Impacts of Multilayer Hybrid Coating on PSF Hollow Fiber Membrane for Enhanced Gas Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. PSF Hollow Fiber Membrane Fabrication
2.3. GO Synthesis and Characterization
2.4. Preparation of Composite Hollow Fiber Membrane
2.4.1. Coating Solution Preparation
2.4.2. Multilayer Hybrid Coating Procedure
2.5. Membrane Evaluation and Characterization
3. Results and Discussion
3.1. Characterization of GO
3.2. Effect of GO Loadings on the Membrane Properties
3.3. Impacts of GO Loadings on Membrane Performance
3.4. Effect of Feed Pressure on Multilayer-Coated Membranes
3.5. Performance Stability of Multilayer Membranes
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tabe–Mohammadi, A. A Review of the Applications of Membrane Separation Technology in Natural Gas Treatment. Sep. Sci. Technol. 1999, 34, 2095–2111. [Google Scholar] [CrossRef]
- Speight, J.G. Chapter 4—Corrosion in Gas Processing Plants. In Oil and Gas Corrosion Prevention; Elsevier: New York, NY, USA, 2014; pp. 67–91. [Google Scholar]
- Stafford, T.M. Indoor air quality and academic performance. J. Environ. Econ. Manag. 2015, 70, 34–50. [Google Scholar] [CrossRef] [Green Version]
- Chong, K.C.; Lai, S.O.; Thiam, H.S.; Teoh, H.C.; Heng, S.L. Recent progress of oxygen/nitrogen separation using membrane technology. J. Eng. Sci. Technol. 2016, 11, 1016–1030. [Google Scholar]
- Hongjun, Y.; Shuanshi, F.; Xuemei, L.; Yanhong, W.; Jianghua, N. Economic Comparison of Three Gas Separation Technologies for CO2 Capture from Power Plant Flue Gas. Sep. Sci. Eng. Chin. J. Chem. Eng. 2011, 19, 615–620. [Google Scholar]
- Ivanova, S.; Lewis, R. Producing nitrogen via pressure swing adsorption. Chem. Eng. Prog. 2012, 108, 38–42. [Google Scholar]
- Ebrahimi, A.; Meratizaman, M.; Reyhani, H.A.; Pourali, O.; Amidpour, M. Energetic, exergetic and aconomic assessment of oxygen production from two columns cryogenic air separation unit. Energy 2015, 90, 1298–1316. [Google Scholar] [CrossRef]
- Kargari, A.; Rezaeinia, S. State-of-the-art modification of polymeric membranes by PEO and PEG for carbon dioxide separation: A review of the current status and future perspectives. J. Ind. Eng. Chem. 2020, 84, 1–22. [Google Scholar] [CrossRef]
- Usman, M.; Ahmed, A.; Yu, B.; Peng, Q.; Shen, Y.; Cong, H. A review of different synthetic approaches of amorphous intrinsic microporous polymers and their potential applications in membrane-based gases separation. Eur. Polym. J. 2019, 120, 109262. [Google Scholar] [CrossRef]
- Yampolskii, Y.; Belov, N.; Alentiev, A. Perfluorinated polymers as materials of membranes for gas and vapor separation. J. Membr. Sci. 2020, 598, 117779. [Google Scholar] [CrossRef]
- Yong, W.F.; Zhang, H. Recent advances in polymer blend membranes for gas separation and pervaporation. Prog. Mater. Sci. 2020, 100713. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Nie, L.; Lee, J.M.; Bae, T.H. The influence of cations intercalated in graphene oxide membranes in tuning H2/CO2 separation performance. Sep. Purif. Technol. 2020, 246, 116933. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Kammakakam, I.; Kim, H.W.; Nam, S.Y.; Park, H.B.; Kim, T.H. Alkyl imidazolium-functionalized cardo-based poly(ether ketone)s as novel polymer membranes for O2/N2 and CO2/N2 separations. Polymer 2013, 54, 3534–3541. [Google Scholar] [CrossRef]
- Lamlong, C.; Taweepreda, W. Coating of porous PVC-PEG memebrane with crosslinkable XSBR for O2/N2 and CO2/N2 separation. Polymer 2016, 96, 205–212. [Google Scholar] [CrossRef]
- Dai, Y.; Ruan, X.; Yan, Z.; Yang, K.; Yu, M.; Li, H.; Zhao, W.; He, G. Imidazole functionalized graphene oxide/Pebax mixed matrix membranes for efficient CO2 capture. Sep. Purif. Technol. 2016, 166, 171–180. [Google Scholar] [CrossRef]
