Removal of Emerging Contaminants from Wastewater Streams Using Membrane Bioreactors: A Review
Abstract
:1. Introduction
- The compound is associated with detrimental effects on public health.
- The positive and negative effects of the compounds are well established.
- These contaminants are generally not regulated.
1.1. Types of Emerging Contaminants (ECs)
- Pharmaceuticals
- Personal care products
- Pesticides
- Endocrine disrupting compounds (EDCs)
1.1.1. Pharmaceuticals
- Pharmaceutical ECs are widely varied in terms of molecular weight, structure, functionality, shape, and chemical nature.
- Pharmaceutical ECs are polar, lipophilic molecules with multiple ionizable groups, partially water soluble and the degree of ionization is highly influenced by the chemical nature of the surroundings.
- Pharmaceutical ECs can be persistent for a year (erythromycin, cyclophosphamide, naproxen, and sulfamethoxazole or more (clofibric acid, etc.) and can be a particular concern due to accumulation in humans.
- After administration, the pharmaceutical ECs can be modified chemically during absorption, bio-distribution, and are subjected to metabolic reactions and hence the modified materials may show entirely different chemical/biological effects.
1.1.2. Personal Care Products
1.1.3. Pesticides
1.1.4. Endocrine Disrupting Compounds
Xenoestrogens
Dichlorodiphenyltrichloroethane (DDT)
Polychlorinated Biphenyls (PCBs)
Polybrominated Diphenyl Ethers (PBDEs)
Phthalates
2. Occurrence of ECs in Wastewater Streams and Their Major Source
2.1. Industrial Sources
2.2. Municipal Sources
3. Removal of ECs by Membrane Bioreactors (MBRs)
- Intermittent relaxation in filtration can be used to reduce membrane fouling as during relaxation the materials deposited on the membrane surface can defuse back to the reactor.
- Backwashing of the membrane with distilled water can lead to back flow of the water through membrane. This could result in release of the fouling layer/pore blocking substance.
- Backwashing by air at a specified pressure on the permeate side can cause a build up and release of pressure within a very short period. Air usually does not go through the membrane. This can lead to the release of adsorbed foulants.
- Proprietary anti-fouling products (Nalco’s Membrane Performance Enhancer Technology) can be used to reduce fouling.
- Chemical cleaning can be used for dissolving/removal of the fouling layer.
- Chemically enhanced backwash can also be used for cleaning
3.1. Current MBRs
3.2. First-Generation MBRs
3.3. Hybrid Systems MBRs
3.4. Aerobic and Anaerobic MBRs
- Handles a large variation in organic loading;
- Changes to a non-working mode easily in case of low organic loading;
- Achieves a quick restart and response;
- Converts more than 90% biodegradable organics into biogas compared to aerobic systems;
- Tolerates significant quantities of fats and inorganics.
4. Removal Mechanisms for ECs
4.1. Biodegradation
- Lignin peroxidase (1,2-bis(3,4-dimethoxyphenyl) propane-1,3-diol;
- Manganese peroxidase (Mn (II): hydrogen-peroxide oxidoreductase;
- Laccases;
- Tyrosinases: o-diphenol;
- Horseradish peroxidase.
4.1.1. Lignin Peroxidase
4.1.2. Manganese Peroxidase
4.1.3. Laccases
4.1.4. Tyrosinases
4.1.5. Horseradish Peroxidase
4.2. Absorption onto the Sludge
4.3. Retention by the Membrane
- Physical sieving can be used for the retention of non-ionic hydrophilic ECs (e.g., paracetamol, caeine, methylparaben);
- Surface interaction and initial adsorption is the major phenomena during retention of hydrophobic non-ionic ECs (e.g., carbamazepine, estrone). It was also reported that, there is a reduction in ECs rejection after the absorption saturation;
- For ECs with charged surface (either positive: propranolol, metoprolol or negative: ibuprofen, naproxen, diclofenac), the retention depends on electrostatic interaction between ECs and membrane materials in combination with sieving.
5. Parameters Affecting the Performance of the MBRs
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Nomenclature
APs | Alkylphenols | |
BPA | Bisphenol A | |
BPS | Bisphenol S | |
CASR | Conventional activated sludge reactor | |
DDT | Dichlorodiphenyltrichloroethane | |
DEHPs | Bis(2-ethylhexyl) phthalate | |
DES | Diethylstilbestrol | |
ECs | Emerging contaminants | |
EDCs | Endocrine disrupting compounds | |
HRT | Hydraulic retention time | |
MLSS | Mixed liquor suspended solids | |
MWCO | Molecular weight cut-off | |
NF | Nanofiltration | |
PAHs | Polycyclic aromatic hydrocarbons | |
PBDEs | Polybrominated diphenyl ethers | |
PCBs | Polychlorinated biphenyls | |
PCDDs | Polychlorinated dibenzo-dioxins | |
PCFs | Polychlorinated furans | |
PFOAs | Perfluorooctanoic acids | |
PPCPs | Pharmaceuticals and personal care product | |
PTFE | Polytetrafluoroethylene | |
RO | Reverse osmosis | |
SRT | Sludge retention time | |
TN | Total nitrogen | |
TP | Total phosphorous | |
Equation Symbols | ||
Ce | The chemical oxygen demand in effluent | |
Ci | The chemical oxygen demand in influent | |
Cs | The chemical oxygen demand in supernatant | |
Rd | Biodegradation rate | |
Rm | Sludge growth rate | |
Xr | Volatile suspended solid concentration | |
Y | Sludge yield |
References
- Drewes, J.E.; Shore, L.S. Concerns about Pharmaceuticals in Water Reuse, Groundwater Recharge, and Animal Waste. In Pharmaceuticals and Care Products in the Environment: Scientific and Regulatory Issues; American Chemical Society: Washington, DC, USA, 2001; Volume 791, pp. 206–228. [Google Scholar]
- Noguera-Oviedo, K.; Aga, D.S. Lessons Learned from More than Two Decades of Research on Emerging Contaminants in the Environment. J. Hazard. Mater. 2016, 316, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.N.; Hai, F.I.; Kang, J.; Price, W.E.; Nghiem, L.D. Removal of Emerging Trace Organic Contaminants by MBR-Based Hybrid Treatment Processes. Int. Biodeterior. Biodegrad. 2013, 85, 474–482. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, X.; Li, M.; Dong, J.; Sun, C.; Chen, G. Removal of Pharmaceutical and Personal Care Products (PPCPs) from Municipalwaste Water with Integrated Membrane Systems, MBR-RO/NF. Int. J. Environ. Res. Public Health 2018, 15, 269. [Google Scholar] [CrossRef] [Green Version]
- Dolar, D.; Gros, M.; Rodriguez-Mozaz, S.; Moreno, J.; Comas, J.; Rodriguez-Roda, I.; Barceló, D. Removal of Emerging Contaminants from Municipal Wastewater with an Integrated Membrane System, MBR-RO. J. Hazard. Mater. 2012, 239–240, 64–69. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A Review on the Occurrence of Micropollutants in the Aquatic Environment and Their Fate and Removal during Wastewater Treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef]
