Study of Anion Exchange Membrane Properties Incorporating N-spirocyclic Quaternary Ammonium Cations and Aqueous Organic Redox Flow Battery Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Polymer Synthesis
2.2. N,N-Diallylpiperidinium Chloride (DAPCl)
2.3. Membranes Preparation
2.4. Ex Situ Membrane Characterization
2.4.1. Structural Characterization
2.4.2. Membrane Chloride Conductivity
2.4.3. Ionic Exchange Capacity and Water Uptake
2.4.4. Differential Scanning Calorimetry Experiments
2.4.5. Thermal Analysis
2.4.6. Microscopy
2.5. Flow Battery Test
2.5.1. Charge/Discharge Tests
2.5.2. Cyclic Voltammetry
2.5.3. Polarization Curves
3. Results and Discussion
3.1. Synthesis of the Membrane
3.2. Ex situ Membrane Characterization
3.2.1. Thermal Stability
3.2.2. Water Uptake
3.2.3. Conductivity
3.3. Cell Performance and Membrane Stability
3.3.1. Charge/Discharge Tests
3.3.2. Polarization Curve
3.3.3. Membrane Durability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Whyte, I. Introduction to flow batteries. In Proceedings of the IFBF Conference, Lausanne, Switzerland, 9–12 July 2018. [Google Scholar]
- Yang, Z.G. (Invited) Status and Future Perspectives of Redox Flow Batteries. ECS Meet. Abstr. 2019. [Google Scholar] [CrossRef]
- Colli, A.N.; Peljo, P.; Girault, H.H. High energy density MnO4−/MnO42− redox couple for alkaline redox flow batteries. Chem. Commun. 2016, 52, 14039–14042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roe, S.; Menictas, C.; Skyllas-Kazacos, M. A High Energy Density Vanadium Redox Flow Battery with 3 M Vanadium Electrolyte. J. Electrochem. Soc. 2016, 163, A5023–A5028. [Google Scholar] [CrossRef]
- Winsberg, J.; Hagemann, T.; Janoschka, T.; Hager, M.D.; Schubert, U.S. Redox-Flow Batteries: From Metals to Organic Redox-Active Materials. Angew. Chem. Int. Ed. 2017, 56, 686–711. [Google Scholar] [CrossRef]
- Wei, X.; Pan, W.; Duan, W.; Hollas, A.; Yang, Z.; Li, B.; Nie, Z.; Liu, J.; Reed, D.; Wang, W.; et al. Materials and Systems for Organic Redox Flow Batteries: Status and Challenges. ACS Energy Lett. 2017, 2, 2187–2204. [Google Scholar] [CrossRef]
- Gentil, S.; Reynard, D.; Girault, H.H. Aqueous organic and redox-mediated redox flow batteries: A review. Curr. Opin. Electrochem. 2020, 21, 7–13. [Google Scholar] [CrossRef]
- Narayan, S.R.; Nirmalchandar, A.; Murali, A.; Yang, B.; Hoober-Burkhardt, L.; Krishnamoorthy, S.; Prakash, G.S. Next-generation aqueous flow battery chemistries. Curr. Opin. Electrochem. 2019, 18, 72–80. [Google Scholar] [CrossRef]
- Singh, V.; Kim, S.; Kang, J.; Byon, H.R. Aqueous organic redox flow batteries. Nano Res. 2019, 12, 1988–2001. [Google Scholar] [CrossRef]
- Luo, J.; Hu, B.; Hu, M.; Zhao, Y.; Liu, T.L. Status and Prospects of Organic Redox Flow Batteries toward Sustainable Energy Storage. ACS Energy Lett. 2019, 4, 2220–2240. [Google Scholar] [CrossRef]
- Kwabi, D.G.; Ji, Y.; Aziz, M.J. Electrolyte Lifetime in Aqueous Organic Redox Flow Batteries: A Critical Review. Chem. Rev. 2020, 120, 6467–6489. [Google Scholar] [CrossRef]
- Janoschka, T.; Martin, N.; Hager, M.D.; Schubert, U.S. An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System. Angew. Chem. Int. Ed. 2016, 55, 14427–14430. [Google Scholar] [CrossRef]
- Cong, G.; Zhou, Y.; Li, Z.; Lu, Y.-C. A Highly Concentrated Catholyte Enabled by a Low-Melting-Point Ferrocene Derivative. ACS Energy Lett. 2017, 2, 869–875. [Google Scholar] [CrossRef]