- Jamil, N.; Othman, N.H.; Alias, N.H.; Shahruddin, M.Z.; Roslan, R.A.; Lau, W.J.; Ismail, A.F. Mixed matrix membranes incorporated with reduced graphene oxide (rGO) and zeolitic imidazole framework-8 (ZIF-8) nanofillers for gas separation. J. Solid State Chem. 2019, 270, 419–427. [Google Scholar] [CrossRef]
- Wijiyanti, R.; Wardhani, A.R.K.; Roslan, R.A.; Gunawan, T.; Zulhairun, A.K.; Ismail, A.F.; Widiastuti, N. Enhanced gas separation performance of polysulfone membrane by incorporation of zeolite-templated carbon. Malays. J. Fundam. Appl. Sci. 2020, 16, 128–134. [Google Scholar] [CrossRef]
- Matavos-Aramyan, S.; Jazebizadeh, M.H.; Babaei, S. Investigating CO2, O2 and N2 permeation properties of two new types of nanocomposite membranes: Polyurethane/silica and polyesterurethane/silica. Nano-Struct. Nano-Objects 2020, 21, 100414. [Google Scholar] [CrossRef]
- Shi, Y.; Liang, B.; Lin, R.B.; Zhang, C.; Chen, B. Gas Separation via Hybrid Metal–Organic Framework/Polymer Membranes: Review. Trends Chem. 2020, 2, 254–269. [Google Scholar] [CrossRef]
- Page, C.; Fouda, A.E.; Tyagi, R.; Matsura, T. Pervaporation performance of polyetherimide membranes spin- and dip-coated with polydimethylsiloxane. J. Appl. Polym. Sci. 1994, 54, 975–989. [Google Scholar] [CrossRef]
- Marchese, J.; Ochoa, N.; Pagliero, C. Preparation and gas separation performance of silicone-coated polysulfone membranes. J. Chem. Technol. Biotechnol. 1995, 63, 329–336. [Google Scholar] [CrossRef]
- Madaeni, S.; Hoseini, S. Fabrication and characterization of PDMS coated PES membranes for separation of ethylene from nitrogen. J. Polym. Res. 2009, 16, 591–599. [Google Scholar] [CrossRef]
- Sadrzadeh, M.; Saljoughi, E.; Shahidi, K.; Mohammadi, T. Preparation and characterization of a composite PDMS membrane on CA support. Polym. Adv. Technol. 2010, 21, 568–577. [Google Scholar] [CrossRef]
- Liu, R.X.; Qiao, X.Y.; Chung, T.S.; Wang, R. Dual-layer P84/polyethersulfone hollow fibers for pervaporation dehydration of isopropanol. J. Membr. Sci. 2007, 294, 103–114. [Google Scholar] [CrossRef]
- Ding, X.; Cao, Y.; Zhao, H.; Wang, L.; Yuan, Q. Fabrication of high performance Matrimid/polysulfone dual-layer hollow fiber membranes for O2/N2 separation. J. Membr. Sci. 2008, 323, 352–361. [Google Scholar] [CrossRef]
- Wu, H.C.; Nile, G.; Lin, J.Y.S. Mixed-conducting ceramic-carbonate dual-phase membranes: Gas permeation and counter-permeation. J. Membr. Sci. 2020, 605, 118093. [Google Scholar] [CrossRef]
- Henis, J.M.S.; Tripodi, M.K. A novel approach to gas separation using composite hollow fiber membranes. Sep. Sci. Technol. 1980, 15, 1059–1068. [Google Scholar] [CrossRef]
- Bernardo, P.; Clarizia, G. 30 Years of Membrane Technology for Gas Separation. Chem. Eng. Trans. 2013, 32, 1999–2004. [Google Scholar]
- Liu, X.; Liu, H.; Li, P. Effect of polymer dope concentration on the morphology and performance of PES/PDMS hollow fiber composite membrane for gas separation. J. Mater. Sci. 2017, 1, 1–5. [Google Scholar] [CrossRef]
- Chong, K.C.; Lai, S.O.; Lau, W.J.; Thiam, H.S.; Ismail, A.F.; Roslan, R.A. Preparation, Characterization, and Performance Evaluation of Polysulfone Hollow Fiber Membrane with PEBAX or PDMS Coating for Oxygen Enhancement Process. Polymer 2018, 10, 126. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.Z.; Thong, Z.; Li, P.; Chung, T.S. High performance composite hollow fiber membranes for CO2/H2 and CO2/N2 separation. Int. J. Hydrogen Energy 2014, 39, 5043–5053. [Google Scholar] [CrossRef]
- Dai, Z.; Ansaloni, L.; Deng, L. Recent advances in multi-layer composite polymeric membranes for CO2 separation: A review. Green Energy Environ. 2016, 1, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.Z.; Liu, J.T.; Lai, J.Y.; Chung, T.S. High-performance multiple-layer PIM composite hollow fiber membranes for gas separation. J. Membr. Sci. 2018, 563, 93–106. [Google Scholar] [CrossRef]