- Rizzi, C.; Seveso, D.; Galli, P.; Villa, S. First Record of Emerging Contaminants in Sponges of an Inhabited Island in the Maldives. Mar. Pollut. Bull. 2020, 156, 111273. [Google Scholar] [CrossRef]
- Gros, M.; Petrovic, M.; Barceló, D. Analysis of Emerging Contaminants of Municipal and Industrial Origin. In The Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5, pp. 37–104. ISBN 9783540747932. [Google Scholar]
- Dhangar, K.; Kumar, M. Tricks and Tracks in Removal of Emerging Contaminants from the Wastewater through Hybrid Treatment Systems: A Review. Sci. Total Environ. 2020, 738, 140320. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Dodgen, L.K.; Conkle, J.L.; Gan, J. Plant Uptake of Pharmaceutical and Personal Care Products from Recycled Water and Biosolids: A Review. Sci. Total Environ. 2015, 536, 655–666. [Google Scholar] [CrossRef]
- Hurtado, C.; Domínguez, C.; Pérez-Babace, L.; Cañameras, N.; Comas, J.; Bayona, J.M. Estimate of Uptake and Translocation of Emerging Organic Contaminants from Irrigation Water Concentration in Lettuce Grown under Controlled Conditions. J. Hazard. Mater. 2016, 305, 139–148. [Google Scholar] [CrossRef]
- Christou, A.; Agüera, A.; Bayona, J.M.; Cytryn, E.; Fotopoulos, V.; Lambropoulou, D.; Manaia, C.M.; Michael, C.; Revitt, M.; Schröder, P.; et al. The Potential Implications of Reclaimed Wastewater Reuse for Irrigation on the Agricultural Environment: The Knowns and Unknowns of the Fate of Antibiotics and Antibiotic Resistant Bacteria and Resistance Genes—A Review. Water Res. 2017, 123, 448–467. [Google Scholar] [CrossRef] [Green Version]
- Gogoi, A.; Mazumder, P.; Tyagi, V.K.; Tushara Chaminda, G.G.; An, A.K.; Kumar, M. Occurrence and Fate of Emerging Contaminants in Water Environment: A Review. Groundw. Sustain. Dev. 2018, 6, 169–180. [Google Scholar] [CrossRef]
- Birch, G.F.; Drage, D.S.; Thompson, K.; Eaglesham, G.; Mueller, J.F. Emerging Contaminants (Pharmaceuticals, Personal Care Products, a Food Additive and Pesticides) in Waters of Sydney Estuary, Australia. Mar. Pollut. Bull. 2015, 97, 56–66. [Google Scholar] [CrossRef]
- Valdez-Carrillo, M.; Abrell, L.; Ramírez-Hernández, J.; Reyes-López, J.A.; Carreón-Diazconti, C. Pharmaceuticals as Emerging Contaminants in the Aquatic Environment of Latin America: A Review. Environ. Sci. Pollut. Res. 2020, 27, 44863–44891. [Google Scholar] [CrossRef]
- Arnold, K.E.; Boxall, A.B.A.; Brown, A.R.; Cuthbert, R.J.; Gaw, S.; Hutchinson, T.H.; Jobling, S.; Madden, J.C.; Metcalfe, C.D.; Naidoo, V.; et al. Assessing the Exposure Risk and Impacts of Pharmaceuticals in the Environment on Individuals and Ecosystems. Biol. Lett. 2013, 9, 20130492. [Google Scholar] [CrossRef] [Green Version]
- Penakalapati, G.; Swarthout, J.; Delahoy, M.J.; McAliley, L.; Wodnik, B.; Levy, K.; Freeman, M.C. Exposure to Animal Feces and Human Health: A Systematic Review and Proposed Research Priorities. Environ. Sci. Technol. 2017, 51, 11537–11552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oaks, J.L.; Gilbert, M.; Virani, M.Z.; Watson, R.T.; Meteyer, C.U.; Rideout, B.A.; Shivaprasad, H.L.; Ahmed, S.; Chaudhry, M.J.I.; Arshad, M.; et al. Diclofenac Residues as the Cause of Vulture Population Decline in Pakistan. Nature 2004, 427, 630–633. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, K.R.; Tilbury, K.L.; Myers, M.S. Assessment of the Piscine Micronuc Eus Test as an in Situ Bio Indicator of Chemica Contaminant Effects. Can. J. Fish. Aquat. Sci. 1990, 47, 2123–2136. [Google Scholar] [CrossRef]
- Vardali, S.C.; Manousi, N.; Barczak, M.; Giannakoudakis, D.A. Novel Approaches Utilizing Metal-Organic Framework Composites for the Extraction of Organic Compounds and Metal Traces from Fish and Seafood. Molecules 2020, 25, 513. [Google Scholar] [CrossRef]
- O’brien, T.F. Emergence, Spread, and Environmental Effectof Antimicrobial Resistance: How Useof an Antimicrobial Anywhere Can IncreaseResistance to Any Antimicrobial Anywhere Else. Clin. Infect. Dis. 2002, 34, S78–S84. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, J.L.; Hooda, P.S.; Barker, J.; Barton, S.; Swinden, J. Ecotoxic Pharmaceuticals, Personal Careproducts and Other Emerging Contaminants: Areview of Environmental, Receptor-Mediated, Developmental, and Epigenetic Toxicity Withdiscussion of Proposed Toxicity to Humans. Crit. Rev. Environ. Sci. Technol. 2016, 46, 336–381. [Google Scholar] [CrossRef] [Green Version]
- Montesdeoca-Esponda, S.; Checchini, L.; del Bubba, M.; Sosa-Ferrera, Z.; Santana-Rodriguez, J.J. Analytical Approaches for the Determination of Personal Care Products and Evaluation of Their Occurrence in Marine Organisms. Sci. Total Environ. 2018, 633, 405–425. [Google Scholar] [CrossRef]
- Jurado, A.; Gago-Ferrero, P.; Vàzquez-Suñé, E.; Carrera, J.; Pujades, E.; Díaz-Cruz, M.S.; Barceló, D. Urban Groundwater Contamination by Residues of UV Filters. J. Hazard. Mater. 2014, 271, 141–149. [Google Scholar] [CrossRef]
- Picó, Y.; Alvarez-Ruiz, R.; Alfarhan, A.H.; El-Sheikh, M.A.; Alobaid, S.M.; Barceló, D. Uptake and Accumulation of Emerging Contaminants in Soil and Plant Treated with Wastewater under Real-World Environmental Conditions in the Al Hayer Area (Saudi Arabia). Sci. Total Environ. 2019, 652, 562–572. [Google Scholar] [CrossRef] [PubMed]
- Petrović, M.; Gonzalez, S.; Barceló, D. Analysis and Removal of Emerging Contaminants in Wastewater and Drinking Water. TrAC—Trends Anal. Chem. 2003, 22, 685–696. [Google Scholar] [CrossRef] [Green Version]
- Vieira, W.T.; de Farias, M.B.; Spaolonzi, M.P.; da Silva, M.G.C.; Vieira, M.G.A. Endocrine-Disrupting Compounds: Occurrence, Detection Methods, Effects and Promising Treatment Pathways—A Critical Review. J. Environ. Chem. Eng. 2021, 9, 104558. [Google Scholar] [CrossRef]
- Schug, T.T.; Blawas, A.M.; Gray, K.; Heindel, J.J.; Lawler, C.P. Elucidating the Links between Endocrine Disruptors and Neurodevelopment. Endocrinology 2015, 156, 1941–1951. [Google Scholar] [CrossRef] [PubMed]
- Pontelli, R.C.N.; Nunes, A.A.; de Oliveira, S.V.W.B. Impact on Human Health of Endocrine Disruptors Present in Environmental Water Bodies: Is There an Association with Obesity? Cienc. Saude Colet. 2016, 21, 753–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabir, E.R.; Rahman, M.S.; Rahman, I. A Review on Endocrine Disruptors and Their Possible Impacts on Human Health. Environ. Toxicol. Pharmacol. 2015, 40, 241–258. [Google Scholar] [CrossRef] [PubMed]