- Kim, H.-S.; Yoon, T.; Kim, Y.; Hwang, S.; Ryu, J.H.; Oh, S.M. Increase of both solubility and working voltage by acetyl substitution on ferrocene for non-aqueous flow battery. Electrochem. Commun. 2016, 69, 72–75. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Xu, Z.; Yang, Z. Poly(phenylene oxide)-Based Ion-Exchange Membranes for Aqueous Organic Redox Flow Battery. Ind. Eng. Chem. Res. 2019, 58, 10707–10712. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, W.; Qin, M.; Chen, Z.; Xu, J.; Cao, J.; Li, J. Fundamental properties of TEMPO-based catholytes for aqueous redox flow batteries: Effects of substituent groups and electrolytes on electrochemical properties, solubilities and battery performance. RSC Adv. 2020, 10, 21839–21844. [Google Scholar] [CrossRef]
- Prifti, H.; Parasuraman, A.; Winardi, S.; Lim, T.M.; Skyllas-Kazacos, M. Membranes for Redox Flow Battery Applications. Membranes 2012, 2, 275–306. [Google Scholar] [CrossRef] [Green Version]
- Tan, R.; Wang, A.; Malpass-Evans, R.; Williams, R.; Zhao, E.W.; Liu, T.; Ye, C.; Zhou, X.; Darwich, B.P.; Fan, Z.; et al. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nat. Mater. 2020, 19, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Zuo, P.; Li, Y.; Wang, A.; Tan, R.; Liu, Y.; Liang, X.; Sheng, F.; Tang, G.; Ge, L.; Wu, L.; et al. Sulfonated Microporous Polymer Membranes with Fast and Selective Ion Transport for Electrochemical Energy Conversion and Storage. Angew. Chem. Int. Ed. 2020, 59, 9564–9573. [Google Scholar] [CrossRef] [PubMed]
- Hagemann, T.; Winsberg, J.; Grube, M.; Nischang, I.; Janoschka, T.; Martin, N.; Hager, M.D.; Schubert, U.S. An aqueous all-organic redox-flow battery employing a (2,2,6,6-tetramethylpiperidin-1-yl)oxyl-containing polymer as catholyte and dimethyl viologen dichloride as anolyte. J. Power Sources 2018, 378, 546–554. [Google Scholar] [CrossRef]
- Darling, R.; Gallagher, K.; Xie, W.; Su, L.; Brushett, F. Transport Property Requirements for Flow Battery Separators. J. Electrochem. Soc. 2015, 163, A5029–A5040. [Google Scholar] [CrossRef] [Green Version]
- Potash, R.A.; McKone, J.R.; Conte, S.; Abruña, H.D. On the Benefits of a Symmetric Redox Flow Battery. J. Electrochem. Soc. 2016, 163, A338–A344. [Google Scholar] [CrossRef]
- Lin, K.; Chen, Q.; Gerhardt, M.R.; Tong, L.; Kim, S.B.; Eisenach, L.; Valle, A.W.; Hardee, D.; Gordon, R.G.; Aziz, M.J.; et al. Alkaline quinone flow battery. Science 2015, 349, 1529–1532. [Google Scholar] [CrossRef] [Green Version]
- Beh, E.S.; de Porcellinis, D.; Gracia, R.L.; Xia, K.T.; Gordon, R.G.; Aziz, M.J. A Neutral pH Aqueous Organic–Organometallic Redox Flow Battery with Extremely High Capacity Retention. ACS Energy Lett. 2017, 2, 639–644. [Google Scholar] [CrossRef]
- Yang, B.; Murali, A.; Nirmalchandar, A.; Jayathilake, B.; Prakash, G.K.S.; Narayanan, S.R. A Durable, Inexpensive and Scalable Redox Flow Battery Based on Iron Sulfate and Anthraquinone Disulfonic Acid. J. Electrochem. Soc. 2020, 167, 060520. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Tong, L.; Tabor, D.P.; Beh, E.S.; Goulet, M.-A.; de Porcellinis, D.; Aspuru-Guzik, A.; Gordon, R.G.; Aziz, M.J. Alkaline Benzoquinone Aqueous Flow Battery for Large-Scale Storage of Electrical Energy. Adv. Energy Mater. 2018, 8, 1702056. [Google Scholar] [CrossRef]
