Investigation of Anti-fouling and UV-Cleaning Properties of PVDF/TiO2 Mixed-Matrix Membrane for Humic Acid Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Stable TiO2 Colloidal Suspension
2.3. Membrane Formation and In-situ Particle Embedment
2.4. Membrane Characterization
2.4.1. Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-ray (EDX) Analysis
2.4.2. Pore Size Distribution
2.4.3. Atomic Force Microscopy (AFM)
2.4.4. Surface Tension (Wettability)
2.4.5. X-Ray Diffraction (XRD)
2.5. Permeation Flux, Anti-Fouling, Defouling, and UV-Cleaning Experiments
3. Results and Discussion
3.1. Morphologies of PVDF/TiO2 Mixed-Matrix Membrane
3.2. Pore Size Distribution
3.3. Atomic Force Microscopy (AFM)
3.4. Contact Angle
3.5. XRD
3.6. Membrane Anti-Fouling Properties and UV-Cleaning Potentials
3.6.1. Water Permeation Test
3.6.2. Anti-Fouling Properties of The Membranes (RFR)
3.6.3. Hydraulic Cleaning Properties of Membranes (FRR)
3.6.4. Self-Cleaning Ability of Intermittently UV-Irradiated Membranes (IFRR(UV))
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chong, W.C.; Chung, Y.T.; Teow, Y.H.; Zain, M.M.; Mahmoudi, E.; Mohammad, A.W. Environmental impact of nanomaterials in composite membranes: Life cycle assessment of algal membrane photoreactor using polyvinylidene fluoride—Composite membrane. J. Clean. Prod. 2018, 202, 591–600. [Google Scholar] [CrossRef]
- Ghani, M.S.H.; Haan, T.Y.; Lun, A.W.; Mohammad, A.W.; Ngteni, R.; Yusof, K.M.M. Fouling assessment of tertiary palm oil mill effluent (POME) membrane treatment for water reclamation. J. Water Reuse Desalin. 2017, 8, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Ho, K.; Teow, Y.H.; Mohammad, A. Optimization of nanocomposite conductive membrane formulation and operating parameters for electrically-enhanced palm oil mill effluent filtration using response surface methodology. Process. Saf. Environ. Prot. 2019, 126, 297–308. [Google Scholar] [CrossRef]
- Teow, Y.H.; Ooi, B.S.; Ahmad, A.L.; Lim, J.K. Mixed-Matrix Membrane for Humic Acid Removal: Influence of Different Types of TiO2 on Membrane Morphology and Performance. Int. J. Chem. Eng. Appl. 2012, 3, 374–379. [Google Scholar] [CrossRef]
- Domány, Z.; Galambos, I.; Vatai, G.; Békássy-Molnár, E. Humic substances removal from drinking water by membrane filtration. Desalination 2002, 145, 333–337. [Google Scholar] [CrossRef]
- Hong, S.; Elimelech, M. Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. J. Membr. Sci. 1997, 132, 159–181. [Google Scholar] [CrossRef]
- Teow, Y.H.; Loh, W.C.; Mohammad, A.W. Thermo-responsive antifouling study of commercial PolyCera membranes for POME treatment. Membr. Water Treat. 2020, 11, 97–109. [Google Scholar]
- Rosnan, N.A.; Teow, Y.H.; Mohammad, A.W. The Effect of ZnO Loading for the Enhancement of Psf/ZnO-GO Mixed Matrix Membrane Performance. Sains Malays. 2018, 47, 2035–2045. [Google Scholar] [CrossRef]
- Teow, Y.H.; Ooi, B.S.; Ahmad, A.L. Fouling behaviors of PVDF-TiO2 mixed-matrix membrane applied to humic acid treatment. J. Water Process Eng. 2017, 15, 89–98. [Google Scholar] [CrossRef]