- Rattan, S.; Zhou, C.; Chiang, C.; Mahalingam, S.; Brehm, E.; Flaws, J.A. Exposure to Endocrine Disruptors during Adulthood: Consequences for Female Fertility. J. Endocrinol. 2017, 233, 109–129. [Google Scholar] [CrossRef] [Green Version]
- Henriksen, L.S.; Mathiesen, B.K.; Assens, M.; Krause, M.; Skakkebæk, N.E.; Juul, A.; Andersson, A.M.; Hart, R.J.; Newnham, J.P.; Keelan, J.A.; et al. Use of Stored Serum in the Study of Time Trends and Geographical Differences in Exposure of Pregnant Women to Phthalates. Environ. Res. 2020, 184, 109231. [Google Scholar] [CrossRef]
- Lathers, C.M. Endocrine Disruptors: A New Scientific Role for Clinical Pharmacologists? Impact on Human Health, Wildlife, and the Environment. J. Clin. Pharmacol. 2002, 42, 7–23. [Google Scholar] [CrossRef]
- Lefèvre, P.L.C.; Berger, R.G.; Ernest, S.R.; Gaertner, D.W.; Rawn, D.F.K.; Wade, M.G.; Robaire, B.; Hales, B.F. Exposure of Female Rats to an Environmentally Relevant Mixture of Brominated Flame Retardants Targets the Ovary, Affecting Folliculogenesis and Steroidogenesis. Biol. Reprod. 2016, 94, 134452. [Google Scholar] [CrossRef] [Green Version]
- Vandenberg, L.N.; Colborn, T.; Hayes, T.B.; Heindel, J.J.; Jacobs, D.R.; Lee, D.H.; Shioda, T.; Soto, A.M.; vom Saal, F.S.; Welshons, W.v.; et al. Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses. Endocr. Rev. 2012, 33, 378–455. [Google Scholar] [CrossRef]
- Ying, G.G.; Kookana, R.S.; Kumar, A.; Mortimer, M. Occurrence and Implications of Estrogens and Xenoestrogens in Sewage Effluents and Receiving Waters from South East Queensland. Sci. Total Environ. 2009, 407, 5147–5155. [Google Scholar] [CrossRef]
- Wang, L.H.; Chen, L.R.; Chen, K.H. In Vitro and Vivo Identification, Metabolism and Action of Xenoestrogens: An Overview. Int. J. Mol. Sci. 2021, 22, 4013. [Google Scholar] [CrossRef]
- Liu, D.; Liu, J.; Guo, M.; Xu, H.; Zhang, S.; Shi, L.; Yao, C. Occurrence, Distribution, and Risk Assessment of Alkylphenols, Bisphenol A, and Tetrabromobisphenol A in Surface Water, Suspended Particulate Matter, and Sediment in Taihu Lake and Its Tributaries. Mar. Pollut. Bull. 2016, 112, 142–150. [Google Scholar] [CrossRef]
- Montenegro, I.P.F.M.; Mucha, A.P.; Tomasino, M.P.; Gomes, C.R.; Almeida, C.M.R. Alkylphenols and Chlorophenols Remediation in Vertical Flow Constructed Wetlands: Removal Efficiency and Microbial Community Response. Water 2021, 13, 715. [Google Scholar] [CrossRef]
- Lehmler, H.J.; Liu, B.; Gadogbe, M.; Bao, W. Exposure to Bisphenol A, Bisphenol F, and Bisphenol S in U.S. Adults and Children: The National Health and Nutrition Examination Survey 2013–2014. ACS Omega 2018, 3, 6523–6532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maggiolini, M.; Vivacqua, A.; Recchia, A.G.; Fasanella, G.; Gabriele, S.; Carpino, A.; Rago, V.; di Gioia, M.L.; Leggio, A.; Bonofiglio, D.; et al. The Food Contaminants Bisphenol A and 4-Nonylphenol Act AsAgonists for Estrogen Receptorain MCF7 Breast Cancer Cells. Endocrine 2003, 22, 275–284. [Google Scholar]
- Sifakis, S.; Androutsopoulos, V.P.; Tsatsakis, A.M.; Spandidos, D.A. Human Exposure to Endocrine Disrupting Chemicals: Effects on the Male and Female Reproductive Systems. Environ. Toxicol. Pharmacol. 2017, 51, 56–70. [Google Scholar] [CrossRef]
- Kumar, M.; Sarma, D.K.; Shubham, S.; Kumawat, M.; Verma, V.; Prakash, A.; Tiwari, R. Environmental Endocrine-Disrupting Chemical Exposure: Role in Non-Communicable Diseases. Front. Public Health 2020, 8, 549. [Google Scholar] [CrossRef]
- Mastorakos, G.; Karoutsou, E.I.; Mizamtsidi, M.; Creatsas, G. The Menace of Endocrine Disruptors on Thyroid Hormone Physiology and Their Impact on Intrauterine Development. Endocrine 2007, 31, 219–237. [Google Scholar] [CrossRef]
- Ying, G.G.; Kookana, R.S.; Dillon, P. Sorption and Degradation of Selected Five Endocrine Disrupting Chemicals in Aquifer Material. Water Res. 2003, 37, 3785–3791. [Google Scholar] [CrossRef]
- Petrovic, M.; Radjenovic, J.; Postigo, C.; Kuster, M.; Farre, M.; Alda, M.L.; Barceló, D. Emerging Contaminants in Waste Waters: Sources and Occurrence. In The Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5, pp. 1–35. [Google Scholar] [CrossRef]
- Lofrano, G.; Libralato, G.; Carotenuto, M.; Guida, M.; Inglese, M.; Siciliano, A.; Meriç, S. Emerging Concern from Short-Term Textile Leaching: A Preliminary Ecotoxicological Survey. Bull. Environ. Contam. Toxicol. 2016, 97, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Domingo, J.L. Health Risks of Dietary Exposure to Perfluorinated Compounds. Environ. Int. 2012, 40, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Desai, S.K.; Bera, S.; Mondal, D. Multifaceted Synthesis, Properties and Applications of Polyurethanes and Its Composites. Curr. Org. Chem. 2019, 23, 361–389. [Google Scholar] [CrossRef]
- Chaturvedi, M.; Mishra, A.; Sharma, K.; Sharma, G.; Saxena, G.; Singh, A.K. Emerging Contaminants in Wastewater: Sources of Contamination, Toxicity, and Removal Approaches. In Emerging Treatment Technologies for Waste Management; Springer Singapore: Singapore, 2021; pp. 103–132. [Google Scholar]
- Khalid, M.; Abdollahi, M. Environmental Distribution of Personal Care Products and Their Effects on Human Health. Iran. J. Pharm. Res. 2021, 20, 216–253. [Google Scholar] [CrossRef]
- Nawarkar, C.J.; Salkar, V.D. Solar Powered Electrocoagulation System for Municipal Wastewater Treatment. Fuel 2019, 237, 222–226. [Google Scholar] [CrossRef]
- Mohapatra, D.P.; Cledón, M.; Brar, S.K.; Surampalli, R.Y. Application of Wastewater and Biosolids in Soil: Occurrence and Fate of Emerging Contaminants. Water Air Soil Pollut. 2016, 227, 77. [Google Scholar] [CrossRef]
- Dal Magro Follmann, H.V.; Souza, E.; Aguiar Battistelli, A.; Rubens Lapolli, F.; Lobo-Recio, M.Á. Determination of the Optimal Electrocoagulation Operational Conditions for Pollutant Removal and Filterability Improvement during the Treatment of Municipal Wastewater. J. Water Process. Eng. 2020, 36, 101295. [Google Scholar] [CrossRef]
- Yang, L.; Yu, L.E.; Ray, M.B. Degradation of Paracetamol in Aqueous Solutions by TiO2 Photocatalysis. Water Res. 2008, 42, 3480–3488. [Google Scholar] [CrossRef] [PubMed]
- Witte, W. Medical Consequences of Antibiotic Use in Agriculture. Science 1998, 279, 996–997. [Google Scholar] [CrossRef] [PubMed]
- Daughton, C.G.; Ternes, T.A. Pharmaceuticals and Personal Care Products in the Environment: Agents of Subtle Change? Environ. Health Perspect. 1999, 107, 907–938. [Google Scholar] [CrossRef]