- Hu, B.; Seefeldt, C.; de Bruler, C.; Liu, T.L. Boosting the energy efficiency and power performance of neutral aqueous organic redox flow batteries. J. Mater. Chem. A 2017, 5, 22137–22145. [Google Scholar] [CrossRef]
- Small, L.J.; Pratt, H.D.; Anderson, T.M. Crossover in Membranes for Aqueous Soluble Organic Redox Flow Batteries. J. Electrochem. Soc. 2019, 166, A2536–A2542. [Google Scholar] [CrossRef]
- Dang, H.-S.; Weiber, E.A.; Jannasch, P. Poly(phenylene oxide) functionalized with quaternary ammonium groups via flexible alkyl spacers for high-performance anion exchange membranes. J. Mater. Chem. A 2015, 3, 5280–5284. [Google Scholar] [CrossRef] [Green Version]
- Ran, J.; Wu, L.; Ru, Y.; Hu, M.; Din, L.; Xu, T. Anion exchange membranes (AEMs) based on poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and its derivatives. Polym. Chem. 2015, 6, 5809–5826. [Google Scholar] [CrossRef]
- Marino, M.G.; Kreuer, K.D. Alkaline Stability of Quaternary Ammonium Cations for Alkaline Fuel Cell Membranes and Ionic Liquids. ChemSusChem 2015, 8, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Strasser, D.J.; Graziano, B.J.; Knauss, D.M. Base stable poly(diallylpiperidinium hydroxide) multiblock copolymers for anion exchange membranes. J. Mater. Chem. A 2017, 5, 9627–9640. [Google Scholar] [CrossRef]
- Pham, T.H.; Jannasch, P. Aromatic Polymers Incorporating Bis-N-spirocyclic Quaternary Ammonium Moieties for Anion-Exchange Membranes. ACS Macro Lett. 2015, 4, 1370–1375. [Google Scholar] [CrossRef]
- Li, N.; Yan, T.; Li, Z.; Thurn-Albrecht, T.; Binder, W.H. Comb-shaped polymers to enhance hydroxide transport in anion exchange membranes. Energy Environ. Sci. 2012, 5, 7888–7892. [Google Scholar] [CrossRef]
- Tongwen, X.; Weihua, Y. Fundamental studies of a new series of anion exchange membranes: Membrane preparation and characterization. J. Membr. Sci. 2001, 190, 159–166. [Google Scholar] [CrossRef]
- Olsson, J.S.; Pham, T.H.; Jannasch, P. Poly(N,N-diallylazacycloalkane)s for Anion-Exchange Membranes Functionalized with N-Spirocyclic Quaternary Ammonium Cations. Macromolecules 2017, 50, 2784–2793. [Google Scholar] [CrossRef]
- Doughty, H.W. Mohr’s method for the determination of silver and halogens in other than neutral solutions. J. Am. Chem. Soc. 1924, 46, 2707–2709. [Google Scholar] [CrossRef]
- Xu, T.; Liu, Z.; Li, Y.; Yang, W. Preparation and characterization of Type II anion exchange membranes from poly(2,6-dimethyl-1,4-phenylene oxide) (PPO). J. Membr. Sci. 2008, 320, 232–239. [Google Scholar] [CrossRef]
- Liu, L.; Huang, G.; Kohl, P.A. Anion conducting multiblock copolymers with multiple head-groups. J. Mater. Chem. A 2018, 6, 9000–9008. [Google Scholar] [CrossRef]
- Moster, A.L.; Mitchell, B.S. Hydration and proton conduction in Nafion/ceramic nanocomposite membranes produced by solid-state processing of powders from mechanical attrition. J. Appl. Polym. Sci. 2009, 113, 243–250. [Google Scholar] [CrossRef]
- Janoschka, T.; Martin, N.; Martin, U.; Friebe, C.; Morgenstern, S.; Hiller, H.; Hager, M.D.; Schubert, U.S. An Aqueous, Polymer-Based Redox-Flow Battery Using Non-Corrosive, Safe, and Low-Cost Materials, Nature. (n.d.). Available online: http://www.nature.com/articles/nature15746 (accessed on 30 March 2020).
