Enhanced Performance of Carbon Molecular Sieve Membranes Incorporating Zeolite Nanocrystals for Air Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis Procedure for SAPO-34, PS-MFI and ETS-10
2.3. Development of Mixed-Matrix Carbon Molecular Sieve Membranes (CMSMs)
2.4. Characterizations
2.5. O2 and N2 Permeation Analysis
2.6. O2 and N2 Solubility-Diffusivity Analysis
2.7. Filler Enhancement Index, Findex
3. Results
3.1. Properties of Zeolite Nanocrystals
3.2. Properties of Carbonized Membranes
3.3. Gas Permeation Analysis of Carbonized Membranes
3.4. Performance Benchmarking with Findex and Robeson Upper Bound
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernández-Barquín, A.; Casado-Coterillo, C.; Valencia, S.; Irabien, A. Mixed matrix membranes for O2/N2 separation: The influence of temperature. Membranes 2016, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Hoek, E.M.V.; Tarabara, V.V. Encyclopedia of Membrane Science and Technology; Wiley Online Library: Hoboken, NJ, USA, 2013; Volume 3. [Google Scholar]
- Chong, K.; Lai, S.; Thiam, H.; Teoh, H.; Heng, S. Recent progress of oxygen/nitrogen separation using membrane technology. J. Eng. Sci. Technol. 2016, 11, 1016–1030. [Google Scholar]
- Stafford, T.M. Indoor air quality and academic performance. J. Environ. Econ. Manag. 2015, 70, 34–50. [Google Scholar] [CrossRef] [Green Version]
- Bazzarelli, F.; Giorno, L.; Piacentini, E. Encyclopedia of Membranes; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Samarasinghe, S.A.S.C.; Chuah, C.Y.; Karahan, H.E.; Sethunga, G.; Bae, T.-H. Enhanced O2/N2 Separation of Mixed-Matrix Membrane Filled with Pluronic-Compatibilized Cobalt Phthalocyanine Particles. Membranes 2020, 10, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, A.; Klosek, J. A review of air separation technologies and their integration with energy conversion processes. Fuel Process. Technol. 2001, 70, 115–134. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Lee, Y.; Bae, T.-H. Potential of adsorbents and membranes for SF6 capture and recovery: A review. Chem. Eng. J. 2020, 404, 126577. [Google Scholar] [CrossRef]
- Murali, R.S.; Sankarshana, T.; Sridhar, S. Air separation by polymer-based membrane technology. Sep. Purif. Rev. 2013, 42, 130–186. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Goh, K.; Yang, Y.; Gong, H.; Li, W.; Karahan, H.E.; Guiver, M.D.; Wang, R.; Bae, T.-H. Harnessing filler materials for enhancing biogas separation membranes. Chem. Rev. 2018, 118, 8655–8769. [Google Scholar] [CrossRef]
- Robeson, L.M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 1991, 62, 165–185. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Samarasinghe, S.; Chuah, C.Y.; Li, W.; Sethunga, G.; Wang, R.; Bae, T.-H. Incorporation of CoIII acetylacetonate and SNW-1 nanoparticles to tailor O2/N2 separation performance of mixed-matrix membrane. Sep. Purif. Technol. 2019, 223, 133–141. [Google Scholar] [CrossRef]
- Li, W.; Goh, K.; Chuah, C.Y.; Bae, T.-H. Mixed-matrix carbon molecular sieve membranes using hierarchical zeolite: A simple approach towards high CO2 permeability enhancements. J. Membr. Sci. 2019, 588, 117220. [Google Scholar] [CrossRef]
- Li, W.; Chuah, C.Y.; Bae, T.-H. Hierarchical 5A Zeolite-Containing Carbon Molecular Sieve Membranes for O2/N2 Separation. Membr. J. 2020, 30, 260–268. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Lee, J.; Bao, Y.; Song, J.; Bae, T.-H. High-performance porous carbon-zeolite mixed-matrix membranes for CO2/N2 separation. J. Membr. Sci. 2021, 622, 119031. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Lee, J.; Song, J.; Bae, T.-H. Carbon Molecular Sieve Membranes Comprising Graphene Oxides and Porous Carbon for CO2/N2 Separation. Membranes 2021, 11, 284. [Google Scholar] [CrossRef]