- Schwaiger, J.; Ferling, H.; Mallow, U.; Wintermayr, H.; Negele, R.D. Toxic Effects of the Non-Steroidal Anti-Inflammatory Drug Diclofenac. Part I: Histopathological Alterations and Bioaccumulation in Rainbow Trout. Aquat. Toxicol. 2004, 68, 141–150. [Google Scholar] [CrossRef]
- Rosal, R.; Rodea-Palomares, I.; Boltes, K.; Fernández-Piñas, F.; Leganés, F.; Gonzalo, S.; Petre, A. Ecotoxicity Assessment of Lipid Regulators in Water and Biologically Treated Wastewater Using Three Aquatic Organisms. Environ. Sci. Pollut. Res. 2010, 17, 135–144. [Google Scholar] [CrossRef]
- Li, W.; Nanaboina, V.; Zhou, Q.; Korshin, G.v. Effects of Fenton Treatment on the Properties of Effluent Organic Matter and Their Relationships with the Degradation of Pharmaceuticals and Personal Care Products. Water Res. 2012, 46, 403–412. [Google Scholar] [CrossRef]
- Li, H.; Helm, P.A.; Metcalfe, C.D. Sampling in the Great Lakes for Pharmaceuticals, Personal Care Products, and Endocrine-Disrupting Substances Using the Passive Polar Organic Chemical Integrative Sampler. Environ. Toxicol. Chem. 2010, 29, 751–762. [Google Scholar] [CrossRef]
- Routledge, E.J.; Parker, J.; Odum, J.; Ashby, J.; Sumpter, J.P. Some Alkyl Hydroxy Benzoate Preservatives (Parabens) Are Estrogenic. Toxicol. Appl. Pharm. 1998, 153, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Okumura, T.; Nishikawa, Y. Gas Chromatography—Mass Spectrometry Determination of Triclosans in Water, Sediment and Fish Samples via Methylation with Diazomethane. Anal. Chim. Acta 1996, 325, 175–184. [Google Scholar] [CrossRef]
- McMurry, L.; Oethinger, M.; Levy, S. Triclosan Targets Lipid Synthesis. Nature 1998, 394, 531–532. [Google Scholar] [CrossRef] [PubMed]
- Kamaz, M.; Wickramasinghe, S.R.; Eswaranandam, S.; Zhang, W.; Jones, S.M.; Watts, M.J.; Qian, X. Investigation into Micropollutant Removal from Wastewaters by a Membrane Bioreactor. Int. J. Environ. Res. Public Health 2019, 16, 1363. [Google Scholar] [CrossRef] [Green Version]
- Sohoni, P.; Sumpter, J.P. Several Environmental Oestrogens Are Also Anti-Androgens. J. Endocrinol. 1998, 158, 327–339. [Google Scholar] [CrossRef] [Green Version]
- Ji, J.; Kakade, A.; Yu, Z.; Khan, A.; Liu, P.; Li, X. Anaerobic Membrane Bioreactors for Treatment of Emerging Contaminants: A Review. J. Environ. Manag. 2020, 270, 110913. [Google Scholar] [CrossRef]
- Prado, M.; Borea, L.; Cesaro, A.; Liu, H.; Naddeo, V.; Belgiorno, V.; Ballesteros, F. Removal of Emerging Contaminant and Fouling Control in Membrane Bioreactors by Combined Ozonation and Sonolysis. Int. Biodeterior. Biodegrad. 2017, 119, 577–586. [Google Scholar] [CrossRef]
- Besha, A.T.; Gebreyohannes, A.Y.; Tufa, R.A.; Bekele, D.N.; Curcio, E.; Giorno, L. Removal of Emerging Micropollutants by Activated Sludge Process and Membrane Bioreactors and the Effects of Micropollutants on Membrane Fouling: A Review. J. Environ. Chem. Eng. 2017, 5, 2395–2414. [Google Scholar] [CrossRef]
- Crespo, J.G.; Velizarov, S.; Reis, M.A. Membrane Bioreactors for the Removal of Anionic Micropollutants from Drinking Water. Curr. Opin. Biotechnol. 2004, 15, 463–468. [Google Scholar] [CrossRef]
- Chen, J.; Huang, X.; Lee, D. Bisphenol A Removal by a Membrane Bioreactor. Process. Biochem. 2008, 43, 451–456. [Google Scholar] [CrossRef]
- Clara, M.; Strenn, B.; Gans, O.; Martinez, E.; Kreuzinger, N.; Kroiss, H. Removal of Selected Pharmaceuticals, Fragrances and Endocrine Disrupting Compounds in a Membrane Bioreactor and Conventional Wastewater Treatment Plants. Water Res. 2005, 39, 4797–4807. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Guerra, P.; Shah, A.; Parsa, M.; Alaee, M.; Smyth, S.A. Removal of Pharmaceuticals and Personal Care Products in a Membrane Bioreactor Wastewater Treatment Plant. Water Sci. Technol. 2014, 69, 2221–2229. [Google Scholar] [CrossRef] [PubMed]
- Chang, I.-S.; Judd, S.J. Air Sparging of a Submerged MBR for Municipal Wastewater Treatment. Process Biochem. 2002, 37, 915–920. [Google Scholar] [CrossRef]
- Drews, A.; Kraume, M. Process Improvement by Application of Membrane Bioreactors. Chem. Eng. Res. Des. 2005, 83, 276–284. [Google Scholar] [CrossRef]
- Cirja, M.; Ivashechkin, P.; Schäffer, A.; Corvini, P.F.X. Factors Affecting the Removal of Organic Micropollutants from Wastewater in Conventional Treatment Plants (CTP) and Membrane Bioreactors (MBR). Rev. Environ. Sci. Biotechnol. 2008, 7, 61–78. [Google Scholar] [CrossRef]
- Su, F.; Liang, Y.; Liu, G.; Mota Filho, C.R.; Hu, C.; Qu, J. Enhancement of Anti-Fouling and Contaminant Removal in an Electro-Membrane Bioreactor: Significance of Electrocoagulation and Electric Field. Sep. Purif. Technol. 2020, 248, 117077. [Google Scholar] [CrossRef]
- Goswami, L.; Vinoth Kumar, R.; Borah, S.N.; Arul Manikandan, N.; Pakshirajan, K.; Pugazhenthi, G. Membrane Bioreactor and Integrated Membrane Bioreactor Systems for Micropollutant Removal from Wastewater: A Review. J. Water Process Eng. 2018, 26, 314–328. [Google Scholar] [CrossRef]
- Wang, L.K.; Menon, R. Treatment of Industrial Effluents, Municipal Wastes, and Potable Water by Membrane Bioreactors. In Membrane and Desalination Technologies; Humana Press: Totowa, NJ, USA, 2011; pp. 201–236. [Google Scholar]
- Visvanathan, C.; Abeynayaka, A. Developments and Future Potentials of Anaerobic Membrane Bioreactors (AnMBRs). Membr. Water Treat. 2012, 3, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Hosseinzadeh, A.; Zhou, J.L.; Navidpour, A.H.; Altaee, A. Progress in Osmotic Membrane Bioreactors Research: Contaminant Removal, Microbial Community and Bioenergy Production in Wastewater. Bioresour. Technol. 2021, 330, 124998. [Google Scholar] [CrossRef]
- Nilusha, R.T.; Yu, D.; Zhang, J.; Abeynayaka, A.; Wei, Y. Insights into the Ambient Temperature Startup of an Anaerobic Ceramic Membrane Bioreactor with Thermally Hydrolyzed Inoculum for Domestic Wastewater Treatment. Case Stud. Chem. Environ. Eng. 2021, 4, 100122. [Google Scholar] [CrossRef]
- Keerthi; Suganthi, V.; Mahalakshmi, M.; Balasubramanian, N. Development of Hybrid Membrane Bioreactor for Tannery Effluent Treatment. Desalination 2013, 309, 231–236. [Google Scholar] [CrossRef]
- Holloway, R.W.; Regnery, J.; Nghiem, L.D.; Cath, T.Y. Removal of Trace Organic Chemicals and Performance of a Novel Hybrid Ultrafiltration-Osmotic Membrane Bioreactor. Environ. Sci. Technol. 2014, 48, 10859–10868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, K.; Liu, Q.; Fang, F.; Wu, X.; Xin, J.; Sun, S.; Wei, Y.; Ruan, R.; Chen, P.; Wang, Y.; et al. Influence of Nanofiltration Concentrate Recirculation on Performance and Economic Feasibility of a Pilot-Scale Membrane Bioreactor-Nanofiltration Hybrid Process for Textile Wastewater Treatment with High Water Recovery. J. Clean. Prod. 2020, 261, 121067. [Google Scholar] [CrossRef]