- Coimbra, P.; Fernandes, D.; Ferreira, P.; Gil, M.H.; de Sousa, H.C. Solubility of Irgacure® 2959 photoinitiator in supercritical carbon dioxide: Experimental determination and correlation. J. Supercrit. Fluids 2008, 45, 272–281. [Google Scholar] [CrossRef] [Green Version]
- Fairbanks, B.D.; Schwartz, M.P.; Bowman, C.N.; Anseth, K.S. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: Polymerization rate and cytocompatibility. Biomaterials 2009, 30, 6702–6707. [Google Scholar] [CrossRef] [Green Version]
- Dang, H.-S.; Jannasch, P. Alkali-stable and highly anion conducting poly(phenylene oxide)s carrying quaternary piperidinium cations. J. Mater. Chem. A 2016, 4, 11924–11938. [Google Scholar] [CrossRef] [Green Version]
- Tibbits, A.C.; Mumper, L.E.; Kloxin, C.J.; Yan, Y.S. A Single-Step Monomeric Photo-Polymerization and Crosslinking via Thiol-Ene Reaction for Hydroxide Exchange Membrane Fabrication. J. Electrochem. Soc. 2015, 162, F1206–F1211. [Google Scholar] [CrossRef]
- Han, J.; Zhu, L.; Pan, J.; Zimudzi, T.J.; Wang, Y.; Peng, Y.; Hickner, M.A.; Zhuang, L. Elastic Long-Chain Multication Cross-Linked Anion Exchange Membranes. Macromolecules 2017, 50, 3323–3332. [Google Scholar] [CrossRef]
- Ran, J.; Wu, L.; Wei, B.; Chen, Y.; Xu, T. Simultaneous Enhancements of Conductivity and Stability for Anion Exchange Membranes (AEMs) through Precise Structure Design. Sci. Rep. 2014, 4, 6486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhowmik, D.; Malikova, N.; Mériguet, G.; Bernard, O.; Teixeira, J.; Turq, P. Aqueous solutions of tetraalkylammonium halides: Ion hydration, dynamics and ion–ion interactions in light of steric effects. Phys. Chem. Chem. Phys. 2014, 16, 13447–13457. [Google Scholar] [CrossRef]
- Hribar, B.; Southall, N.T.; Vlachy, V.; Dill, K.A. How Ions Affect the Structure of Water. J. Am. Chem. Soc. 2002, 124, 12302–12311. [Google Scholar] [CrossRef] [Green Version]
- Kwasny, M.T.; Zhu, L.; Hickner, M.A.; Tew, G.N. Thermodynamics of Counterion Release Is Critical for Anion Exchange Membrane Conductivity. J. Am. Chem. Soc. 2018, 140, 7961–7969. [Google Scholar] [CrossRef]
- Montes-Rojas, A.; Rentería, J.A.Q.; Chávez, N.B.J.; Ávila-Rodríguez, J.G.; Soto, B.Y. Influence of anion hydration status on selective properties of a commercial anion exchange membrane electrochemically impregnated with polyaniline deposits. RSC Adv. 2017, 7, 25208–25219. [Google Scholar] [CrossRef] [Green Version]
- Bergstroem, P.A.; Lindgren, J.; Kristiansson, O. An IR study of the hydration of perchlorate, nitrate, iodide, bromide, chloride and sulfate anions in aqueous solution. J. Phys. Chem. 1991, 95, 8575–8580. [Google Scholar] [CrossRef]
- Lue, S.J.; Shieh, S.-J. Water States in Perfluorosulfonic Acid Membranes Using Differential Scanning Calorimetry. J. Macromol. Sci. Part. B 2008, 48, 114–127. [Google Scholar] [CrossRef]
- Varcoe, J.R.; Atanassov, P.; Dekel, D.R.; Herring, A.M.; Hickner, M.A.; Kohl, P.A.; Kucernak, A.R.; Mustain, W.E.; Nijmeijer, K.; Scott, K.; et al. Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci. 2014, 7, 3135–3191. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Rojas-Carbonell, S.; Yan, Y.; Kusoglu, A. Structure-transport relationships of poly(aryl piperidinium) anion-exchange membranes: Eeffect of anions and hydration. J. Membr. Sci. 2020, 598, 117680. [Google Scholar] [CrossRef]
