High Photoresponse Black Phosphorus TFTs Capping with Transparent Hexagonal Boron Nitride
Abstract
:1. Introduction
2. Materials & Methods
2.1. Device Fabrication Process
2.2. Electrical Properties and Photoresponse Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, L.K.; Yu, Y.J.; Ye, G.J.; Ge, Q.Q.; Ou, X.D.; Wu, H.; Feng, D.L.; Chen, X.H.; Zhang, Y.B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Neal, A.T.; Zhu, Z.; Luo, Z.; Xu, X.F.; Tomanek, D.; Ye, P.D. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano 2014, 8, 4033–4041. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.Q.; Zhang, G.; Zhang, Y.W. Layer-dependent Band Alignment and Work Function of Few-Layer Phosphorene. Sci. Rep. 2014, 4, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Zhang, W.; Demarteau, M.; Hoffmann, A.; Dubey, M.; Roelofs, A. Tunable Transport Gap in Phosphorene. Nano Lett. 2014, 14, 5733–5739. [Google Scholar] [CrossRef] [PubMed]
- Koenig, S.P.; Doganov, R.A.; Schmidt, H.; Neto, A.H.C.; Ozyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 2014, 104, 103106. [Google Scholar] [CrossRef] [Green Version]
- Buscema, M.; Groenendijk, D.J.; Blanter, S.I.; Steele, G.A.; van der Zant, H.S.J.; Castellanos-Gomez, A. Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors. Nano Lett. 2014, 14, 3347–3352. [Google Scholar] [CrossRef] [Green Version]
- Xia, F.N.; Wang, H.; Jia, Y.C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, W.N.; Yogeesh, M.N.; Yang, S.X.; Aldave, S.H.; Kim, J.S.; Sonde, S.; Tao, L.; Lu, N.S.; Akinwande, D. Flexible Black Phosphorus Ambipolar Transistors, Circuits and AM Demodulator. Nano Lett. 2015, 15, 1883–1890. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.F.; Naveh, D.; Watanabe, K.; Taniguchi, T.; Xia, F.N. A wavelength-scale black phosphorus spectrometer. Nat. Photonics 2021, 15, 601. [Google Scholar] [CrossRef]
- Khatibi, A.; Petruzzella, M.; Shokri, B.; Curto, A.G. Defect engineering in few-layer black phosphorus for tunable and photostable infrared emission. Opt. Mater. Express 2020, 10, 1488–1496. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J.O.; Narasimha-Acharya, K.L.; Blanter, S.I.; Groenendijk, D.J.; Buscema, M.; Steele, G.A.; Alvarez, J.V.; et al. Isolation and characterization of few-layer black phosphorus. 2D Materials 2014, 1, 025001. [Google Scholar] [CrossRef]
- Xiang, D.; Han, C.; Wu, J.; Zhong, S.; Liu, Y.Y.; Lin, J.D.; Zhang, X.A.; Hu, W.P.; Ozyilmaz, B.; Neto, A.H.C.; et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Doganov, R.A.; O’Farrell, E.C.T.; Koenig, S.P.; Yeo, Y.T.; Ziletti, A.; Carvalho, A.; Campbell, D.K.; Coker, D.F.; Watanabe, K.; Taniguchi, T.; et al. Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nat. Commun. 2015, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yue, D.; Lee, D.; Jang, Y.D.; Choi, M.S.; Nam, H.J.; Jung, D.Y.; Yoo, W.J. Passivated ambipolar black phosphorus transistors. Nanoscale 2016, 8, 12773–12779. [Google Scholar] [CrossRef]
- Xing, B.R.; Yu, Y.; Yao, J.D.; Niu, X.Y.; Yan, X.Y.; Liu, Y.L.; Wu, X.X.; Li, M.G.; Guo, W.X.; Sha, J.; et al. Surface charge transfer doping and effective passivation of black phosphorus field effect transistors. J. Mater. Chem. C 2020, 8, 6595–6604. [Google Scholar] [CrossRef]