- Giwa, A.; Hasan, S.W. Numerical Modeling of an Electrically Enhanced Membrane Bioreactor (MBER) Treating Medium-Strength Wastewater. J. Environ. Manag. 2015, 164, 1–9. [Google Scholar] [CrossRef]
- Chon, K.; KyongShon, H.; Cho, J. Membrane Bioreactor and Nanofiltration Hybrid System for Reclamation of Municipal Wastewater: Removal of Nutrients, Organic Matter and Micropollutants. Bioresour. Technol. 2012, 122, 181–188. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Ngo, H.H.; Yoon, Y.S. A New Hybrid Treatment System of Bioreactors and Electrocoagulation for Superior Removal of Organic and Nutrient Pollutants from Municipal Wastewater. Bioresour. Technol. 2014, 153, 116–125. [Google Scholar] [CrossRef]
- Vijayakumar, V.; Keerthi; Balasubramanian, N. Heavy Metal Removal by Electrocoagulation Integrated Membrane Bioreactor. Clean—Soil Air Water 2015, 43, 532–537. [Google Scholar] [CrossRef]
- Arcanjo, G.S.; Ricci, B.C.; dos Santos, C.R.; Costa, F.C.R.; Silva, U.C.M.; Mounteer, A.H.; Koch, K.; da Silva, P.R.; Santos, V.L.; Amaral, M.C.S. Effective Removal of Pharmaceutical Compounds and Estrogenic Activity by a Hybrid Anaerobic Osmotic Membrane Bioreactor—Membrane Distillation System Treating Municipal Sewage. Chem. Eng. J. 2021, 416, 129151. [Google Scholar] [CrossRef]
- Ardakani, M.N.; Badalians Gholikandi, G. Microbial Fuel Cells (MFCs) in Integration with Anaerobic Treatment Processes (AnTPs) and Membrane Bioreactors (MBRs) for Simultaneous Efficient Wastewater/Sludge Treatment and Energy Recovery -A State-of-the-Art Review. Biomass Bioenergy 2020, 141, 105726. [Google Scholar] [CrossRef]
- Abuabdou, S.M.A.; Ahmad, W.; Aun, N.C.; Bashir, M.J.K. A Review of Anaerobic Membrane Bioreactors (AnMBR) for the Treatment of Highly Contaminated Landfill Leachate and Biogas Production: Effectiveness, Limitations and Future Perspectives. J. Clean. Prod. 2020, 255, 120215. [Google Scholar] [CrossRef]
- Sawaya, C.B.; Harb, M. Considering the Prospect of Utilizing Anaerobic Membrane Biofouling Layers Advantageously for the Removal of Emerging Contaminants. Front. Chem. Eng. 2021, 3, 642280. [Google Scholar] [CrossRef]
- Harb, M.; Wei, C.H.; Wang, N.; Amy, G.; Hong, P.Y. Organic Micropollutants in Aerobic and Anaerobic Membrane Bioreactors: Changes in Microbial Communities and Gene Expression. Bioresour. Technol. 2016, 218, 882–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pathak, N.; Tran, V.H.; Merenda, A.; Johir, M.A.H.; Phuntsho, S.; Shon, H. Removal of Organic Micro-Pollutants by Conventional Membrane Bioreactors and High-Retention Membrane Bioreactors. Appl. Sci. 2020, 10, 2969. [Google Scholar] [CrossRef]
- Kamaz, M.; Jones, S.M.; Qian, X.; Watts, M.J.; Zhang, W.; Wickramasinghe, S.R. Atrazine Removal from Municipal Wastewater Using a Membrane Bioreactor. Int. J. Environ. Res. Public Health 2020, 17, 2567. [Google Scholar] [CrossRef]
- Abargues, M.R.; Robles, A.; Bouzas, A.; Seco, A. Micropollutants Removal in an Anaerobic Membrane Bioreactor and in an Aerobic Conventional Treatment Plant. Water Sci. Technol. 2012, 65, 2242–2250. [Google Scholar] [CrossRef]
- Muz, M.; Ak, S.; Komesli, O.T.; Gokcay, C.F. Removal of Endocrine Disrupting Compounds in a Lab-Scale Anaerobic/Aerobic Sequencing Batch Reactor Unit. Environ. Technol. 2014, 35, 1055–1063. [Google Scholar] [CrossRef]
- Urase, T.; Kagawa, C.; Kikuta, T. Factors Affecting Removal of Pharmaceutical Substances and Estrogens in Membrane Separation Bioreactors. Desalination 2005, 178, 107–113. [Google Scholar] [CrossRef]
- Lesjean, B.; Gnirss, R.; Buisson, H.; Keller, S.; Tazi-Pain, A.; Luck, F. Outcomes of a 2-Year Investigation on Enhanced Biological Nutrients Removal and Trace Organics Elimination in Membrane Bioreactor (MBR). Water Sci Technol 2005, 52, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Carballa, M.; Omil, F.; Lema, J.M. Calculation Methods to Perform Mass Balances of Micropollutants in Sewage Treatment Plants. Application to Pharmaceutical and Personal Care Products (PPCPs). Environ. Sci. Technol. 2007, 41, 884–890. [Google Scholar] [CrossRef]
- Hai, F.I.; Li, X.; Price, W.E.; Nghiem, L.D. Removal of Carbamazepine and Sulfamethoxazole by MBR under Anoxic and Aerobic Conditions. Bioresour. Technol. 2011, 102, 10386–10390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, W.; Wu, C.; Xiao, K.; Huang, X.; Zhou, H.; Tsuno, H.; Tanaka, H. Elimination and Fate of Selected Micro-Organic Pollutants in a Full-Scale Anaerobic/Anoxic/Aerobic Process Combined with Membrane Bioreactor for Municipal Wastewater Reclamation. Water Res. 2010, 44, 5999–6010. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Contreras, C.; Matamoros, V.; Ruiz, I.; Soto, M.; Bayona, J.M. Evaluation of PPCPs Removal in a Combined Anaerobic Digester-Constructed Wetland Pilot Plant Treating Urban Wastewater. Chemosphere 2011, 84, 1200–1207. [Google Scholar] [CrossRef] [PubMed]
- Wintgens, T.; Gallenkemper, M.; Melin, T. Occurrence and Removal of Endocrine Disrupters in Landfill Leachate Treatment Plants. Water Sci. Technol. 2003, 48, 127–134. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Hai, F.I.; Kang, J.; Price, W.E.; Nghiem, L.D. Coupling Granular Activated Carbon Adsorption with Membrane Bioreactor Treatment for Trace Organic Contaminant Removal: Breakthrough Behaviour of Persistent and Hydrophilic Compounds. J. Environ. Manag. 2013, 119, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Tambosi, J.L.; de Sena, R.F.; Favier, M.; Gebhardt, W.; José, H.J.; Schröder, H.F.; de Fatima Peralta Muniz Moreira, R. Removal of Pharmaceutical Compounds in Membrane Bioreactors (MBR) Applying Submerged Membranes. Desalination 2010, 261, 148–156. [Google Scholar] [CrossRef]
