# Modeling and Simulation of Either Co-Current or Countercurrent Operated Reverse-Osmosis-Based Air Water Generator

^{*}

## Abstract

**:**

## 1. Introduction

^{3}[4]. However, there are many regions without sufficient natural drinking water resources. In regions where access to seawater or polluted water is available, desalination or wastewater treatment plants can be used to provide clean water [5]. In case seawater is available, reverse osmosis with membranes is normally used due to the high energy efficiency [6]. If no access to liquid water exists, the water must be transported to the recipients by land or air. In many regions affected by water shortages, large facilities that provide clean water in sufficient quantities do not exist, and transport by land or air seems not feasible. Another potential source is the atmosphere, where the water is stored in the form of water vapor. The earth’s atmosphere contains so much water vapor that in its liquid state it would have a volume of about 13,000 km

^{3}, which is about one seventh the volume of fresh water on the earth’s surface [4].

## 2. Materials and Methods

#### 2.1. Absorbents

#### 2.2. Conceptual Design of Reverse Osmosis Based Air Water Generator

#### 2.2.1. Co-Current Multi-Stage Reverse Osmosis

#### 2.2.2. Countercurrent Multi-Stage Reverse Osmosis

#### 2.3. Modeling

#### 2.3.1. Absorber

#### Assumptions

- The pressure p in the aqueous lithium bromide solution is constant.
- The total pressure ${p}_{tot}$ of the air is constant.
- The liquid film is flat and has no surface waves.
- The film thickness is considered constant along the height of the absorber column.
- The inlet mass flow rate of the solution and the inlet volume flow rate of the air are assumed to be constant and are calculated according to Appendices B and C of [9].
- The conditions of the air and solution are constant at a given height of the absorber.

#### Correlations

#### Calculations of the Absorber

#### Calculations of the Ventilator

#### Solution Algorithm

#### 2.3.2. Reverse Osmosis Process

#### Assumptions

- No temperature changes over the membranes, the pressure exchangers or the pumps.
- The membrane has a salt rejection of 100%, so no salt flows through the membrane.
- Concentration polarization phenomena in the membrane are not considered.
- Water mass transfer through the membrane is calculated using a membrane constant.
- The representative membrane module used has a pressure drop of 1 bar; therefore, this pressure drop is distributed linearly over the membrane.
- No leakages between the streams in the pressure exchangers.

#### Calculations of the Reverse Osmosis Membrane Modules

#### Calculations of the Pressure Exchangers and Pumps

#### Solution Algorithm

#### 2.4. Simulations

^{3}/h, and a solution mass flow of 1.5 kg/s were used as input parameters. Furthermore, different values for the partial pressure of water vapor ${p}_{w}$ and the ambient air temperature ${T}_{air}$ were used as boundary conditions for a series of simulations.

## 3. Results

#### 3.1. Co-Current Multi-Stage Reverse Osmosis

#### 3.2. Countercurrent Multi-Stage Reverse Osmosis

## 4. Discussion

^{3}, and for co-current operation with variable booster pump pressures, it is between ∼230–1480 kWh/m

^{3}. For countercurrent operation with fixed booster pump pressures, the specific energy demand is between ∼230–1260 kWh/m

^{3}, and for countercurrent operation with variable booster pump pressures, it is between ∼230–1240 kWh/m

^{3}. The simulations with variable booster pump pressures resulted in energy demands that were equal to or smaller than those with fixed booster pump pressures; however, they required more reverse osmosis membrane module stages. Under ideal conditions, the values simulated in this paper are slightly lower than those determined by Wahlgren for condensation processes, which require between 270 and 550 kWh/m

^{3}[27].

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

AWG | Air water generator/air water generation |

LCOW | Levelized cost of water |

PX | Pressure exchanger |

Symbols | |

a | Activity $[-]$ |

A | Area $\left[{\mathrm{m}}^{2}\right]$ |

${A}_{memb}$ | Membrane constant $[\mathrm{kg}/\left(\mathrm{s}\phantom{\rule{0.166667em}{0ex}}{\mathrm{m}}^{2}\phantom{\rule{0.166667em}{0ex}}\mathrm{Pa}\right)]$ |