- Li, D.Y.; Yu, Y.Y.; Ning, C.Z. Super-Stable High-Quality Few-Layer Black Phosphorus for Photonic Applications. ACS Appl. Nano Mater. 2021, 4, 4746–4753. [Google Scholar] [CrossRef]
- Yoon, S.; Kim, T.; Seo, S.Y.; Shin, S.H.; Song, S.B.; Kim, B.J.; Watanabe, K.; Taniguchi, T.; Lee, G.H.; Jo, M.H.; et al. Electrical control of anisotropic and tightly bound excitons in bilayer phosphorene. Phys. Rev. B 2021, 103, L041407. [Google Scholar] [CrossRef]
- Angizi, S.; Alem, S.A.A.; Azar, M.H.; Shayeganfar, F.; Manning, M.I.; Hatamie, A.; Pakdel, A.; Simchi, A. A comprehensive review on planar boron nitride nanomaterials: From 2D nanosheets towards 0D quantum dots. Prog. Mater. Sci. 2022, 124, 100884. [Google Scholar] [CrossRef]
- Li, H.M.; Lee, D.; Qu, D.S.; Liu, X.C.; Ryu, J.J.; Seabaugh, A.; Yoo, W.J. Ultimate thin vertical p-n junction composed of two-dimensional layered molybdenum disulfide. Nat. Commun. 2015, 6, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziletti, A.; Carvalho, A.; Campbell, D.K.; Coker, D.F.; Neto, A.H.C. Oxygen Defects in Phosphorene. Phys. Rev. Lett. 2015, 114, 046801. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.X.; Conrad, N.J.; Luo, Z.; Liu, H.; Xu, X.F.; Ye, P.D.D. Towards High-Performance Two-Dimensional Black Phosphorus Optoelectronic Devices: The Role of Metal Contacts. In Proceedings of the 60th Annual IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 15–17 December 2014. [Google Scholar]
- Kamalakar, M.V.; Madhushankar, B.N.; Dankert, A.; Dash, S.P. Low Schottky Barrier Black Phosphorus Field-Effect Devices with Ferromagnetic Tunnel Contacts. Small 2015, 11, 2209–2216. [Google Scholar] [CrossRef]
- Saito, Y.; Iwasa, Y. Ambipolar Insulator-to-Metal Transition in Black Phosphorus by Ionic-Liquid Gating. ACS Nano 2015, 9, 3192–3198. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Maassen, J.; Deng, Y.X.; Du, Y.C.; Garrelts, R.P.; Lundstrom, M.S.; Ye, P.D.; Xu, X.F. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.X.; Mao, N.N.; Xie, L.M.; Xu, H.; Zhang, J. Identifying the Crystalline Orientation of Black Phosphorus Using Angle-Resolved Polarized Raman Spectroscopy. Angew. Chem.-Int. Ed. 2015, 54, 2366–2369. [Google Scholar] [CrossRef] [PubMed]
- Sugai, S.; Shirotani, I. Raman and infrared reflection spectroscopy in black phosphorus. Solid State Commun. 1985, 53, 753–755. [Google Scholar] [CrossRef]
- Ribeiro, H.B.; Pimenta, M.A.; de Matos, C.J.S.; Moreira, R.L.; Rodin, A.S.; Zapata, J.D.; de Souza, E.A.T.; Neto, A.H.C. Unusual Angular Dependence of the Raman Response in Black Phosphorus. ACS Nano 2015, 9, 4270–4276. [Google Scholar] [CrossRef]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Perea-Lopez, N.; Elias, A.L.; Berkdemir, A.; Castro-Beltran, A.; Gutierrez, H.R.; Feng, S.M.; Lv, R.T.; Hayashi, T.; Lopez-Urias, F.; Ghosh, S.; et al. Photosensor Device Based on Few-Layered WS2 Films. Adv. Funct. Mater. 2013, 23, 5511–5517. [Google Scholar] [CrossRef]
- Liu, F.C.; Shimotani, H.; Shang, H.; Kanagasekaran, T.; Zolyomi, V.; Drummond, N.; Fal’ko, V.I.; Tanigaki, K. High-Sensitivity Photodetectors Based on Multilayer GaTe Flakes. ACS Nano 2014, 8, 752–760. [Google Scholar] [CrossRef]