- Haan, T.Y.; Malaysia, U.K.; Ghani, M.S.H.; Mohammad, A.W. Physical and Chemical Cleaning for Nanofiltration/Reverse Osmosis (NF/RO) Membranes in Treatment of Tertiary Palm Oil Mill Effluent (POME) for Water Reclamation. J. Kejuruteraan 2018, 24, 51–58. [Google Scholar] [CrossRef]
- Teow, Y.H.; Ooi, B.S.; Ahmad, A.L. Study on PVDF-TiO2 mixed-matrix membrane behaviour towards humic acid adsorption. J. Water Process Eng. 2017, 15, 99–106. [Google Scholar] [CrossRef]
- Mahmoudi, E.; Teow, Y.H.; Mohammad, A.W.; Ba-Abbad, M.M.; Ng, L.Y.; Benamor, A. The effect of graphene oxide (GO) loading for the enhancement of nylon 6,6-GO mixed-matrix membrane performance. J. Appl. Polym. Sci. 2015, 132, 41844. [Google Scholar]
- Nyström, M.; Ruohomäki, K.; Kaipia, L. Humic acid as a fouling agent in microfiltration. Desalination 1996, 106, 79–87. [Google Scholar] [CrossRef]
- Lee, N.; Amy, G.; Croué, J.-P.; Buisson, H. Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM). Water Res. 2004, 38, 4511–4523. [Google Scholar] [CrossRef]
- Haan, T.Y.; Yee, W.S.; Mohammad, A.W. Studies on the surface properties and fabrication method of mixed-matrix membrane for textile industry wastewater treatment. Desalination Water Treat. 2018, 135, 303–313. [Google Scholar] [CrossRef]
- Souza, E.; Follmann, H.V.D.M.; Dalri-Cecato, L.; Battistelli, A.A.; Lobo-Recio, M.A.; Belli, T.J.; Lapolli, F.R. Membrane fouling suppression using intermittent electric current with low exposure time in a sequencing batch membrane bioreactor. J. Environ. Chem. Eng. 2020, 8, 104018. [Google Scholar] [CrossRef]
- Kabsch-Korbutowicz, M.; Majewska-Nowak, K.; Winnicki, T. Analysis of membrane fouling in the treatment of water solutions containing humic acids and mineral salts. Desalination 1999, 126, 179–185. [Google Scholar] [CrossRef]
- Lee, E.K.; Chen, V.; Fane, A. Natural organic matter (NOM) fouling in low pressure membrane filtration — effect of membranes and operation modes. Desalination 2008, 218, 257–270. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.-Y.; Shih, K. In situ embedment and growth of anhydrous and hydrated aluminum oxide particles on polyvinylidene fluoride (PVDF) membranes. J. Membr. Sci. 2011, 368, 134–143. [Google Scholar] [CrossRef]
- Sauguet, L.; Boyer, C.; Ameduri, B.; Boutevin, B. Synthesis and Characterization of Poly(vinylidene fluoride)-g-poly(styrene) Graft Polymers Obtained by Atom Transfer Radical Polymerization of Styrene. Macromolecules 2006, 39, 9087–9101. [Google Scholar] [CrossRef]
- Liu, B.; Kita, H.; Yogo, K. Preparation of Si-rich LTA zeolite membrane using organic template-free solution for methanol dehydration. Sep. Purif. Technol. 2020, 239, 116533. [Google Scholar] [CrossRef]
- Ding, K.; Wang, N.; Huang, X.; Liao, C.; Liu, S.; Yang, M.; Wang, Y.-Z. Enhancing lipid productivity with novel SiO2-modified polytetrafluoroethylene (PTFE) membranes in a membrane photobioreactor. Algal Res. 2020, 45, 101752. [Google Scholar] [CrossRef]
