Antifouling Polyethersulfone-Petrol Soot Nanoparticles Composite Ultrafiltration Membrane for Dye Removal in Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Oxidation of Petrol Soot
2.3. Preparation of Membranes
2.4. Physicochemical Characterization of PSN Nanoparticles and Membranes
2.5. Membrane Performance Tests
3. Results
3.1. Characterization of Oxidized Petrol Soot Nanoparticles
3.2. Membrane Characterization
3.2.1. Characterization of Membranes, SEM
3.2.2. Membrane Surface Roughness Characteristics
3.2.3. Membrane Contact Angle Measurement
3.2.4. Membrane Water Permeability
3.2.5. Membrane Antifouling Characteristics
3.2.6. Membrane Dye Rejection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Yin, H.; Qiu, P.; Qian, Y.; Kong, Z.; Zheng, X.; Tang, Z.; Guo, H. Textile Wastewater Treatment for Water Reuse: A Case Study. Processes 2019, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Asghar, A.; Raman, A.A.A.; Daud, W.M.A.W. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: A review. J. Clean Prod. 2015, 87, 826–838. [Google Scholar] [CrossRef] [Green Version]
- Visa, M.; Andronic, L.; Duta, A. Fly ash-TiO2 nanocomposite material for multi-pollutants wastewater treatment. J. Environ. Manag. 2015, 150, 336–343. [Google Scholar] [CrossRef]
- Shenvi, S.S.; Isloor, A.M.; Ismail, A.F.; Shilton, S.J.; Al Ahmed, A. Humic Acid Based Biopolymeric Membrane for Effective Removal of Methylene Blue and Rhodamine B. Ind. Eng. Chem. Res. 2015, 54, 4965–4975. [Google Scholar] [CrossRef] [Green Version]
- Amar, N.B.; Kechaou, N.; Palmeri, J.; Deratani, A.; Sghaier, A. Comparison of Tertiary Treatment by nanofiltration and Reverse Osmosis for Water Reuse in Denim Textile Industry. J. Hazard. Mater. 2009, 170, 111–117. [Google Scholar] [CrossRef]
- Amini, M.; Arami, M.; Mahmoodi, N.M.; Akbari, A. Dye Removal from Colored Textile Wastewater using Acrylic Grafted Nanomembrane. Desalination 2011, 267, 107–113. [Google Scholar] [CrossRef]
- Vatsha, B.; Ngila, J.C.; Moutloali, R.M. Preparation of Antifouling Polyvinylpyrrolidone (PVP 40K) Modified Polyethersulfone (PES) Ultrafiltration (UF) Membrane for Water Purification. J. Phys. Chem. Earth 2014, 67, 125–131. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, Z.; Zhai, D.; Liu, Y.; Liu, Q.; Xue, L.; Gao, C. Dye Degrading and Fouling-Resistant Membranes Formed by Deposition with Ternary Nanocomposites of N-Doped Graphene/TiO2/Activated Carbon. Membranes 2019, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Asatekin, A.; Kang, S. Anti-fouling Ultrafiltration Membranes Containing Polyacrylonitrile-graft-poly (ethylene oxide) Comb Copolymer Additives. J. Membr. Sci. 2007, 298, 136–146. [Google Scholar] [CrossRef]
- Rahimpour, A.; Madaeni, S.S. Improvement of Performance and Surface Properties of Nano-porous Polyethersulphone (PES) Membrane using Hydrophilic Monomers as Additives in the Casting Solution. J. Membr. Sci. 2010, 360, 371–379. [Google Scholar] [CrossRef]
- Zhan, X.; Zhang, G.; Chen, X.; He, R.; Zhang, Q.; Chen, F. Improvement of Antifouling and Antibacterial Properties of Poly (ether sulfone) UF Membrane by Blending with a Multifunctional Comb Copolymer. Ind. Eng. Chem. Res. 2015, 54, 11312–11318. [Google Scholar] [CrossRef]
- Sun, M.; Su, Y.; Mu, C.; Jiang, Z. Improved Antifouling Property of PES Ultrafiltration Membranes Using Additive of Silica-PVP Nanocomposite. Ind. Eng. Chem. Res. 2010, 49, 790–796. [Google Scholar] [CrossRef]
- Joseph, C.G.; Bono, A.; Anisuzzaman, S.M.; Krishnaiah, D.; Tan, W.C. Application of Soot in the removal of 2,5-Dichlorophenol in Aqueous Medium. J. Appl. Sci. 2014, 14, 3182–3191. [Google Scholar] [CrossRef] [Green Version]
- Greenlee, L.F.; Griggs, C.; Mattei-sosa, J.; Abolhassani, M. Chitosan-Graphene oxide Composite Membranes for water Filtration. In Proceedings of the 2016 ALChE Annual Meeting, San Francisco, CA, USA, 13–18 November 2016; Available online: https://www.aiche.org/conferences/aiche-annual-meeting/2016/proceeding/paper/571d-chitosan-graphene-oxide-composite-membranes-water-filtration (accessed on 9 April 2021).
