The Impact of Chemical-Mechanical Ex Situ Aging on PFSA Membranes for Fuel Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Preparation
2.2. Experimental Setup and Aging Tests Parameters
2.3. Quantification of the Fluoride Emission Rates
3. Results
3.1. Impact of a Cyclic Compressive Stress
3.2. Impact of a Static Compressive Stress
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kusoglu, A.; Hexemer, A.; Jiang, R.; Gittleman, C.S.; Weber, A.Z. Effect of Compression on PFSA-Ionomer Morphology and Predicted Conductivity Changes. J. Membr. Sci. 2012, 421–422, 283–291. [Google Scholar] [CrossRef]
- Robert, M.; El Kaddouri, A.; Perrin, J.-C.; Mozet, K.; Daoudi, M.; Dillet, J.; Morel, J.-Y.; André, S.; Lottin, O. Effects of Conjoint Mechanical and Chemical Stress on Perfluorosulfonic-Acid Membranes for Fuel Cells. J. Power Sources 2020, 476, 228662. [Google Scholar] [CrossRef]
- Rodgers, M.P.; Bonville, L.J.; Kunz, H.R.; Slattery, D.K.; Fenton, J.M. Fuel Cell Perfluorinated Sulfonic Acid Membrane Degradation Correlating Accelerated Stress Testing and Lifetime. Chem. Rev. 2012, 112, 6075–6103. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, X. A Review of Polymer Electrolyte Membrane Fuel Cell Durability for Vehicular Applications: Degradation Modes and Experimental Techniques. Energy Convers. Manag. 2019, 199, 112022. [Google Scholar] [CrossRef]
- Zatoń, M.; Rozière, J.; Jones, D.J. Current Understanding of Chemical Degradation Mechanisms of Perfluorosulfonic Acid Membranes and Their Mitigation Strategies: A Review. Sustain. Energy Fuels 2017, 1, 409–438. [Google Scholar] [CrossRef]
- LaConti, A.B.; Hamdan, M.; McDonald, R.C. Mechanisms of membrane degradation. In Handbook of Fuel Cells; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; ISBN 978-0-470-97400-1. [Google Scholar]
- Danilczuk, M.; Coms, F.D.; Schlick, S. Visualizing Chemical Reactions and Crossover Processes in a Fuel Cell Inserted in the ESR Resonator: Detection by Spin Trapping of Oxygen Radicals, Nafion-Derived Fragments, and Hydrogen and Deuterium Atoms. J. Phys. Chem. B 2009, 113, 8031–8042. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Cho, E.; Lee, J.-H.; Kim, H.-J.; Lim, T.-H.; Oh, I.-H.; Won, J. Effects of Purging on the Degradation of PEMFCs Operating with Repetitive On/Off Cycles. J. Electrochem. Soc. 2007, 154, B194–B200. [Google Scholar] [CrossRef]
- Healy, J.; Hayden, C.; Xie, T.; Olson, K.; Waldo, R.; Brundage, A.; Gasteiger, H.; Abbott, J. Aspects of the Chemical Degradation of PFSA Ionomers Used in PEM Fuel Cells. Fuel Cells 2005, 5, 302–308. [Google Scholar] [CrossRef]
- Kusoglu, A.; Weber, A.Z. A Mechanistic Model for Pinhole Growth in Fuel-Cell Membranes during Cyclic Loads. J. Electrochem. Soc. 2014, 161, E3311–E3322. [Google Scholar] [CrossRef]
- Gittleman, C.S.; Coms, F.D.; Lai, Y.-H. Chapter 2 - Membrane Durability: Physical and Chemical Degradation. In Polymer Electrolyte Fuel Cell Degradation; Mench, M.M., Kumbur, E.C., Veziroglu, T.N., Eds.; Academic Press: Boston, MA, USA, 2012; pp. 15–88. ISBN 978-0-12-386936-4. [Google Scholar]