- Pereira, E.L.M.; Batista, A.D.S.M.; Alves, N.; De Oliveira, A.H.; Ribeiro, F.A.; Santos, A.P.; Faria, L. Effects of the addition of MWCNT and ZrO2 nanoparticles on the dosimetric properties of PVDF. Appl. Radiat. Isot. 2018, 141, 275–281. [Google Scholar] [CrossRef]
- Mahmoudi, E.; Ng, L.Y.; Ang, W.L.; Teow, Y.H.; Mohammad, A.W. Improving membrane bioreactor performance through the synergistic effect of silver-decorated graphene oxide in composite membranes. J. Water Process. Eng. 2020, 34, 101169. [Google Scholar] [CrossRef]
- Pervez, N.; Stylios, G.K.; Liang, Y.; Ouyang, F.; Cai, Y. Low-temperature synthesis of novel polyvinylalcohol (PVA) nanofibrous membranes for catalytic dye degradation. J. Clean. Prod. 2020, 262, 121301. [Google Scholar] [CrossRef]
- Yoo, J.; Kim, J.; Kim, Y.; Kim, C.K. Novel ultrafiltration membranes prepared from the new miscible blends of polysulfone with poly(1-vinylpyrrolidone-co-styrene) copolymers. J. Membr. Sci. 2003, 216, 95–106. [Google Scholar] [CrossRef]
- Karmakar, S.; Bhattacharjee, S.; De, S. Experimental and modeling of fluoride removal using aluminium fumarate (AlFu) metal organic framework incorporated cellulose acetate phthalate mixed matrix membrane. J. Environ. Chem. Eng. 2017, 5, 6087–6097. [Google Scholar] [CrossRef]
- Teow, Y.H.; Mohammad, A.W. New generation nanomaterials for water desalination: A review. Desalination 2019, 451, 2–17. [Google Scholar] [CrossRef]
- Ho, K.; Teow, Y.; Ang, W.; Mohammad, A. Novel GO/OMWCNTs mixed-matrix membrane with enhanced antifouling property for palm oil mill effluent treatment. Sep. Purif. Technol. 2017, 177, 337–349. [Google Scholar] [CrossRef]
- Auvinen, S.; Alatalo, M.; Haario, H.; Vartiainen, E.; Jalava, J.-P.; Lamminmäki, R.-J. Refractive index functions of TiO2 nanoparticles. J. Phys. Chem. C 2013, 117, 3503–3512. [Google Scholar] [CrossRef]
- Devore, J.R. Refractive Indices of Rutile and Sphalerite. J. Opt. Soc. Am. 1951, 41, 416–419. [Google Scholar] [CrossRef]
- Teow, Y.; Ahmad, A.; Lim, J.; Ooi, B. Preparation and characterization of PVDF/TiO2 mixed matrix membrane via in situ colloidal precipitation method. Desalination 2012, 295, 61–69. [Google Scholar] [CrossRef]
- Van Oss, C.J.; Giese, R.; Li, Z.; Murphy, K.; Norris, J.; Chaudhury, M.; Good, R. Determination of contact angles and pore sizes of porous media by column and thin layer wicking. J. Adhes. Sci. Technol. 1992, 6, 413–428. [Google Scholar] [CrossRef]
- Mackay, M.E.; Tuteja, A.; Duxbury, P.M.; Hawker, C.J.; Van Horn, B.; Guan, Z.; Chen, G.; Krishnan, R.S. General Strategies for Nanoparticle Dispersion. Science 2006, 311, 1740–1743. [Google Scholar] [CrossRef]
- Inagaki, H.; Suzuki, H.; Fujii, M.; Matsuo, T. Note on Experimental Tests of Theories for the Excluded Volume Effect in Polymer Coils. J. Phys. Chem. 1966, 70, 1718–1726. [Google Scholar] [CrossRef]
- Bagchi, P. Theory of stabilization of spherical colloidal particles by nonionic polymers. J. Colloid Interface Sci. 1974, 47, 86–99. [Google Scholar] [CrossRef]