- Le, T.H.; Ng, C.; Tran, N.H.; Chen, H.; Gin, K.Y.H. Removal of Antibiotic Residues, Antibiotic Resistant Bacteria and Antibiotic Resistance Genes in Municipal Wastewater by Membrane Bioreactor Systems. Water Res. 2018, 145, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; McDonald, J.; Price, W.E.; Khan, S.J.; Hai, F.I.; Ngo, H.H.; Guo, W.; Nghiem, L.D. Effects of Salinity Build-up on the Performance of an Anaerobic Membrane Bioreactor Regarding Basic Water Quality Parameters and Removal of Trace Organic Contaminants. Bioresour. Technol. 2016, 216, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.V.; Hai, F.I.; Kang, J.; Dam, H.K.; Zhang, R.; Price, W.E.; Broeckmann, A.; Nghiem, L.D. Simultaneous Nitrification/Denitrification and Trace Organic Contaminant (TrOC) Removal by an Anoxic-Aerobic Membrane Bioreactor (MBR). Bioresour. Technol. 2014, 165, 96–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hai, F.I.; Tessmer, K.; Nguyen, L.N.; Kang, J.; Price, W.E.; Nghiem, L.D. Removal of Micropollutants by Membrane Bioreactor under Temperature Variation. J. Membr. Sci. 2011, 383, 144–151. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Yaohari, H.; de Araujo, C.; Sze, C.C.; Stuckey, D.C. Removal of Selected Pharmaceuticals in an Anaerobic Membrane Bioreactor (AnMBR) with/without Powdered Activated Carbon (PAC). Chem. Eng. J. 2017, 321, 335–345. [Google Scholar] [CrossRef]
- Trinh, T.; van den Akker, B.; Stuetz, R.M.; Coleman, H.M.; Le-Clech, P.; Khan, S.J. Removal of Trace Organic Chemical Contaminants by a Membrane Bioreactor. Water Sci. Technol. 2012, 66, 1856–1863. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Adeel, M.; Rasheed, T.; Zhao, Y.; Iqbal, H.M.N. Emerging Contaminants of High Concern and Their Enzyme-Assisted Biodegradation—A Review. Environ. Int. 2019, 124, 336–353. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.D.; Kimura, S.Y. Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem. 2020, 92, 473–505. [Google Scholar] [CrossRef] [PubMed]
- Rout, P.R.; Zhang, T.C.; Bhunia, P.; Surampalli, R.Y. Treatment Technologies for Emerging Contaminants in Wastewater Treatment Plants: A Review. Sci. Total Environ. 2021, 753, 141990. [Google Scholar] [CrossRef]
- Ning, B.; Graham, N.; Zhang, Y.; Nakonechny, M.; El-Din, M.G. Degradation of Endocrine Disrupting Chemicals by Ozone/AOPs. Ozone Sci. Eng. 2007, 29, 153–176. [Google Scholar] [CrossRef]
- Kurade, M.B.; Awasthi, M.K.; Govindwar, S.P.; Jeon, B.-H.; Kalyani, D. Microbiotechnology Tools for Wastewater Cleanup and Organic Solids Reduction. Front. Microbiol. 2021, 12, 279. [Google Scholar] [CrossRef]
- Muñoz, R.; Arriaga, S.; Hernández, S.; Guieysse, B.; Revah, S. Enhanced Hexane Biodegradation in a Two Phase Partitioning Bioreactor: Overcoming Pollutant Transport Limitations. Process Biochem. 2006, 41, 1614–1619. [Google Scholar] [CrossRef]
- Singh, A.K.; Bilal, M.; Iqbal, H.M.N.; Raj, A. Lignin Peroxidase in Focus for Catalytic Elimination of Contaminants—A Critical Review on Recent Progress and Perspectives. Int. J. Biol. Macromol. 2021, 177, 58–82. [Google Scholar] [CrossRef]
- Shraddha; Shekher, R.; Sehgal, S.; Kamthania, M.; Kumar, A. Laccase: Microbial Sources, Production, Purification, and Potential Biotechnological Applications. Enzym. Res. 2011, 2011, 217861. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Chinn, M.S.; Sharma-Shivappa, R.R. Microbial Pretreatment of Cotton Stalks by Solid State Cultivation of Phanerochaete Chrysosporium. Bioresour. Technol. 2008, 99, 6556–6564. [Google Scholar] [CrossRef] [PubMed]
- Radi, A.-E. Recent Updates of Chemically Modified Electrodes in Pharmaceutical Analysis. Comb. Chem. High Throughput Screen. 2010, 13, 728–752. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.F.; da Luz, J.M.R.; Kasuya, M.C.M.; Ladeira, L.O.; Correa Junior, A. Enzymatic Extract Containing Lignin Peroxidase Immobilized on Carbon Nanotubes: Potential Biocatalyst in Dye Decolourization. Saudi J. Biol. Sci. 2018, 25, 651–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ran, Y.; Zhifeiche; Chen, W. Co-Immobilized Lignin Peroxidase and Manganese Peroxidase from Coriolus Versicolor Capable of Decolorizing Molasses Waste Water. Appl. Mech. Mater. 2012, 138–139, 1067–1071. [Google Scholar] [CrossRef]
- Sofia, P.; Asgher, M.; Shahid, M.; Randhawa, M.A. Chitosan beads immobilized schizophyllum commune ibl-06 lignin peroxidase with novel thermo stability, catalytic and dye removal properties. J. Anim. Plant Sci. 2016, 26, 1451–1463. [Google Scholar]
- Shaheen, R.; Asgher, M.; Hussain, F.; Bhatti, H.N. Immobilized Lignin Peroxidase from Ganoderma Lucidum IBL-05 with Improved Dye Decolorization and Cytotoxicity Reduction Properties. Int. J. Biol. Macromol. 2017, 103, 57–64. [Google Scholar] [CrossRef]
- Hu, Z.; Xu, L.; Wen, X. Mesoporous Silicas Synthesis and Application for Lignin Peroxidase Immobilization by Covalent Binding Method. J. Environ. Sci. 2013, 25, 181–187. [Google Scholar] [CrossRef]
- Xu, L.-Q.; Wen, X.-H.; Ding, H.-J. Immobilization of Lignin Peroxidase on Spherical Mesoporous Material. Huan Jing Ke Xue Huanjing Kexue 2010, 31, 2493–2499. [Google Scholar]
- Qiu, H.; Li, Y.; Ji, G.; Zhou, G.; Huang, X.; Qu, Y.; Gao, P. Immobilization of Lignin Peroxidase on Nanoporous Gold: Enzymatic Properties and in Situ Release of H2O2 by Co-Immobilized Glucose Oxidase. Bioresour. Technol. 2009, 100, 3837–3842. [Google Scholar] [CrossRef]
- Bilal, M.; Asgher, M. Enhanced Catalytic Potentiality of Ganoderma Lucidum IBL-05 Manganese Peroxidase Immobilized on Sol-Gel Matrix. J. Mol. Catal. B: Enzym. 2016, 128, 82–93. [Google Scholar] [CrossRef]
- Bilal, M.; Asgher, M.; Shahid, M.; Bhatti, H.N. Characteristic Features and Dye Degrading Capability of Agar-Agar Gel Immobilized Manganese Peroxidase. Int. J. Biol. Macromol. 2016, 86, 728–740. [Google Scholar] [CrossRef]
- Bilal, M.; Asgher, M.; Hu, H.; Zhang, X. Kinetic Characterization, Thermo-Stability and Reactive Red 195A Dye Detoxifying Properties of Manganese Peroxidase-Coupled Gelatin Hydrogel. Water Sci. Technol. 2016, 74, 1809–1820. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Asgher, M. Dye Decolorization and Detoxification Potential of Ca-Alginate Beads Immobilized Manganese Peroxidase. BMC Biotechnol. 2015, 15, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilal, M.; Asgher, M.; Iqbal, M.; Hu, H.; Zhang, X. Chitosan Beads Immobilized Manganese Peroxidase Catalytic Potential for Detoxification and Decolorization of Textile Effluent. Int. J. Biol. Macromol. 2016, 89, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, F.; Pizzul, L.; Castillo, M.; González, M.E.; Cea, M.; Gianfreda, L.; Diez, M.C. Degradation of Polycyclic Aromatic Hydrocarbons by Free and Nanoclay-Immobilized Manganese Peroxidase from Anthracophyllum Discolor. Chemosphere 2010, 80, 271–278. [Google Scholar] [CrossRef]
- Bronikowski, A.; Hagedoorn, P.L.; Koschorreck, K.; Urlacher, V.B. Expression of a New Laccase from Moniliophthora Roreri at High Levels in Pichia Pastoris and Its Potential Application in Micropollutant Degradation. AMB Express 2017, 7, 73. [Google Scholar] [CrossRef] [Green Version]