- Moor, G.D.; Bas, C.; Charvin, N.; Moukheiber, E.; Niepceron, F.; Breilly, N.; André, J.; Rossinot, E.; Claude, E.; Albérola, N.D.; et al. Understanding Membrane Failure in PEMFC: Comparison of Diagnostic Tools at Different Observation Scales. Fuel Cells 2012, 12, 356–364. [Google Scholar] [CrossRef]
- Lim, C.; Ghassemzadeh, L.; Van Hove, F.; Lauritzen, M.; Kolodziej, J.; Wang, G.G.; Holdcroft, S.; Kjeang, E. Membrane Degradation during Combined Chemical and Mechanical Accelerated Stress Testing of Polymer Electrolyte Fuel Cells. J. Power Sources 2014, 257, 102–110. [Google Scholar] [CrossRef]
- Alavijeh, A.S.; Goulet, M.-A.; Khorasany, R.M.H.; Ghataurah, J.; Lim, C.; Lauritzen, M.; Kjeang, E.; Wang, G.G.; Rajapakse, R.K.N.D. Decay in Mechanical Properties of Catalyst Coated Membranes Subjected to Combined Chemical and Mechanical Membrane Degradation. Fuel Cells 2015, 15, 204–213. [Google Scholar] [CrossRef]
- Mukundan, R.; Baker, A.M.; Kusoglu, A.; Beattie, P.; Knights, S.; Weber, A.Z.; Borup, R.L. Membrane Accelerated Stress Test Development for Polymer Electrolyte Fuel Cell Durability Validated Using Field and Drive Cycle Testing. J. Electrochem. Soc. 2018, 165, F3085–F3093. [Google Scholar] [CrossRef]
- Lin, L.; Danilczuk, M.; Schlick, S. Electron Spin Resonance Study of Chemical Reactions and Crossover Processes in a Fuel Cell: Effect of Membrane Thickness. J. Power Sources 2013, 233, 98–103. [Google Scholar] [CrossRef]
- Tang, Y.; Kusoglu, A.; Karlsson, A.M.; Santare, M.H.; Cleghorn, S.; Johnson, W.B. Mechanical Properties of a Reinforced Composite Polymer Electrolyte Membrane and Its Simulated Performance in PEM Fuel Cells. J. Power Sources 2008, 175, 817–825. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.; Weber, A.Z.; Kusoglu, A. Structure/Property Relationship of Nafion XL Composite Membranes. J. Membr. Sci. 2016, 516, 123–134. [Google Scholar] [CrossRef] [Green Version]
- D’Urso, C.; Oldani, C.; Baglio, V.; Merlo, L.; Aricò, A.S. Towards Fuel Cell Membranes with Improved Lifetime: Aquivion® Perfluorosulfonic Acid Membranes Containing Immobilized Radical Scavengers. J. Power Sources 2014, 272, 753–758. [Google Scholar] [CrossRef]
- Lim, C.; Alavijeh, A.S.; Lauritzen, M.; Kolodziej, J.; Knights, S.; Kjeang, E. Fuel Cell Durability Enhancement with Cerium Oxide under Combined Chemical and Mechanical Membrane Degradation. ECS Electrochem. Lett. 2015, 4, F29–F31. [Google Scholar] [CrossRef]
- Zatoń, M.; Prélot, B.; Donzel, N.; Rozière, J.; Jones, D.J. Migration of Ce and Mn Ions in PEMFC and Its Impact on PFSA Membrane Degradation. J. Electrochem. Soc. 2018, 165, F3281–F3289. [Google Scholar] [CrossRef]
- De Moor, G.; Bas, C.; Charvin, N.; Dillet, J.; Maranzana, G.; Lottin, O.; Caque, N.; Rossinot, E.; Flandin, L. Perfluorosulfonic Acid Membrane Degradation in the Hydrogen Inlet Region: A Macroscopic Approach. Int. J. Hydrog. Energy 2016, 41, 483–496. [Google Scholar] [CrossRef]
- Robert, M.; Kaddouri, A.E.; Perrin, J.-C.; Leclerc, S.; Lottin, O. Towards a NMR-Based Method for Characterizing the Degradation of Nafion XL Membranes for PEMFC. J. Electrochem. Soc. 2018, 165, F3209. [Google Scholar] [CrossRef] [Green Version]