- Hu, P.A.; Wen, Z.Z.; Wang, L.F.; Tan, P.H.; Xiao, K. Synthesis of Few-Layer GaSe Nanosheets for High Performance Photodetectors. ACS Nano 2012, 6, 5988–5994. [Google Scholar] [CrossRef]
- Hu, P.A.; Wang, L.F.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X.N.; Wen, Z.Z.; Idrobo, J.C.; Miyamoto, Y.; Geohegan, D.B.; et al. Highly Responsive Ultrathin GaS Nanosheet Photodetectors on Rigid and Flexible Substrates. Nano Lett. 2013, 13, 1649–1654. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.X.; Luo, Z.; Conrad, N.J.; Liu, H.; Gong, Y.J.; Najmaei, S.; Ajayan, P.M.; Lou, J.; Xu, X.F.; Ye, P.D. Black Phosphorus-Monolayer MoS2 van der Waals Heterojunction p-n Diode. ACS Nano 2014, 8, 8292–8299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buscema, M.; Groenendijk, D.J.; Steele, G.A.; van der Zant, H.S.J.; Castellanos-Gomez, A. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun. 2014, 5, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Cho, M.Y.; Konar, A.; Lee, J.H.; Cha, G.B.; Hong, S.C.; Kim, S.; Kim, J.; Jena, D.; Joo, J.; et al. High-Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared. Adv. Mater. 2012, 24, 5832–5836. [Google Scholar] [CrossRef] [PubMed]
Material | Measurement Conditions | R (mA/W) | Resp. Time (ms) | Spec-Tral Range | Reference | |||
---|---|---|---|---|---|---|---|---|
Vds (V) | Vgs (V) | λ (nm) | P | |||||
>1L BP | 1 | −40 | 500 | 30 μW | 10,000 | <14 | UV-Vis-IR | This work |
0 | 510 | |||||||
60 | 753 | |||||||
>1L BP | 0.05 | 0 | 633 | 60 nW | 76 | 100 | Vis-IR | Ref. [21] |
>1L BP | 0.02 | 0 | 640 | 10 nW | 5 | 1 | Vis-IR | Ref. [6] |
1L MoS2 | 8 | −70 | 561 | 150 pW | 880 k | 4000 | Vis | Ref. [35] |
1L MoS2 | 1 | 50 | 532 | 80 μW | 8 | 50 | Vis | Ref. [28] |
>1L MoS2 | 1 | −2 | 633 | 50 mW/cm2 | 110 | >10k | Vis-IR | Ref. [36] |
>1L WS2 | 1 | - | 458 | 2 mW | 21m | 5.3 | Vis | Ref. [29] |
>1L GaTe | 5 | 0 | 532 | 30 uW/cm2 | 10m | 6 | Vis | Ref. [30] |
>1L GaSe | 5 | 0 | 254 | 1 mW/cm2 | 2800 | 300 | UV-Vis | Ref. [31] |
>1L GaS | 2 | 0 | 254 | 256 uW/cm2 | 4200 | 30 | UV-Vis | Ref. [32] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, D.; Rong, X.; Han, S.; Cao, P.; Zeng, Y.; Xu, W.; Fang, M.; Liu, W.; Zhu, D.; Lu, Y. High Photoresponse Black Phosphorus TFTs Capping with Transparent Hexagonal Boron Nitride. Membranes 2021, 11, 952. https://doi.org/10.3390/membranes11120952
Yue D, Rong X, Han S, Cao P, Zeng Y, Xu W, Fang M, Liu W, Zhu D, Lu Y. High Photoresponse Black Phosphorus TFTs Capping with Transparent Hexagonal Boron Nitride. Membranes. 2021; 11(12):952. https://doi.org/10.3390/membranes11120952
Chicago/Turabian StyleYue, Dewu, Ximing Rong, Shun Han, Peijiang Cao, Yuxiang Zeng, Wangying Xu, Ming Fang, Wenjun Liu, Deliang Zhu, and Youming Lu. 2021. "High Photoresponse Black Phosphorus TFTs Capping with Transparent Hexagonal Boron Nitride" Membranes 11, no. 12: 952. https://doi.org/10.3390/membranes11120952
APA StyleYue, D., Rong, X., Han, S., Cao, P., Zeng, Y., Xu, W., Fang, M., Liu, W., Zhu, D., & Lu, Y. (2021). High Photoresponse Black Phosphorus TFTs Capping with Transparent Hexagonal Boron Nitride. Membranes, 11(12), 952. https://doi.org/10.3390/membranes11120952