- Cha, J.Y.; Kim, T.W.; Choi, J.H.; Jang, K.S.; Khaleda, L.; Kim, W.Y.; Jeon, J.R. Fungal Laccase-Catalyzed Oxidation of Naturally Occurring Phenols for Enhanced Germination and Salt Tolerance of Arabidopsis Thaliana: A Green Route for Synthesizing Humic-like Fertilizers. J. Agric. Food Chem. 2017, 65, 1167–1177. [Google Scholar] [CrossRef] [PubMed]
- Brugnari, T.; Pereira, M.G.; Bubna, G.A.; de Freitas, E.N.; Contato, A.G.; Corrêa, R.C.G.; Castoldi, R.; de Souza, C.G.M.; de Moraes, M.D.L.T.; Bracht, A.; et al. A Highly Reusable MANAE-Agarose-Immobilized Pleurotus Ostreatus Laccase for Degradation of Bisphenol A. Sci. Total Environ. 2018, 634, 1346–1351. [Google Scholar] [CrossRef] [PubMed]
- Bayramoglu, G.; Karagoz, B.; Arica, M.Y. Cyclic-Carbonate Functionalized Polymer Brushes on Polymeric Microspheres: Immobilized Laccase for Degradation of Endocrine Disturbing Compounds. J. Ind. Eng. Chem. 2018, 60, 407–417. [Google Scholar] [CrossRef]
- Antecka, K.; Zdarta, J.; Siwińska-Stefańska, K.; Sztuk, G.; Jankowska, E.; Oleskowicz-Popiel, P.; Jesionowski, T. Synergistic Degradation of Dye Wastewaters Using Binary or Ternary Oxide Systems with Immobilized Laccase. Catalysts 2018, 8, 402. [Google Scholar] [CrossRef] [Green Version]
- Ba, S.; Haroune, L.; Soumano, L.; Bellenger, J.P.; Jones, J.P.; Cabana, H. A Hybrid Bioreactor Based on Insolubilized Tyrosinase and Laccase Catalysis and Microfiltration Membrane Remove Pharmaceuticals from Wastewater. Chemosphere 2018, 201, 749–755. [Google Scholar] [CrossRef]
- Faccio, G.; Kruus, K.; Saloheimo, M.; Thöny-Meyer, L. Bacterial Tyrosinases and Their Applications. Process Biochem. 2012, 47, 1749–1760. [Google Scholar] [CrossRef]
- Land, E.J.; Ramsden, C.A.; Riley, P.A. Tyrosinase Autoactivation and the Chemistry of Ortho-Quinone Amines. Acc. Chem. Res. 2003, 36, 300–308. [Google Scholar] [CrossRef]
- Selinheimo, E.; NiEidhin, D.; Steffensen, C.; Nielsen, J.; Lomascolo, A.; Halaouli, S.; Record, E.; O’Beirne, D.; Buchert, J.; Kruus, K. Comparison of the Characteristics of Fungal and Plant Tyrosinases. J. Biotechnol. 2007, 130, 471–480. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, W.; Zhao, L.F.; Liu, H. Degradation of Phenol with Horseradish Peroxidase Immobilized on ZnO Nanocrystals under Combined Irradiation of Microwaves and Ultrasound. Desalination Water Treat. 2016, 57, 24406–24416. [Google Scholar] [CrossRef]
- Sun, H.; Jin, X.; Jiang, F.; Zhang, R. Immobilization of Horseradish Peroxidase on ZnO Nanowires/Macroporous SiO2 Composites for the Complete Decolorization of Anthraquinone Dyes. Biotechnol. Appl. Biochem. 2018, 65, 220–229. [Google Scholar] [CrossRef]
- Šekuljica, N.; Prlainović, N.; Jovanović, J.R.; Stefanović, A.B.; Djokić, V.R.; Mijin, D.; Knezevic-Jugovic, Z.D. Immobilization of Horseradish Peroxidase onto Kaolin. Bioprocess Biosyst. Eng. 2016, 39, 461–472. [Google Scholar] [CrossRef]
- Lu, Y.M.; Yang, Q.Y.; Wang, L.M.; Zhang, M.Z.; Guo, W.Q.; Cai, Z.N.; Wang, D.D.; Yang, W.W.; Chen, Y. Enhanced Activity of Immobilized Horseradish Peroxidase by Carbon Nanospheres for Phenols Removal. Clean—Soil Air Water 2017, 45, 1600077. [Google Scholar] [CrossRef]
- Chang, Q.; Jiang, G.; Tang, H.; Li, N.; Huang, J.; Wu, L. Enzymatic Removal of Chlorophenols Using Horseradish Peroxidase Immobilized on Superparamagnetic Fe3O4/Graphene Oxide Nanocomposite. Chin. J. Catal. 2015, 36, 961–968. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M.N.; Hu, H.; Wang, W.; Zhang, X. Enhanced Bio-Catalytic Performance and Dye Degradation Potential of Chitosan-Encapsulated Horseradish Peroxidase in a Packed Bed Reactor System. Sci. Total Environ. 2017, 575, 1352–1360. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Cai, X. Immobilization of Horseradish Peroxidase on Fe3O4/Nanotubes Composites for Biocatalysis-Degradation of Phenol. Compos. Interfaces 2019, 26, 379–396. [Google Scholar] [CrossRef]
- Zhang, F.; Zheng, B.; Zhang, J.; Huang, X.; Liu, H.; Guo, S.; Zhang, J. Horseradish Peroxidase Immobilized on Graphene Oxide: Physical Properties and Applications in Phenolic Compound Removal. J. Phys. Chem. C 2010, 114, 8469–8473. [Google Scholar] [CrossRef]
- Yeo, B.J.L.; Goh, S.; Zhang, J.; Livingston, A.G.; Fane, A.G. Novel MBRs for the Removal of Organic Priority Pollutants from Industrial Wastewaters: A Review. J. Chem. Technol. Biotechnol. 2015, 90, 1949–1967. [Google Scholar] [CrossRef]
- Kamaz, M.; Rocha, P.; Sengupta, A.; Qian, X.; Wickramasinghe, R.S. Efficient Removal of Chemically Toxic Dyes Using Microorganism from Activated Sludge: Understanding Sorption Mechanism, Kinetics, and Associated Thermodynamics. Sep. Sci. Technol. 2018, 53, 1760–1776. [Google Scholar] [CrossRef]
- Streit, A.F.M.; Collazzo, G.C.; Druzian, S.P.; Verdi, R.S.; Foletto, E.L.; Oliveira, L.F.S.; Dotto, G.L. Adsorption of Ibuprofen, Ketoprofen, and Paracetamol onto Activated Carbon Prepared from Effluent Treatment Plant Sludge of the Beverage Industry. Chemosphere 2021, 262, 128322. [Google Scholar] [CrossRef]
- Coimbra, R.N.; Calisto, V.; Ferreira, C.I.A.; Esteves, V.I.; Otero, M. Removal of Pharmaceuticals from Municipal Wastewater by Adsorption onto Pyrolyzed Pulp Mill Sludge. Arab. J. Chem. 2019, 12, 3611–3620. [Google Scholar] [CrossRef] [Green Version]
- Kent, J.; Tay, J.H. Treatment of 17α-ethinylestradiol, 4-nonylphenol, and Carbamazepine in Wastewater Using an Aerobic Granular Sludge Sequencing Batch Reactor. Sci. Total Environ. 2019, 652, 1270–1278. [Google Scholar] [CrossRef] [PubMed]
- Chiavola, A.; Tedesco, P.; Boni, M.R. Fate of Some Endocrine Disruptors in Batch Experiments Using Activated and Inactivated Sludge. Water Air Soil Pollut. 2016, 227, 424. [Google Scholar] [CrossRef]
- Singh, V.; Srivastava, V.C. Self-Engineered Iron Oxide Nanoparticle Incorporated on Mesoporous Biochar Derived from Textile Mill Sludge for the Removal of an Emerging Pharmaceutical Pollutant. Environ. Pollut. 2020, 259, 113822. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, B.; Muruganandham, M.; Suri, R.P.S. Development of High Efficiency Silica Coated β-Cyclodextrin Polymeric Adsorbent for the Removal of Emerging Contaminants of Concern from Water. J. Hazard. Mater. 2014, 273, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Román, S.; Nabais, J.M.V.; Ledesma, B.; Laginhas, C.; Titirici, M.M. Surface Interactions during the Removal of Emerging Contaminants by Hydrochar-Based Adsorbents. Molecules 2020, 25, 2264. [Google Scholar] [CrossRef] [PubMed]