- Fatin, M.F.; Ruslinda, A.R.; Norhafizah, S.; Farehanim, M.A.; Md Arshad, M.K.; Ayub, R.M.; Hashim, U. Oxidation and Functionalization of Multiwalled Carbon Nanotube by Mild Acid Sonication. In Proceedings of the IEEE Conference on Biomedical Engineering and Sciences, Kuala Lumpur, Malaysia, 8–10 December 2014; pp. 686–689. [Google Scholar] [CrossRef]
- Ray, S.C.; Saha, A.; Jana, N.R.; Sarkar, R. Fluorescent Carbon Nanoparticle: Synthesis, Characterization and Bio-imaging Application. J. Phys. Chem. C 2009, 113, 18546–18551. [Google Scholar] [CrossRef]
- Nevskaia, D.M.; Martín-Aranda, R.M. Nitric Acid-Oxidized Carbon for the Preparation of Esters under Ultrasonic Activation. Catal. Lett. 2003, 87, 143–147. [Google Scholar] [CrossRef]
- Rosca, I.D.; Watari, F.; Uo, M.; Akasaka, T. Oxidation of Multiwalled Carbon Nanotubes by Nitric Acid. Carbon 2005, 43, 3124–3131. [Google Scholar] [CrossRef]
- Marcelo, C.; Marcelo, L.; João, G.R.P. Characterization of Nitric Acid Functionalized Carbon Black and its Evaluation as Electrocatalyst Support for Direct Methanol Fuel Cell Applications. Appl. Catal. A Gen. 2009, 355, 132–138. [Google Scholar] [CrossRef]
- Zinadini, S.; Zinatizadeh, A.A.; Rahimi, M.; Vatanpour, V.; Zangeneh, H.; Beygzadeh, M. Novel High Flux Antifouling Nanofiltration Membranes for Dye Removal Containing Carboxymethyl Chitosan Coated Fe3O4 Nanoparticles. Desalination 2014, 349, 145–154. [Google Scholar] [CrossRef]
- Dipheko, T.D.; Matabola, K.P.; Kotlhao, K.; Moutloali, R.M.; Klink, M. Fabrication and Assessment of ZnO Modified Polyethersulfone Membranes for Fouling Reduction of Bovine Serum Albumin. Int. J. Polym. Sci. 2017, 2017, 3587019. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Amini, S.H.; Khodabakhshi, A.R.; Bagheripour, E.; van der Bruggen, B. Activated Carbon Nanoparticles Entrapped Mixed Matrix Polyethersulfone Based Nanofiltration Membrane for Sulfate and Copper Removal from Water. J. Taiwan Inst. Chem. Eng. 2018, 82, 169–178. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, K.; Wang, K.; Xie, Z.; Ladewig, B.; Wang, H. Fabrication of Polyethersulfone-Mesoporous Silica Nanocomposite Ultrafiltration Membranes with Antifouling Properties. J. Membr. Sci. 2012, 423–424, 362–370. [Google Scholar] [CrossRef]
- Li, Q.; Pan, S.; Li, X.; Liu, C.; Li, J.; Sun, X.; Shen, J.; Han, W.; Wang, L. Hollow Mesoporous Silica Spheres/Polyethersulfone Composite Ultrafiltration Membrane with Enhanced Antifouling Property. Colloids Surf. A Physicochem. Eng. Asp. 2015, 487, 180–189. [Google Scholar] [CrossRef]
- Vatanpour, V.; Esmaeili, M.; Farahani, M.H.D.A. Fouling Reduction and Retention Increment of Polyethersulfone Nanofiltration Membranes Embedded by Amine-Functionalized Multi-Walled Carbon Nanotubes. J. Membr. Sci. 2014, 466, 70–81. [Google Scholar] [CrossRef]