c | Concentration $[\mathrm{mol}/{\mathrm{m}}^{3}]$ |

${c}_{p}$ | Specific heat capacity (at constant pressure) $[\mathrm{J}/(\mathrm{kg}\phantom{\rule{0.166667em}{0ex}}\mathrm{K}\left)\right]$ |

d | Diameter $\left[\mathrm{m}\right]$ |

D | Diffusion coefficient $[{\mathrm{m}}^{2}/\mathrm{s}]$ |

h | Specific enthalpy $[\mathrm{J}/\mathrm{kg}]$ |

$\dot{H}$ | Enthalpy flow $\left[\mathrm{W}\right]$ |

J | Mass flux $[\mathrm{kg}/\left(\mathrm{s}\phantom{\rule{0.166667em}{0ex}}{\mathrm{m}}^{2}\right)]$ |

${L}_{char}$ | Characteristic length $\left[\mathrm{m}\right]$ |

$\dot{m}$ | Mass flow rate $[\mathrm{kg}/\mathrm{s}]$ |

N | Number of elements $[-]$ |

p | Pressure $\left[\mathrm{Pa}\right]$ |

P | Power $\left[\mathrm{W}\right]$ |

$\dot{Q}$ | Heat flow $\left[\mathrm{W}\right]$ |

R | Universal gas constant $[\mathrm{J}/(\mathrm{mol}\phantom{\rule{0.166667em}{0ex}}\mathrm{K}\left)\right]$ |

s | Gap thickness $\left[\mathrm{m}\right]$ |

T | Temperature $\left[\mathrm{K}\right]$ |

$vs.$ | Velocity $[\mathrm{m}/\mathrm{s}]$ |

V | Volume $\left[{\mathrm{m}}^{3}\right]$ |

$\tilde{V}$ | Molar volume $[{\mathrm{m}}^{3}/\mathrm{mol}]$ |

$\dot{V}$ | Volume flow rate $[{\mathrm{m}}^{3}/\mathrm{s}]$ |

${w}_{i}$ | Mass fraction of component i $[\mathrm{kg}/\mathrm{kg}]$ |

x | Position $\left[\mathrm{m}\right]$ |

${x}_{i}$ | Mole fraction of component i $[\mathrm{mol}/\mathrm{mol}]$ |

${X}_{i}$ | Mass load of water per component i $[\mathrm{kg}/\mathrm{kg}]$ |

Indices | |

a | Air |

$abs$ | Absorption |

$avg$ | Average |

$el$ | Electric |

$elem$ | Element |

f | Feed |

g | Gas |

h | Hydraulic |

i | i-th element |

$in$ | Inlet |

j | Solvent |

$out$ | Outlet |

p | Permeate |

r | Retentate |

$sol$ | Solution |

$tot$ | Total |

$vap$ | Vapor |

w | Water |

Greek Symbols | |

$\alpha $ | Heat transfer coefficient $[\mathrm{W}/\left({\mathrm{m}}^{2}\phantom{\rule{0.166667em}{0ex}}\mathrm{K}\right)]$ |

$\beta $ | Mass transfer coefficient $[\mathrm{m}/\mathrm{s}]$ |

$\gamma $ | Activity coefficient $[-]$ |

$\delta $ | Film thickness $\left[\mathrm{m}\right]$ |

$\zeta $ | Drag coefficient $[-]$ |

$\eta $ | Efficiency $[-]$ |

$\vartheta $ | Temperature ${[}^{\xb0}\mathrm{C}]$ |

$\lambda $ | Thermal conductivity $[\mathrm{W}/(\mathrm{m}\phantom{\rule{0.166667em}{0ex}}\mathrm{K}\left)\right]$ |

$\mu $ | Chemical potential $[\mathrm{J}/\mathrm{mol}]$ |

$\nu $ | Kinematic viscosity $[{\mathrm{m}}^{2}/\mathrm{s}]$ |

$\rho $ | Density $[\mathrm{kg}/{\mathrm{m}}^{3}]$ |

$\mathrm{\Pi}$ | Osmotic pressure $\left[\mathrm{Pa}\right]$ |

Dimensionless Numbers | |

$\mathrm{Le}=\lambda /\left(D\phantom{\rule{0.166667em}{0ex}}\rho \phantom{\rule{0.166667em}{0ex}}{c}_{p}\right)$ | Lewis number |

$\mathrm{Nu}=\alpha \phantom{\rule{0.166667em}{0ex}}{L}_{char}/\lambda $ | Nusselt number |