- Wang, M.; Qu, F.; Jia, R.; Sun, S.; Li, G.; Liang, H. Preliminary Study on the Removal of Steroidal Estrogens Using TiO2-Doped PVDF Ultrafiltration Membranes. Water 2016, 8, 134. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Chu, H.-Q.; Dong, B.-Z.; Li, X.; Xia, S.-J.; Qiang, Z.-M. Effect of TiO2 nanowire addition on PVF ultrafiltration membrane performance. Desalination 2011, 271, 90–97. [Google Scholar] [CrossRef]
- Oh, S.J.; Kim, N.; Lee, Y.T. Preparation an characterization of PVDF/TiO2 organic-inorganic composite membranes for fouling resistance improvement. J. Membr. Sci. 2009, 345, 13–20. [Google Scholar] [CrossRef]
- Rana, D.; Matsuura, T. Surface Modifications for Antifouling Membranes. Chem. Rev. 2010, 110, 2448–2471. [Google Scholar] [CrossRef]
- Cao, X.; Ma, J.; Shi, X.; Ren, Z. Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl. Surf. Sci. 2006, 253, 2003–2010. [Google Scholar] [CrossRef]
- Van Oss, C. Acid—Base interfacial interactions in aqueous media. Colloids Surf. A Physicochem. Eng. Asp. 1993, 78, 1–49. [Google Scholar] [CrossRef]
- Dupré, A.; Dupré, P. Théorie Mécanique de la Chaleur; Gauthier-Villars: Paris, France, 1869. [Google Scholar]
- Yu, L.-Y.; Shen, H.-M.; Xu, Z.-L. PVDF-TiO2 composite hollow fiber ultrafiltration membranes prepared by TiO2sol-gel method and blending method. J. Appl. Polym. Sci. 2009, 113, 1763–1772. [Google Scholar] [CrossRef]
- Dillon, D.R.; Tenneti, K.K.; Li, C.Y.; Ko, F.K.; Sics, T.; Hsiao, B.S. On the structure and morphology of polyvinylidenefluoride- nanoclay nanocomposite. Polymer 2006, 47, 1678–1688. [Google Scholar] [CrossRef]
- Buonomenna, M.; Macchi, P.; Davoli, M.; Drioli, E. Poly(vinylidene fluoride) membranes by phase inversion: The role the casting and coagulation conditions play in their morphology, crystalline structure and properties. Eur. Polym. J. 2007, 43, 1557–1572. [Google Scholar] [CrossRef]
- Kallio, T.; Alajoki, S.; Pore, V.; Ritala, M.; Laine, J.; Leskelä, M.; Stenius, P. Antifouling properties of TiO2: Photocatalytic decomposition and adhesion of fatty and rosin acids, sterols and lipophilic wood extractives. Colloids Surf. A Physicochem. Eng. Asp. 2006, 291, 162–176. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Y.; Wang, J.; Wang, S. Studies on nanofiltration membrane fouling in the treatment of water solutions containing humic acids. Desalination 2005, 178, 171–178. [Google Scholar] [CrossRef]
- Schäfer, A.I. Natural Organics Removal Using Membranes; UNESCO Centre for Membrane Science and Technology: Sydney, Australia, 1999. [Google Scholar]
- Yuan, W. Humic acid fouling during microfiltration. J. Membr. Sci. 1999, 157, 1–12. [Google Scholar] [CrossRef]
- Maximous, N.; Nakhla, G.; Wan, W. Comparative assessment of hydrophobic and hydrophilic membrane fouling in wastewater applications. J. Membr. Sci. 2009, 339, 93–99. [Google Scholar] [CrossRef]