- Lia, J.; Yuan, S.; Zhu, J.; Van der Bruggen, B. High-Flux, Antibacterial Composite Membranes Via Polydopamine-Assisted PEI-TiO2/Ag Modification for Dye Removal. Chem. Eng. J. 2019, 373, 275–284. [Google Scholar] [CrossRef]
- Luo, C.H.; Lee, W.M.; Liaw, J.J. Morphological and Semi-Quantitative Characteristics of Diesel Soot Agglomerates Emitted from Commercial Vehicles and a Dynamometer. J. Environ. Sci. 2009, 21, 452–457. [Google Scholar] [CrossRef]
- Chen, B.L.; Huang, W.H. Effects of Compositional Heterogeneity and Nanoporosity of Raw and Treated Biomass-Generated Soot on Adsorption of Organic Contaminants. J. Environ. Pollut. 2011, 159, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.; Abbas, S.M.; Ammad, H.M.; Badshah, A.; Ali, Z.; Anjum, D.H. A Facile and Novel Approach Towards Carboxylic Acid Functionalization of Multiwalled Carbon Nanotubes and Efficient Water Dispersion. Mater. Lett. 2013, 108, 253–256. [Google Scholar] [CrossRef]
- Makhetha, T.A.; Moutloali, R.M. Antifouling properties of Cu(tpa)@GO/PES composite membranes and selective dye rejection. J. Membr. Sci. 2018, 554, 195–210. [Google Scholar] [CrossRef]
- Ghaemi, N.; Madaeni, S.S.; Daraei, P.; Rajabi, H.; Zinadini, S.; Alizadeh, A. Polyethersulfone Membrane Enhanced with Iron Oxide Nanoparticles for Copper Removal from Water: Application of New Functionalized Fe3O4 Nanoparticles. Chem. Eng. J. 2015, 263, 101–113. [Google Scholar] [CrossRef]
- Algamdia, M.S.; Alsohaimib, I.H.; Lawler, J.; Alib, H.M.; Aldawsarid, A.M.; Hassan, H.M.A. Fabrication of Graphene Oxide Incorporated Polyethersulfone Hybrid Ultrafiltration Membranes for Humic Acid Removal. Sep. Purif. Technol. J. 2019, 223, 17–23. [Google Scholar] [CrossRef]
- Jainesh, H.; Jhaveri, Z.V.P.; Murthy, A. Comprehensive Review on Anti-Fouling Nanocomposite Membranes for Pressure Driven Membrane Separation Processes. Desalination 2016, 379, 137–154. [Google Scholar] [CrossRef]
- Rana, D.; Matsuura, T. Surface Modifications for Antifouling Membranes. Chem. Rev. 2010, 110, 2448–2471. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.; Oatley-Radcliffe, D.L.; Hilal, N. Atomic Force Microscopy (AFM). In Membrane Characterization, Encyclopedia of Membrane Science and Technology; John Wiley & Sons, Inc.: New York, NY, USA, 2017; pp. 115–144. [Google Scholar] [CrossRef]
- Hebbar, R.S.; Isloor, A.M.; Ismail, A.F. Contact Angle Measurements. In Membrane Characterization, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 219–255. [Google Scholar] [CrossRef]