$\mathrm{Pr}=\nu \phantom{\rule{0.166667em}{0ex}}\rho \phantom{\rule{0.166667em}{0ex}}{c}_{p}/\lambda $ | Prandtl number |

$\mathrm{Re}=\rho \phantom{\rule{0.166667em}{0ex}}v\phantom{\rule{0.166667em}{0ex}}{L}_{char}/\eta $ | Reynolds number |

## References

- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Markonis, Y.; Kumar, R.; Hanel, M.; Rakovec, O.; Máca, P.; AghaKouchak, A. The rise of compound warm-season droughts in Europe. Sci. Adv.
**2021**, 7, eabb9668. [Google Scholar] [CrossRef] - Progress on Household Drinking Water, Sanitation and Hygiene 2000–2020: Five Years into the SDGs; Report; World Health Organization (WHO): Geneva, Switzerland; United Nations Children’s Fund (UNICEF): Geneva, Switzerland, 2021.
- Shiklomanov, I. Water in Crisis: A Guide to the World’s Fresh Water Resources; Chapter World Fresh Water Resources; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- Baker, R.W. Membrane Technology and Applications; J. Wiley: Chichester, UK, 2004. [Google Scholar]
- Zheng, X.; Wen, J.; Shi, L.; Cheng, R.; Zhang, Z. A top-down approach to estimate global RO desalination water production considering uncertainty. Desalination
**2020**, 488, 114523. [Google Scholar] [CrossRef] - Mirmanto, M.; Syahrul, S.; Wijayanta, A.; Mulyanto, A.; Winata, L. Effect of evaporator numbers on water production of a free convection air-water harvester. Case Stud. Therm. Eng.
**2021**, 27, 101253. [Google Scholar] [CrossRef] - Li, R.; Shi, Y.; Wu, M.; Hong, S.; Wang, P. Improving atmospheric water production yield: Enabling multiple water harvesting cycles with nano sorbent. Nano Energy
**2020**, 67, 104255. [Google Scholar] [CrossRef] - Fill, M.; Muff, F.; Kleingries, M. Evaluation of a new air water generator based on absorption and reverse osmosis. Heliyon
**2020**, 6, e05060. [Google Scholar] [CrossRef] [PubMed] - DuPont de Nemours, Inc. DuPont™XUS180808 Reverse Osmosis Element. 2020. Available online: https://www.dupont.com/content/dam/dupont/amer/us/en/water-solutions/public/documents/en/45-D01736-en.pdf (accessed on 8 March 2021).
- Kraume, M. Transportvorgänge in der Verfahrenstechnik; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Cameron, I.B.; Clemente, R.B. SWRO with ERI’s PX Pressure Exchanger device—A global survey. Desalination
**2008**, 221, 136–142. [Google Scholar] [CrossRef] - Hirschberg, H.G. Handbuch Verfahrenstechnik und Anlagenbau; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- University of Maryland. LiBrSSC (Aqueous Lithium Bromide) Property Routines. Available online: http://fchart.com/ees/libr_help/ssclibr.pdf (accessed on 6 December 2019).
- Rönsch, S. Anlagenbilanzierung in der Energietechnik; Springer: Wiesbaden, Germany, 2015. [Google Scholar] [CrossRef]
- Bo, S.; Ma, X.; Lan, Z.; Chen, J.; Chen, H. Numerical simulation on the falling film absorption process in a counter-flow absorber. Chem. Eng. J.
**2010**, 156, 607–612. [Google Scholar] [CrossRef] - Xu, Z.F.; Khoo, B.C.; Wijeysundera, N.E. Mass transfer across the falling film: Simulations and experiments. Chem. Eng. Sci.
**2008**, 63, 2559–2575. [Google Scholar] [CrossRef] - Stephan, P.; Kabelac, S.; Kind, M.; Mewes, D.; Schaber, K.; Wetzel, T. (Eds.) VDI-Wärmeatlas; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Thomas Melin, R.R. Membranverfahren; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Jiang, A.; Ding, Q.; Wang, J.; Jiangzhou, S.; Cheng, W.; Xing, C. Mathematical Modeling and Simulation of SWRO Process Based on Simultaneous Method. J. Appl. Math.
**2014**, 2014, 908569. [Google Scholar] [CrossRef] - Sundaramoorthy, S.; Srinivasan, G.; Murthy, D.V.R. An analytical model for spiral wound reverse osmosis membrane modules: Part I—Model development and parameter estimation. Desalination
**2011**, 280, 403–411. [Google Scholar] [CrossRef] - Moser, M.; Micari, M.; Fuchs, B.; Farnós, J. Software Tool for the Simulation of Selected Brine Treatment Technologies; Technical Report; Horizon 2020 Framework Programme: Delft, The Netherlands, 2018. [Google Scholar]
- Böswirth, L.; Bschorer, S. Technische Strömungslehre; Springer: Wiesbaden, Germany, 2014. [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009. [Google Scholar]
- Vostermans Ventilation. Fiberglass Cone Fans—Efficient Ventilation with High Air Yields. 2020. Available online: https://www.vostermans.com/hubfs/Brochures/Fans/Fiberglass%20Cone%20Fans/Multifan%20Fiberglass%20Cone%20fan%20EN.pdf?hsLang=en (accessed on 8 March 2021).
- Conde-Petit, M.R. Solid—Liquid Equilibria (SLE) and Vapour—Liquid Equilibria (VLE) of Aqueous LiBr. 2014. Available online: http://www.aldacs.com/DocBase/AqLiBrSLEVLE.pdf (accessed on 6 December 2019).
- Wahlgren, R.V. Atmospheric water vapour processor designs for potable water production: A review. Water Res.
**2001**, 35, 1–22. [Google Scholar] [CrossRef] - Leiva-Illanes, R.; Escobar, R.; Cardemil, J.M.; Alarcón-Padilla, D.C. Comparison of the levelized cost and thermoeconomic methodologies—Cost allocation in a solar polygeneration plant to produce power, desalted water, cooling and process heat. Energy Convers. Manag.
**2018**, 168, 215–229. [Google Scholar] [CrossRef]

