | GO Weight % | FluxL/m2h | DS | Citation |
---|---|---|---|---|
CA/GO | 0.15 | 16 | 4 M glucose | [59] |
CTA | 15.2 | 2 M glucose | [22] | |
CTA/GO | 0.6% | 18.43 | 0.5 M NaCl | [22] |
GO/Acetic Acid/CTA/CA | 0.4% | 33.5 | 1 M NH4Cl | [11] |
CTA/Zn2Cl/Lactic acid | - | 11.5 | 2 M glucose | [26] |
CTA Prepared From Palm Fronds | - | 17 | 2 M NaCl | Present work |
CTA/GO Prepared From Palm Fronds | 0.3% prepared from palm fronds | 27 | 2 M NaCl | Present work |
TFC/CTA | 0.3% prepared from palm fronds | 35 | 2 M NaCl | Present work |
Parameters | Unit | Results |
---|---|---|
pH | - | 8.1 |
Sand content | N.D | |
Total solids | mg/L | 42,702 |
Total dissolved solids | mg/L | 42,643 |
Suspended solids | mg/L | 59 |
Total hardness (CaCO3) | mg/L | 7200 |
Calcium hardness (CaCO3) | mg/L | 1040 |
Magnesium hardness (CaCO3) | mg/L | 6160 |
Total alkalinity | mg/L | 104 |
Bicarbonate | mg/L | 80 |
Carbonate | mg/L | 12 |
Hydroxide | mg/L | 0 |
Methyl Orange alkalinity | mg/L | 92 |
Phenolphthalein alkalinity | mg/L | 12 |
Acidity | mg/L | 12 |
Sulfate | mg/L | 2200 |
Chloride (Cl−) | mg/L | 25,000 |
Nitrite (-N) | mg/L | <0.005 |
Nitrate (-N) | mg/L | <0.05 |
Ammonium nitrogen | mgN/L | <0.01 |
Free carbon dioxide | mg/L | 0.1 |
Phosphorus | mg/L | <0.01 |
Total silica | mg/L | <0.01 |
Non-reactive silica | mg/L | <0.01 |
Sodium (Na) | mg/L | 19,200 |
Potassium (K) | mg/L | 940 |
Calcium (Ca) | mg/L | 416 |
Magnesium (Mg) | mg/L | 1498 |
Parameters | Unit | Results |
---|---|---|
Chemical Oxygen Demand | mgO2/L | 14 |
Biological Oxygen Demand | mgO2/L | 1.5 |
Oil & grease | mg/L | 4.5 |
Total Organic Carbon | mgC/L | 3.5 |
Parameters | Unit | Results |
---|---|---|
Total bacterial count (22 °C) | Count/mL | 2 |
Total bacterial count (37 °C) | Count/mL | 1 |
Total Coliform | MPN-index/100 mL | N.D |
Fecal Coliform | MPN-index/100 mL | N.D |
Fecal Streptococci | MPN-index/100 mL | N.D |
Blue Green Algae | Org/mL | N.D |
Total Algal Count | Org/mL | 40 |
Ions | Concentrations (mg/L) of Sea Water before FO System. | R%of Effluent after FO System. | ||
---|---|---|---|---|
Neat CTA | CTA/0.3%GO | TFC Modified Membranes | ||
Total Dissolved Solids | 42,643 | 83 | 84.2 | 98.5 |
Calcium (Ca) | 416 | 83 | 84 | 98 |
Magnesium (Mg) | 1498 | 83 | 84.2 | 98.8 |
Sodium (Na) | 19,200 | 90 | 93 | 99 |
Potassium (K) | 940 | 84 | 84.3 | 99 |
Carbonate | 12 | 83 | 84.2 | 99 |
Sulfate | 2200 | 83 | 84.4 | 98 |
Chloride (Cl−) | 25,000 | 83.3 | 85 | 99 |
Parameters | Unit | Feed | Permeate | The Egyptian Ministerial Decree No. 458/2007 |
---|---|---|---|---|
pH | - | 8.1 | 7.5 | 6.5–8.5 |
Total Dissolved Solids | mg/L | 42,643 | 640 | 1000 |
Suspended Solids | mg/L | 59 | 3 | - |
Total Hardness (CaCO3) | mg/L | 7200 | 110 | 500 |
Calcium Hardness (CaCO3) | mg/L | 1040 | 21 | 350 |
Magnesium Hardness (CaCO3) | mg/L | 6160 | 99 | 150 |
Total Alkalinity | mg/L | 104 | 92 | - |
Bicarbonate | mg/L | 92 | 92 | - |
Carbonate | mg/L | 12 | 0 | - |
Hydroxide | mg/L | 0 | 0 | - |
Sulfate | mg/L | 2200 | 40 | 250 |
Chloride (Cl−) | mg/L | 25,000 | 250 | 250 |
Nitrite (-N) | mg/L | <0.005 | <0.005 | 0.2 |
Nitrate (-N) | mg/L | <0.05 | 45 | |
Ammonium Nitrogen | mgN/L | <0.01 | <0.01 | - |
Free Carbon Dioxide | mg/L | 0.1 | N.D | - |
Phosphorus | mg/L | <0.01 | <0.01 | - |
Total Silica | mg/L | <0.01 | <0.01 | - |
Non reactive Silica | mg/L | <0.01 | <0.01 | - |
Sodium (Na) | mg/L | 19,200 | 186 | 200 |
Potassium (K) | mg/L | 940 | 7 | - |
Calcium (Ca) | mg/L | 416 | 9 | - |
Magnesium (Mg) | mg/L | 1498 | 18 | - |
Parameters | Unit | Feed | Permeate | The Egyptian Ministerial Decree No. 458/2007 |
---|---|---|---|---|
Chemical Oxygen Demand | mgO2/L | 14 | 2 | - |
Biological Oxygen Demand | mgO2/L | 1.5 | N.D | - |
Oil & grease/’ | mg/L | 4.5 | 0.12 | - |
Total Organic Carbon | mgC/L | 3.5 | 0.4 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamil, T.S.; Nasr, R.A.; Abbas, H.A.; Ragab, T.I.M.; Xabela, S.; Moutloali, R. Low-Cost High Performance Polyamide Thin Film Composite (Cellulose Triacetate/Graphene Oxide) Membranes for Forward Osmosis Desalination from Palm Fronds. Membranes 2022, 12, 6. https://doi.org/10.3390/membranes12010006
Jamil TS, Nasr RA, Abbas HA, Ragab TIM, Xabela S, Moutloali R. Low-Cost High Performance Polyamide Thin Film Composite (Cellulose Triacetate/Graphene Oxide) Membranes for Forward Osmosis Desalination from Palm Fronds. Membranes. 2022; 12(1):6. https://doi.org/10.3390/membranes12010006
Chicago/Turabian StyleJamil, Tarek S., Rabab A. Nasr, Hussien A. Abbas, Tamer I. M. Ragab, Sinethemba Xabela, and Richard Moutloali. 2022. "Low-Cost High Performance Polyamide Thin Film Composite (Cellulose Triacetate/Graphene Oxide) Membranes for Forward Osmosis Desalination from Palm Fronds" Membranes 12, no. 1: 6. https://doi.org/10.3390/membranes12010006
APA StyleJamil, T. S., Nasr, R. A., Abbas, H. A., Ragab, T. I. M., Xabela, S., & Moutloali, R. (2022). Low-Cost High Performance Polyamide Thin Film Composite (Cellulose Triacetate/Graphene Oxide) Membranes for Forward Osmosis Desalination from Palm Fronds. Membranes, 12(1), 6. https://doi.org/10.3390/membranes12010006