- Veerman, J. The Effect of the NaCl Bulk Concentration on the Resistance of Ion Exchange Membranes—Measuring and Modeling. Energies 2020, 13, 1946. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Eisenach, L.; Aziz, M.J. Cycling Analysis of a Quinone-Bromide Redox Flow Battery. J. Electrochem. Soc. 2015, 163, A5057–A5063. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Cong, G.; Lu, Y.-C. Recent progress in organic redox flow batteries: Active materials, electrolytes and membranes. J. Energy Chem. 2018, 27, 1304–1325. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Hickner, M.A.; Agar, E.; Kumbur, E.C. Optimizing membrane thickness for vanadium redox flow batteries. J. Membr. Sci. 2013, 437, 108–113. [Google Scholar] [CrossRef]
- Aaron, D.; Tang, Z.; Papandrew, A.B.; Zawodzinski, T.A. Polarization curve analysis of all-vanadium redox flow batteries. J. Appl. Electrochem. 2011, 41, 1175–1182. [Google Scholar] [CrossRef]
Membrane | Feed DAPCl to PPO-Q Molar Ratio | Theoretical IEC (mmol Cl−·g−1 Polymer) |
---|---|---|
M1.5 | 1.4 | 1.96 |
M1.7 | 2 | 2.23 |
M2.1 | 3 | 2.58 |
M2.5 | 4 | 2.85 |
M2.8 | 6 | 3.3 |
Membrane | Thickness (µm) | Titration DAPCl to PPO-Q Molar Ratio | DAPCl Conversion (%) * | Titration IEC (mmol Cl−·g−1 Polymer) |
---|---|---|---|---|
M1.5 | 39 ± 3 | 0.65 | 46 | 1.52 ± 0.12 |
M1.7 | 45 ± 3 | 0.95 | 48 | 1.71 ± 0.11 |
M2.1 | 57 ± 3 | 1.7 | 56 | 2.08 ± 0.05 |
M2.5 | 58 ± 3 | 2.5 | 62 | 2.40 ± 0.07 |
M2.8 | 60 ± 3 | 4 | 66 | 2.84 ± 0.07 |
Membrane | Water Hydration (λ) | ΔHf DSC (J·g−1 Wet Sample) a | ΔHf DSC (J·g−1 Water) b | Freezable Water (%) = ΔHf,DSC/ΔHf, Pure Water c | Freezable λ in the Membrane d | Non-Freezable λ in the Membrane | Tm (K) e |
---|---|---|---|---|---|---|---|
M1.5 | 11.6 ± 1.4 | 0 | 0 | 0 | 0 | 11.6 ± 1.4 | - |
M1.7 | 11.8 ± 0.3 | 8 ± 3.1 | 30 ± 11 | 9 ± 3.5 | 0.4 ± 0.2 | 11.4 ± 0.2 | 255 |
M2.1 | 14.2 ± 0.7 | 15 ± 1.7 | 45 ± 5 | 14 ± 1.5 | 1 ± 0.1 | 13 ± 0.1 | 268 |
M2.8 | 21.5 ± 0.3 | 52 ± 6 | 98 ± 11 | 29 ± 3.3 | 7 ± 0.8 | 14.5 ± 0.8 | 273 |
Membrane | Capacity 1st Cycle at 20 mA·cm−2 [mAh] | Accessible Capacity at 80 mA·cm−2 [mAh, Retention (%) a] | Capacity 103rd Cycle at 20 mA·cm−2 [mAh, Retention (%) b] |
---|---|---|---|
M1.5 | 283 ± 48 | 136 ± 18 (41 ± 4) | 279 ± 48 (98.5 ± 0.5) |
M1.7 | 297 ± 3 | 207 ± 8 (83.5 ± 0.5) | 261 ± 2 (88 ± 0) |
M2.1 | 218 ± 39 | 174 ± 45 (55 ± 16) | 107 ± 24 (49 ± 4) |
M2.8 | 216 ± 33 | 174 ± 22 (34 ± 8) | 59 ± 8 (29 ± 5) |
FAA-3-50® | 301 | 244 (94) | 288 (95) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsehaye, M.T.; Yang, X.; Janoschka, T.; Hager, M.D.; Schubert, U.S.; Alloin, F.; Iojoiu, C. Study of Anion Exchange Membrane Properties Incorporating N-spirocyclic Quaternary Ammonium Cations and Aqueous Organic Redox Flow Battery Performance. Membranes 2021, 11, 367. https://doi.org/10.3390/membranes11050367
Tsehaye MT, Yang X, Janoschka T, Hager MD, Schubert US, Alloin F, Iojoiu C. Study of Anion Exchange Membrane Properties Incorporating N-spirocyclic Quaternary Ammonium Cations and Aqueous Organic Redox Flow Battery Performance. Membranes. 2021; 11(5):367. https://doi.org/10.3390/membranes11050367
Chicago/Turabian StyleTsehaye, Misgina Tilahun, Xian Yang, Tobias Janoschka, Martin D. Hager, Ulrich S. Schubert, Fannie Alloin, and Cristina Iojoiu. 2021. "Study of Anion Exchange Membrane Properties Incorporating N-spirocyclic Quaternary Ammonium Cations and Aqueous Organic Redox Flow Battery Performance" Membranes 11, no. 5: 367. https://doi.org/10.3390/membranes11050367
APA StyleTsehaye, M. T., Yang, X., Janoschka, T., Hager, M. D., Schubert, U. S., Alloin, F., & Iojoiu, C. (2021). Study of Anion Exchange Membrane Properties Incorporating N-spirocyclic Quaternary Ammonium Cations and Aqueous Organic Redox Flow Battery Performance. Membranes, 11(5), 367. https://doi.org/10.3390/membranes11050367