- Ismail, A.F.; David, L. A review on the latest development of carbon membranes for gas separation. J. Membr. Sci. 2001, 193, 1–18. [Google Scholar] [CrossRef]
- Salleh, W.N.W.; Ismail, A.F.; Matsuura, T.; Abdullah, M.S. Precursor selection and process conditions in the preparation of carbon membrane for gas separation: A review. Sep. Purif. Rev. 2011, 40, 261–311. [Google Scholar] [CrossRef]
- Saufi, S.; Ismail, A. Fabrication of carbon membranes for gas separation––A review. Carbon 2004, 42, 241–259. [Google Scholar] [CrossRef]
- Li, W.; Chuah, C.Y.; Kwon, S.; Goh, K.; Wang, R.; Na, K.; Bae, T.-H. Nanosizing zeolite 5A fillers in mixed-matrix carbon molecular sieve membranes to improve gas separation performance. Chem. Eng. J. Adv. 2020, 2, 100016. [Google Scholar] [CrossRef]
- Gong, H.; Chuah, C.Y.; Yang, Y.; Bae, T.-H. High performance composite membranes comprising Zn(pyrz)2(SiF6) nanocrystals for CO2/CH4 separation. J. Ind. Eng. Chem. 2018, 60, 279–285. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Samarasinghe, S.; Li, W.; Goh, K.; Bae, T.-H. Leveraging nanocrystal HKUST-1 in mixed-matrix membranes for ethylene/ethane separation. Membranes 2020, 10, 74. [Google Scholar] [CrossRef]
- Yang, Y.; Goh, K.; Wang, R.; Bae, T.-H. High-performance nanocomposite membranes realized by efficient molecular sieving with CuBDC nanosheets. Chem. Commun. 2017, 53, 4254–4257. [Google Scholar] [CrossRef] [PubMed]
- Chuah, C.Y.; Bae, T.-H. Incorporation of Cu3BTC2 nanocrystals to increase the permeability of polymeric membranes in O2/N2 separation. BMC Chem. Eng. 2019, 1, 2. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, Y.; Lu, Y.; Wang, T.; Jian, X.; Qiu, J. Preparation and characterization of carbon and carbon/zeolite membranes from ODPA–ODA type polyetherimide. J. Membr. Sci. 2015, 474, 114–121. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Bai, L.; Chang, N.; Nan, G.; Hu, D.; Zhang, Y.; Wei, W. Solvent-free synthesis of SAPO-34 nanocrystals with reduced template consumption for methanol-to-olefins process. Appl. Catal. A Gen. 2017, 531, 203–211. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Bae, T.-H.; McCool, B.A.; Chance, R.R.; Nair, S.; Jones, C.W. Functionalization of the internal surface of pure-silica MFI zeolite with aliphatic alcohols. J. Phys. Chem. C 2008, 112, 3543–3551. [Google Scholar] [CrossRef]
- KerryáThomas, J. Synthesis of microporous titanosilicates ETS-10 and ETS-4 using solid TiO2 as the source of titanium. Chem. Commun. 1996, 1435–1436. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Yang, Y.; Bae, T.-H. Hierarchically porous polymers containing triphenylamine for enhanced SF6 separation. Micropor. Mesopor. Mater. 2018, 272, 232–240. [Google Scholar] [CrossRef]
- Mason, J.A.; Sumida, K.; Herm, Z.R.; Krishna, R.; Long, J.R. Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ. Sci. 2011, 4, 3030–3040. [Google Scholar] [CrossRef]
- Mathias, P.M.; Kumar, R.; Moyer, J.D.; Schork, J.M.; Srinivasan, S.R.; Auvil, S.R.; Talu, O. Correlation of multicomponent gas adsorption by the dual-site Langmuir model. Application to nitrogen/oxygen adsorption on 5A-zeolite. Ind. Eng. Chem. Res. 1996, 35, 2477–2483. [Google Scholar] [CrossRef]
- Yang, Y.; Goh, K.; Chuah, C.Y.; Karahan, H.E.; Birer, Ö.; Bae, T.-H. Sub-Ångström-level engineering of ultramicroporous carbons for enhanced sulfur hexafluoride capture. Carbon 2019, 155, 56–64. [Google Scholar] [CrossRef]
- Ma, Y.; Jue, M.L.; Zhang, F.; Mathias, R.; Jang, H.Y.; Lively, R.P. Creation of well-defined “mid-sized” micropores in carbon molecular sieve membranes. Angew. Chem. 2019, 131, 13393–13399. [Google Scholar] [CrossRef]