**Figure 1.**Multi-stage reverse osmosis [9].

**Figure 2.**Process schematic for an AWG with absorption and co-current multi-stage reverse osmosis from [9].

**Figure 3.**Process schematic for an AWG with absorption and countercurrent multi-stage reverse osmosis.

**Figure 4.**Energy demand per cubic meter of water [kWh/m

^{3}] (

**a**,

**c**) and number of necessary reverse osmosis membrane modules (

**b**,

**d**) for fixed (

**a**,

**b**) and optimized (

**c**,

**d**) booster pump pressure. The following applies to all figures. The white areas on the left side represent conditions where, for the chosen absorber dimensions, not enough water can be extracted from the air because the required salt mass fraction is too high and the solution starts to crystallize. To determine whether the solution begins to crystallize, the solid liquid equilibrium of aqueous lithium bromide is used [26]. The white areas in the lower right corners represent conditions where the air is oversaturated and therefore no representative statements can be made.

**Figure 5.**Energy demand per cubic meter of water (kWh/m

^{3}) (

**a**,

**c**) and number of necessary reverse osmosis membrane modules (

**b**,

**d**) for fixed (

**a**,

**b**) and optimized (

**c**,

**d**) booster pump pressure. The following applies to all figures. The white areas on the left side represent conditions where, for the chosen absorber dimensions, not enough water can be extracted from the air because the required salt mass fraction is too high and the solution starts to crystallize. To determine whether the solution begins to crystallize, the solid liquid equilibrium of aqueous lithium bromide is used [26]. The white areas in the lower right corners represent conditions where the air is oversaturated and therefore no representative statements can be made.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Fill, M.; Kleingries, M. Modeling and Simulation of Either Co-Current or Countercurrent Operated Reverse-Osmosis-Based Air Water Generator. *Membranes* **2021**, *11*, 913.
https://doi.org/10.3390/membranes11120913

**AMA Style**

Fill M, Kleingries M. Modeling and Simulation of Either Co-Current or Countercurrent Operated Reverse-Osmosis-Based Air Water Generator. *Membranes*. 2021; 11(12):913.
https://doi.org/10.3390/membranes11120913

**Chicago/Turabian Style**

Fill, Marc, and Mirko Kleingries. 2021. "Modeling and Simulation of Either Co-Current or Countercurrent Operated Reverse-Osmosis-Based Air Water Generator" *Membranes* 11, no. 12: 913.
https://doi.org/10.3390/membranes11120913