- Yandrasits, M.A.; Lindell, M.J.; Hamrock, S.J. New Directions in Perfluoroalkyl Sulfonic Acid–Based Proton-Exchange Membranes. Curr. Opin. Electrochem. 2019, 18, 90–98. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Deng, S.; Li, C.; Dong, J.; Wang, J.; Yang, Z.; Wang, D.; Cheng, H. Semi-Interpenetrating Polymer Networks toward Sulfonated Poly(Ether Ether Ketone) Membranes for High Concentration Direct Methanol Fuel Cell. Chin. Chem. Lett. 2019, 30, 299–304. [Google Scholar] [CrossRef]
- Ning, F.; Bai, C.; Qin, J.; Song, Y.; Zhang, T.; Chen, J.; Wei, J.; Lu, G.; Wang, H.; Li, Y.; et al. Great Improvement in the Performance and Lifetime of a Fuel Cell Using a Highly Dense, Well-Ordered, and Cone-Shaped Nafion Array. J. Mater. Chem. A 2020, 8, 5489–5500. [Google Scholar] [CrossRef]
- Xu, F.; Innocent, C.; Bonnet, B.; Jones, D.J.; Roziere, J. Chemical Modification of Perfluorosulfonated Membranes with Pyrrole for Fuel Cell Application: Preparation, Characterisation and Methanol Transport. Fuel Cells 2005, 5, 398–405. [Google Scholar] [CrossRef]
- Frensch, S.H.; Serre, G.; Fouda-Onana, F.; Jensen, H.C.; Christensen, M.L.; Araya, S.S.; Kær, S.K. Impact of Iron and Hydrogen Peroxide on Membrane Degradation for Polymer Electrolyte Membrane Water Electrolysis: Computational and Experimental Investigation on Fluoride Emission. J. Power Sources 2019, 420, 54–62. [Google Scholar] [CrossRef]
- Khattra, N.S.; Karlsson, A.M.; Santare, M.H.; Walsh, P.; Busby, F.C. Effect of Time-Dependent Material Properties on the Mechanical Behavior of PFSA Membranes Subjected to Humidity Cycling. J. Power Sources 2012, 214, 365–376. [Google Scholar] [CrossRef] [Green Version]
Mechanical Strength | Chemical Conditions | Duration | Number of Tests |
---|---|---|---|
5 MPa cycling | H2O2 solution | 8 h | 2 |
5 MPa cycling | Fenton solution | 8 h | 3 |
Static 5 MPa | Fenton solution | 8 h | 1 |
10 MPa cycling | Fenton solution | 8 h | 2 |
5 MPa cycling | Fenton solution | 20 h | 1 |
Static 5 MPa | Fenton solution | 20 h | 1 |
FER (µg/gNafion/h) | Cyclic 5 MPa + Fenton Solution (8 h) | Cyclic 10 MPa + Fenton Solution (8 h) | Cyclic 5 MPa + Fenton Solution (20 h) |
---|---|---|---|
XL membrane | 167 ± 44 | 316 ± 44 | 465 |
NR211 membrane | 264 ± 157 | 324 ± 79 | 492 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robert, M.; El Kaddouri, A.; Perrin, J.-C.; Mozet, K.; Dillet, J.; Morel, J.-Y.; Lottin, O. The Impact of Chemical-Mechanical Ex Situ Aging on PFSA Membranes for Fuel Cells. Membranes 2021, 11, 366. https://doi.org/10.3390/membranes11050366
Robert M, El Kaddouri A, Perrin J-C, Mozet K, Dillet J, Morel J-Y, Lottin O. The Impact of Chemical-Mechanical Ex Situ Aging on PFSA Membranes for Fuel Cells. Membranes. 2021; 11(5):366. https://doi.org/10.3390/membranes11050366
Chicago/Turabian StyleRobert, Mylène, Assma El Kaddouri, Jean-Christophe Perrin, Kévin Mozet, Jérôme Dillet, Jean-Yves Morel, and Olivier Lottin. 2021. "The Impact of Chemical-Mechanical Ex Situ Aging on PFSA Membranes for Fuel Cells" Membranes 11, no. 5: 366. https://doi.org/10.3390/membranes11050366
APA StyleRobert, M., El Kaddouri, A., Perrin, J. -C., Mozet, K., Dillet, J., Morel, J. -Y., & Lottin, O. (2021). The Impact of Chemical-Mechanical Ex Situ Aging on PFSA Membranes for Fuel Cells. Membranes, 11(5), 366. https://doi.org/10.3390/membranes11050366