- Luque-Alled, J.M.; Abdel-Karim, A.; Alberto, M.; Leaper, S.; Perez-Page, M.; Huang, K.; Vijayaraghavan, A.; El-Kalliny, A.S.; Holmes, S.M.; Gorgojo, P. Polyethersulfone Membranes: From Ultrafiltration to Nanofiltration via the Incorporation of APTS Functionalized-Graphene Oxide. J. Sep. Purif. Technol. 2020, 230, 115836. [Google Scholar] [CrossRef]
- Forgacs, E.; Cserháti, T.; Oros, G. Removal of Synthetic Dyes from Wastewaters: A Review. Environ. Int. 2004, 30, 953–971. [Google Scholar] [CrossRef]
- Pang, Y.L.; Abdullah, A.Z. Fe3+ Doped TiO2 Nanotubes for Combined Adsorption–Sonocatalytic Degradation of Real Textile Wastewater. Appl. Catal. B 2013, 129, 473–481. [Google Scholar] [CrossRef]
Membrane ID | PES wt % | PVP wt % | PSN wt % | NMP wt % |
---|---|---|---|---|
M0 | 18.00 | 2.00 | 0.00 | 80.00 |
M1 | 18.00 | 2.00 | 0.05 | 79.95 |
M2 | 18.00 | 2.00 | 0.10 | 79.90 |
M3 | 18.00 | 2.00 | 0.30 | 79.70 |
M4 | 18.00 | 2.00 | 0.50 | 79.50 |
M5 | 18.00 | 2.00 | 1.00 | 79.00 |
Membrane ID | Ra | Rq |
---|---|---|
M0 | 47.0 | 60.5 |
M1 | 24.0 | 34.0 |
M2 | 43.4 | 55.4 |
M3 | 41.4 | 52.6 |
M4 | 35.7 | 44.8 |
M5 | 42.7 | 56.6 |
Membrane ID | FRR (%) | Rt (%) | Rr (%) | Rir (%) |
---|---|---|---|---|
M0 | 48.6 | 71.5 | 20.1 | 51.4 |
M1 | 54.5 | 67.6 | 22.1 | 45.5 |
M2 | 62.6 | 63.7 | 25.1 | 38.5 |
M3 | 70.2 | 60.1 | 30.1 | 30.0 |
M4 | 79.7 | 57.1 | 36.8 | 20.3 |
M5 | 59.5 | 62.1 | 22.1 | 39.9 |
Membrane ID | Methyl Orange (%) | Methylene Blue (%) | Congo Red (%) |
---|---|---|---|
M0 | 51.5 | 41.5 | 94.0 |
M1 | 52.7 | 51.2 | 99.1 |
M2 | 62.1 | 85.0 | 99.2 |
M3 | 68.6 | 90.3 | 99.3 |
M4 | 70.4 | 96.3 | 99.5 |
M5 | 64.3 | 87.9 | 99.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nwafor, N.P.; Moutloali, R.M.; Sikhwivhilu, K.; Familoni, O.B.; Adams, L.A. Antifouling Polyethersulfone-Petrol Soot Nanoparticles Composite Ultrafiltration Membrane for Dye Removal in Wastewater. Membranes 2021, 11, 361. https://doi.org/10.3390/membranes11050361
Nwafor NP, Moutloali RM, Sikhwivhilu K, Familoni OB, Adams LA. Antifouling Polyethersulfone-Petrol Soot Nanoparticles Composite Ultrafiltration Membrane for Dye Removal in Wastewater. Membranes. 2021; 11(5):361. https://doi.org/10.3390/membranes11050361
Chicago/Turabian StyleNwafor, Nkechi P., Richard M. Moutloali, Keneiloe Sikhwivhilu, Oluwole B. Familoni, and Luqman A. Adams. 2021. "Antifouling Polyethersulfone-Petrol Soot Nanoparticles Composite Ultrafiltration Membrane for Dye Removal in Wastewater" Membranes 11, no. 5: 361. https://doi.org/10.3390/membranes11050361
APA StyleNwafor, N. P., Moutloali, R. M., Sikhwivhilu, K., Familoni, O. B., & Adams, L. A. (2021). Antifouling Polyethersulfone-Petrol Soot Nanoparticles Composite Ultrafiltration Membrane for Dye Removal in Wastewater. Membranes, 11(5), 361. https://doi.org/10.3390/membranes11050361