- Leite, A.J.B.; Sophia, A.C.; Thue, P.S.; dos Reis, G.S.; Dias, S.L.P.; Lima, E.C.; Vaghetti, J.C.P.; Pavan, F.A.; de Alencar, W.S. Activated Carbon from Avocado Seeds for the Removal of Phenolic Compounds from Aqueous Solutions. Desalination Water Treat. 2017, 71, 168–181. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.-Y.A.; Yang, H.; Hsu, F.-K. Zr-Metal Organic Framework and Derivatives for Adsorptive and Photocatalytic Removal of Acid Dyes. Water Environ. Res. 2018, 90, 144–154. [Google Scholar] [CrossRef]
- Li, C.; Feng, G.; Song, C.; Zhong, G.; Tao, P.; Wang, T.; Shao, M. Improved Oil Removal Ability by the Integrated Electrocoagulation (EC)-Carbon Membrane Coupling with Electrochemical Anodic Oxidation (CM/EAO) System. Colloids Surf. A Physicochem. Eng. Asp. 2018, 559, 305–313. [Google Scholar] [CrossRef]
- Schäfer, A.I.; Nghiem, L.D.; Meier, A.; Neale, P.A. Impact of Organic Matrix Compounds on the Retention of Steroid Hormone Estrone by a “loose” Nanofiltration Membrane. Sep. Purif. Technol. 2010, 73, 179–187. [Google Scholar] [CrossRef]
- Torii, S.; Hashimoto, T.; Do, A.T.; Furumai, H.; Katayama, H. Impact of Repeated Pressurization on Virus Removal by Reverse Osmosis Membranes for Household Water Treatment. Environ. Sci. Water Res. Technol. 2019, 5, 910–919. [Google Scholar] [CrossRef]
- Naidu, L.D.; Saravanan, S.; Chidambaram, M.; Goel, M.; Das, A.; Babu, J.S.C. Nanofiltration in Transforming Surface Water into Healthy Water: Comparison with Reverse Osmosis. J. Chem. 2015, 2015, 326869. [Google Scholar] [CrossRef]
- Cséfalvay, E.; Imre, P.M.; Mizsey, P. Applicability of Nanofiltration and Reverse Osmosis for the Treatment of Wastewater of Different Origin. Cent. Eur. J. Chem. 2008, 6, 277–283. [Google Scholar] [CrossRef]
- Zazouli, M.A.; Kalankesh, L.R. Removal of Precursors and Disinfection Byproducts (DBPs) by Membrane Filtration from Water; a Review. J. Environ. Health Sci. Eng. 2017, 15, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barceló, D.; Fabian, P.; Fiedler, H.; Frank, H.; Giesy, J.P.; Hites, R.A.; Khalil, M.A.K.; Mackay, D.; Neilson, A.H.; Paasivirta, J.; et al. The Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2008; p. 5. [Google Scholar] [CrossRef]
- Arévalo, J.; Ruiz, L.M.; Pérez, J.; Gómez, M.A. Effect of Temperature on Membrane Bioreactor Performance Working with High Hydraulic and Sludge Retention Time. Biochem. Eng. J. 2014, 88, 42–49. [Google Scholar] [CrossRef]
- Bour, A.; Mouchet, F.; Silvestre, J.; Gauthier, L.; Pinelli, E. Environmentally Relevant Approaches to Assess Nanoparticles Ecotoxicity: A Review. J. Hazard. Mater. 2015, 283, 764–777. [Google Scholar] [CrossRef] [PubMed]
- Vance, M.E.; Kuiken, T.; Vejerano, E.P.; McGinnis, S.P.; Hochella, M.F.; Hull, D.R. Nanotechnology in the Real World: Redeveloping the Nanomaterial Consumer Products Inventory. Beilstein J. Nanotechnol. 2015, 6, 1769–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
ECs Class | Chemicals | Side Effects | References |
---|---|---|---|
Pharmaceuticals | roxithromycin, clarithromycin, and tylosin (antibiotics) | growth inhibition of algae | [55] |
penicillin, sulfonamides, and tetracyclines (antibiotics) | resistance among bacterial pathogens | [56,57] | |
acetaminophen, amoxicillin | |||
Diclofenac (nonsteroidal anti-inflammatory drug) | renal lesions and gill alterations of fish | [58] | |
Gemfibrozil (blood lipid regulator) | growth inhibition of algae | [59] | |
caffeine (stimulant drug) | endocrine disruption of goldfish | [60] | |
Carbamazepine (antiepileptic drug) | oxidation stress of fish | [61] | |
Personal care products | preservatives, i.e., parabens (alkyl-hydroxybenzoate) used in in cosmetics, toiletries and even foods | shows weak estrogenic activity | [62] |
disinfectants/antiseptics,.i.e., (triclosan—used in toothpaste, hand soaps, acne cream) | acts as toxic or biocidic agent and cause of microbial resistance | [63,64] | |
Pesticides | atrazine | endocrine disruptors | [65] |
Acetamiprid | [25] | ||
chlorinated phenoxy acid herbicide | [26] | ||
EDCs | xenoestrogens (polychlorinated biphenyls (PCBs), Bisphenol A (BPA)) | estrogenic effects on living being | [36,37,66] |
dichlorodiphenyltrichloroethane (DDT) | effects in human reproductive systems | [42] | |
polychlorinated biphenyls (PCBs) | affect liver and thyroid, enhance childhood obesity, defects in reproductive systems and infertility | [43] | |
polybrominated diphenyl ethers (PBDEs) | imbalance in thyroid hormone resulting in a wide range of neurological and developmental deficits, less intelligence and disability in learning | [44] | |
phthalates | harmful effects on sexual development in male infants | [45] |
EC | Wastewater Source | Removal of MBR % | Reference |
---|---|---|---|
Ketoprofen | Synthetic | 90 | [99] |
Pharmaceuticals | Actual | 99 | [100] |
Steriods | Actual | 80 | [101] |
Sulfamethoxazole | Synthetic | 99 | [102] |
Trimethoprim | Actual | 65, 70 | [103,104] |
4-nonylphenol, | Actual | 65, 70 | [103,104] |
Caffeine | Actual | 65, 70 | [103,104] |
Nonylphenol | Actual | 80 | [105] |
Pesticides | Synthetic | (97–99), (98.5–99) | [3,4] |
Acetaminophen | Synthetic | 95 | [106] |
Actual | 100, 100 | [65,107] | |
Amoxicillin | Synthetic | 77 | [4] |
Actual | 100, 100 | [65,108] | |
Atrazine | Synthetic | 40, 8 | [109,110] |
Actual | <25 | [65] | |
Estrone | Synthetic | >90, 88 | [4,111] |
Actual | (95–100), 98 | [65,100] | |
Triclosan | Synthetic | >90 | [112] |
Actual | 98, 100 | [65,113] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sengupta, A.; Jebur, M.; Kamaz, M.; Wickramasinghe, S.R. Removal of Emerging Contaminants from Wastewater Streams Using Membrane Bioreactors: A Review. Membranes 2022, 12, 60. https://doi.org/10.3390/membranes12010060
Sengupta A, Jebur M, Kamaz M, Wickramasinghe SR. Removal of Emerging Contaminants from Wastewater Streams Using Membrane Bioreactors: A Review. Membranes. 2022; 12(1):60. https://doi.org/10.3390/membranes12010060
Chicago/Turabian StyleSengupta, Arijit, Mahmood Jebur, Mohanad Kamaz, and S. Ranil Wickramasinghe. 2022. "Removal of Emerging Contaminants from Wastewater Streams Using Membrane Bioreactors: A Review" Membranes 12, no. 1: 60. https://doi.org/10.3390/membranes12010060
APA StyleSengupta, A., Jebur, M., Kamaz, M., & Wickramasinghe, S. R. (2022). Removal of Emerging Contaminants from Wastewater Streams Using Membrane Bioreactors: A Review. Membranes, 12(1), 60. https://doi.org/10.3390/membranes12010060