- Kim, C.; Cho, H.S.; Chang, S.; Cho, S.J.; Choi, M. An ethylenediamine-grafted Y zeolite: A highly regenerable carbon dioxide adsorbent via temperature swing adsorption without urea formation. Energy Environ. Sci. 2016, 9, 1803–1811. [Google Scholar] [CrossRef]
- Dargahi, M.; Kazemian, H.; Soltanieh, M.; Hosseinpour, M.; Rohani, S. High temperature synthesis of SAPO-34: Applying an L9 Taguchi orthogonal design to investigate the effects of experimental parameters. Powder Technol. 2012, 217, 223–230. [Google Scholar] [CrossRef]
- Vinoth Kumar, R.; Pugazhenthi, G. Removal of chromium from synthetic wastewater using MFI zeolite membrane supported on inexpensive tubular ceramic substrate. J. Water Reuse Desal. 2017, 7, 365–377. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Chuah, C.Y.; Bae, T.-H. Polyamine-appended porous organic polymers for efficient post-combustion CO2 capture. Chem. Eng. J. 2019, 358, 1227–1234. [Google Scholar] [CrossRef]
- Bae, T.-H.; Hudson, M.R.; Mason, J.A.; Queen, W.L.; Dutton, J.J.; Sumida, K.; Micklash, K.J.; Kaye, S.S.; Brown, C.M.; Long, J.R. Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture. Energy Environ. Sci. 2013, 6, 128–138. [Google Scholar] [CrossRef]
- Li, J.-R.; Kuppler, R.J.; Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504. [Google Scholar] [CrossRef]
- Murray, L.J.; Dinca, M.; Yano, J.; Chavan, S.; Bordiga, S.; Brown, C.M.; Long, J.R. Highly-selective and reversible O2 binding in Cr3(1,3,5-benzenetricarboxylate)2. J. Am. Chem. Soc. 2010, 132, 7856–7857. [Google Scholar] [CrossRef] [PubMed]
- Bloch, E.D.; Murray, L.J.; Queen, W.L.; Chavan, S.; Maximoff, S.N.; Bigi, J.P.; Krishna, R.; Peterson, V.K.; Grandjean, F.; Long, G.J. Selective binding of O2 over N2 in a redox–active metal–organic framework with open iron (II) coordination sites. J. Am. Chem. Soc. 2011, 133, 14814–14822. [Google Scholar] [CrossRef]
- Jaffe, A.; Ziebel, M.E.; Halat, D.M.; Biggins, N.; Murphy, R.A.; Chakarawet, K.; Reimer, J.A.; Long, J.R. Selective, High-Temperature O2 Adsorption in Chemically Reduced, Redox-Active Iron-Pyrazolate Metal–Organic Frameworks. J. Am. Chem. Soc. 2020, 142, 14627–14637. [Google Scholar] [CrossRef]
- Reed, D.A.; Xiao, D.J.; Jiang, H.Z.; Chakarawet, K.; Oktawiec, J.; Long, J.R. Biomimetic O2 adsorption in an iron metal–organic framework for air separation. Chem. Sci. 2020, 11, 1698–1702. [Google Scholar] [CrossRef] [Green Version]
- Goh, P.; Ismail, A.; Sanip, S.; Ng, B.; Aziz, M. Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep. Purif. Technol. 2011, 81, 243–264. [Google Scholar] [CrossRef]
- Gong, H.; Lee, S.S.; Bae, T.-H. Mixed-matrix membranes containing inorganically surface-modified 5A zeolite for enhanced CO2/CH4 separation. Micropor. Mesopor. Mater. 2017, 237, 82–89. [Google Scholar] [CrossRef]
- Fuertes, A.; Nevskaia, D.; Centeno, T. Carbon composite membranes from Matrimid® and Kapton® polyimides for gas separation. Micropor. Mesopor. Mater. 1999, 33, 115–125. [Google Scholar] [CrossRef]
- Wang, D.; Tian, P.; Yang, M.; Xu, S.; Fan, D.; Su, X.; Yang, Y.; Wang, C.; Liu, Z. Synthesis of SAPO-34 with alkanolamines as novel templates and their application for CO2 separation. Micropor. Mesopor. Mater. 2014, 194, 8–14. [Google Scholar] [CrossRef]
- Bao, Z.; Yu, L.; Dou, T.; Gong, Y.; Zhang, Q.; Ren, Q.; Lu, X.; Deng, S. Adsorption equilibria of CO2, CH4, N2, O2, and Ar on high silica zeolites. J. Chem. Eng. Data 2011, 56, 4017–4023. [Google Scholar] [CrossRef]
- Datta, S.J.; Khumnoon, C.; Lee, Z.H.; Moon, W.K.; Docao, S.; Nguyen, T.H.; Hwang, I.C.; Moon, D.; Oleynikov, P.; Terasaki, O. CO2 capture from humid flue gases and humid atmosphere using a microporous coppersilicate. Science 2015, 350, 302–306. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Yu, S.; Na, K.; Bae, T.-H. Enhanced SF6 recovery by hierarchically structured MFI zeolite. J. Ind. Eng. Chem. 2018, 62, 64–71. [Google Scholar] [CrossRef]