- Madaeni, S.; Ghaemi, N.; Alizadeh, A.; Joshaghani, M. Influence of photo-induced superhydrophilicity of titanium dioxide nanoparticles on the anti-fouling performance of ultrafiltration membranes. Appl. Surf. Sci. 2011, 257, 6175–6180. [Google Scholar] [CrossRef]
- Tsai, S.-J.; Cheng, S. Effect of TiO2 crystalline structure in photocatalytic degradation of phenolic contaminants. Catal. Today 1997, 33, 227–237. [Google Scholar] [CrossRef]
TiO2 Sample | Crystalline Phase | Average Crystalline Size (nm) | Hydrodynamic Cluster Size in Suspension (nm) |
---|---|---|---|
PC-20 | 85% Anatase 15% Rutile | 20 | 461.3 |
P25 | 75% Anatase 25% Rutile | ~21 | 200 |
X500 | Anatase | <8 | 38 |
Membrane | PVDF Weight Ratio (%) | DMAc Weight Ratio (%) | Type of TiO2 | TiO2 Concentration (g/L) |
---|---|---|---|---|
M | 18 | 82 | - | - |
M1 | 18 | 82 | PC-20 | 0.01 |
M2 | 18 | 82 | P25 | 0.01 |
M3 | 18 | 82 | X500 | 0.01 |
Liquid | γTOT (mJ/m2) | γLW (mJ/m2) | γAB (mJ/m2) | γ+ (mJ/m2) | γ− (mJ/m2) | H (P or dPa s) |
---|---|---|---|---|---|---|
Water | 72.80 | 21.80 | 51.00 | 25.50 | 25.50 | 0.01000 |
Glycerol | 64.00 | 34.00 | 30.00 | 3.92 | 57.40 | 14.90000 |
Formamide | 58.00 | 39.00 | 19.00 | 2.28 | 39.60 | 0.04550 |
Samples | Rq (nm) | Surface Area Ratio (%) |
---|---|---|
M | 30.625 | 2.1849 |
M1 | 55.956 | 7.7484 |
M2 | 107.355 | 15.1029 |
M3 | 29.533 | 2.3628 |
Membrane | TiO2 Type | Contact Angle (°) | γsLW | γs+ | γs− | γsw | ΔGsw |
---|---|---|---|---|---|---|---|
M | - | 67.56 ± 0.92 | 50.301 | 3.812 | 28.931 | 3.834 | −7.668 |
M1 | PC-20 | 68.24 ± 0.81 | 42.656 | 1.732 | 26.598 | 2.664 | −5.328 |
M2 | P25 | 74.44 ± 0.65 | 44.899 | 1.628 | 17.828 | 10.373 | −20.746 |
M3 | X500 | 71.41 ± 0.76 | 63.851 | 5.417 | 19.763 | 14.323 | −28.646 |
Membrane | Initial Water Flux (L/m2 h) | RFR (%) | FRR (%) | IFRR(UV) (%) |
---|---|---|---|---|
M | 34.97 ± 2.25 | 24.24 | 82.03 | 0.10 |
M1 | 43.21 ± 4.31 | 23.48 | 78.58 | 5.74 |
M2 | 37.67 ± 1.11 | 36.07 | 61.89 | 16.56 |
M3 | 58.81 ± 1.96 | 14.69 | 78.24 | 15.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teow, Y.H.; Ooi, B.S.; Ahmad, A.L.; Lim, J.K. Investigation of Anti-fouling and UV-Cleaning Properties of PVDF/TiO2 Mixed-Matrix Membrane for Humic Acid Removal. Membranes 2021, 11, 16. https://doi.org/10.3390/membranes11010016
Teow YH, Ooi BS, Ahmad AL, Lim JK. Investigation of Anti-fouling and UV-Cleaning Properties of PVDF/TiO2 Mixed-Matrix Membrane for Humic Acid Removal. Membranes. 2021; 11(1):16. https://doi.org/10.3390/membranes11010016
Chicago/Turabian StyleTeow, Yeit Haan, Boon Seng Ooi, Abdul Latif Ahmad, and Jit Kang Lim. 2021. "Investigation of Anti-fouling and UV-Cleaning Properties of PVDF/TiO2 Mixed-Matrix Membrane for Humic Acid Removal" Membranes 11, no. 1: 16. https://doi.org/10.3390/membranes11010016
APA StyleTeow, Y. H., Ooi, B. S., Ahmad, A. L., & Lim, J. K. (2021). Investigation of Anti-fouling and UV-Cleaning Properties of PVDF/TiO2 Mixed-Matrix Membrane for Humic Acid Removal. Membranes, 11(1), 16. https://doi.org/10.3390/membranes11010016