- Kim, Y.K.; Park, H.B.; Lee, Y.M. Carbon molecular sieve membranes derived from thermally labile polymer containing blend polymers and their gas separation properties. J. Membr. Sci. 2004, 243, 9–17. [Google Scholar] [CrossRef]
- Suda, H.; Haraya, K. Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide. J. Phys. Chem. B 1997, 101, 3988–3994. [Google Scholar] [CrossRef]
- Xiao, Y.; Dai, Y.; Chung, T.-S.; Guiver, M.D. Effects of brominating Matrimid polyimide on the physical and gas transport properties of derived carbon membranes. Macromolecules 2005, 38, 10042–10049. [Google Scholar] [CrossRef]
- Barsema, J.; Balster, J.; Jordan, V.; Van der Vegt, N.; Wessling, M. Functionalized carbon molecular sieve membranes containing Ag-nanoclusters. J. Membr. Sci. 2003, 219, 47–57. [Google Scholar] [CrossRef]
- Itta, A.K.; Tseng, H.-H.; Wey, M.-Y. Effect of dry/wet-phase inversion method on fabricating polyetherimide-derived CMS membrane for H2/N2 separation. Int. J. Hydrog. Energy 2010, 35, 1650–1658. [Google Scholar] [CrossRef]
- Rao, P.S.; Wey, M.-Y.; Tseng, H.-H.; Kumar, I.A.; Weng, T.-H. A comparison of carbon/nanotube molecular sieve membranes with polymer blend carbon molecular sieve membranes for the gas permeation application. Micropor. Mesopor. Mater. 2008, 113, 499–510. [Google Scholar] [CrossRef]
- Kita, H.; Yoshino, M.; Tanaka, K.; Okamoto, K.-I. Gas permselectivity of carbonized polypyrrolone membrane. Chem. Commun. 1997, 1051–1052. [Google Scholar] [CrossRef]
- Yoshimune, M.; Fujiwara, I.; Haraya, K. Carbon molecular sieve membranes derived from trimethylsilyl substituted poly (phenylene oxide) for gas separation. Carbon 2007, 45, 553–560. [Google Scholar] [CrossRef]
Sample | SBET (m2 g−1) 1 | SLANGMUIR (m2 g−1) 1 | SMICRO (m2 g−1) 2 | VMICRO (cc g−1) 2 | VTOTAL (cc g−1) 3 |
---|---|---|---|---|---|
SAPO-34 | 631 | 819 | 592 | 0.272 | 0.572 |
PS-MFI | 493 | 667 | 397 | 0.195 | 0.563 |
ETS-10 | 359 | 518 | 319 | 0.163 | 0.358 |
CMSM | Thickness (μm) 1 | O2 Permeability (barrer) | O2/N2 Selectivity | Findex |
---|---|---|---|---|
Matrimid® 5218 | 208 ± 28 | 5 ± 1 | 5.50 ± 0.10 | - |
10 wt% ETS-10 | 135 ± 13 | 79 ± 4 | 4.60 ± 0.56 | 1.74 |
20 wt% ETS-10 | 251 ± 20 | 126 ± 23 | 3.94 ± 0.49 | 1.33 |
30 wt% ETS-10 | 248 ± 18 | 141 ± 14 | 3.91 ± 0.14 | 1.40 |
10 wt% PS-MFI | 138 ± 15 | 149 ± 1 | 4.86 ± 0.33 | 2.69 |
20 wt% PS-MFI | 140 ± 28 | 199 ± 12 | 4.76 ± 0.03 | 2.86 |
30 wt% PS-MFI | 157 ± 12 | 465 ± 5 | 4.46 ± 0.05 | 3.35 |
10 wt% SAPO-34 | 186 ± 38 | 119 ± 4 | 4.07 ± 0.10 | 1.46 |
20 wt% SAPO-34 | 184 ± 15 | 150 ± 2 | 4.46 ± 0.41 | 2.21 |
30 wt% SAPO-34 | 166 ± 2 | 176 ± 4 | 3.95 ± 0.22 | 1.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuah, C.Y.; Goh, K.; Bae, T.-H. Enhanced Performance of Carbon Molecular Sieve Membranes Incorporating Zeolite Nanocrystals for Air Separation. Membranes 2021, 11, 489. https://doi.org/10.3390/membranes11070489
Chuah CY, Goh K, Bae T-H. Enhanced Performance of Carbon Molecular Sieve Membranes Incorporating Zeolite Nanocrystals for Air Separation. Membranes. 2021; 11(7):489. https://doi.org/10.3390/membranes11070489
Chicago/Turabian StyleChuah, Chong Yang, Kunli Goh, and Tae-Hyun Bae. 2021. "Enhanced Performance of Carbon Molecular Sieve Membranes Incorporating Zeolite Nanocrystals for Air Separation" Membranes 11, no. 7: 489. https://doi.org/10.3390/membranes11070489
APA StyleChuah, C. Y., Goh, K., & Bae, T. -H. (2021). Enhanced Performance of Carbon Molecular Sieve Membranes Incorporating Zeolite Nanocrystals for Air Separation. Membranes, 11(7), 489. https://doi.org/10.3390/membranes11070489