- Zulhairun, A.K.; Fachrurrazi, Z.G.; Nur Izwanne, M.; Ismail, A.F. Asymmetric hollow fiber membrane coated with polydimethylsiloxane–metal organic framework hybrid layer for gas separation. Sep. Purif. Technol. 2015, 146, 85–93. [Google Scholar] [CrossRef]
- Sarfraz, M.; Ba-Shammakh, M. Synergistic effect of incorporating ZIF-302 and graphene oxide to polysulfone to develop highly selective mixed-matrix membranes for carbon dioxide separation from wet post-combustion flue gases. J. Ind. Eng. Chem. 2016, 36, 154–162. [Google Scholar] [CrossRef]
- Yoo, B.M.; Shin, J.E.; Lee, H.D.; Park, H.B. Graphene and graphene oxide membranes for gas separation applications. Curr. Opin. Chem. Eng. 2017, 16, 39–47. [Google Scholar] [CrossRef]
- Roslan, R.A.; Lau, W.J.; Sakthivel, D.B.; Khademi, S.; Zulhairun, A.K.; Goh, P.S.; Ismail, A.F.; Cong, K.C.; Lai, S.O. Separation of CO2/CH4 and O2/N2 by polysulfone hollow fiber membranes: Effects of membrane support properties and surface coating materials. J. Polym. Eng. 2018, 38, 871–880. [Google Scholar] [CrossRef]
- Roslan, R.A.; Lau, W.J.; Zulhairun, A.K.; Goh, P.S.; Ismail, A.F. Improving CO2/CH4 and O2/N2 separation by using surface-modified polysulfone hollow fiber membranes. J. Polym. Res. 2020, 27, 119. [Google Scholar] [CrossRef]
- Suleman, M.S.; Lau, K.K.; Yeong, Y.F. Plasticization and Swelling in Polymeric Membranes in CO2 Removal from Natural Gas. Chem. Eng. Technol. 2016, 39, 1604–1616. [Google Scholar] [CrossRef]
- Ismail, N.H.; Salleh, W.N.W.; Sazali, N.; Ismail, A.F.; Yusof, N.; Aziz, F. Disk supported carbon membrane via spray coating method: Effect of carbonization temperature and atmosphere. Sep. Purif. Technol. 2018, 195, 295–304. [Google Scholar] [CrossRef]
- Lai, G.S.; Lau, W.J.; Goh, P.S.; Ismail, A.F.; Yusof, N.; Tan, Y.H. Graphene oxide incorporated thin film nanocomposite nanofiltration membrane for enhanced salt removal performance. Desalination 2016, 387, 14–24. [Google Scholar] [CrossRef]
- Zahri, K.; Goh, P.S.; Ismail, A.F. The incorporation of graphene oxide into polysulfone mixed matrix membrane for CO2 / CH4 separation. Earth Environ. Sci. 2016, 36, 012007. [Google Scholar]
- Ng, Z.C.; Lau, W.J.; Ismail, A.F. GO/PVA-integrated TFN RO membrane: Exploring the effect of orientation switching between PA and GO/PVA and evaluating the GO loading impact. Desalination 2020, 496, 114538. [Google Scholar] [CrossRef]
- Johra, F.T.; Lee, J.W.; Jung, W.G. Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 2014, 20, 2883–2887. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X.; Zeng, S.; Bai, L.; Ga, H.; Deng, J.; Yang, Q.; Zhang, S. Pebax-based composite membranes with high gas transport properties enhanced by ionic liquids for CO2 separation. RSC Adv. 2017, 7, 6422–6431. [Google Scholar] [CrossRef] [Green Version]
- Aguiar, K.R.; Santos, V.G.; Eberlin, M.N.; Rischka, K.; Noeske, M.; Tremiliosi-Filho, G.; Rodrigues-Filho, U.P. Efficient green synthesis of bis(cyclic carbonate) poly(dimethylsiloxane) derivative using CO2 addition: A novel precursor for synthesis of urethanes. RSC Adv. 2014, 4, 24334–24343. [Google Scholar] [CrossRef]
- Nasir, N.A.A.; Junaidi, M.U.M.; Hashim, N.A.; Zuki1, F.M.; Rohani, R. Diamine Modified Polysulfone and P-84 Symmetric Membranes for Hydrogen/Carbon Dioxide Separation. Int. J. Appl. Eng. Res. 2019, 14, 2883–2889. [Google Scholar]
- Mansoori, S.A.A.; Pakizeh, M.; Jomekian, A. CO2 Selectivity of a new PDMS/PSf Membrane Prepared at Different Conditions. J. Membr. Sci. Technol. 2011, 1, 106. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Wu, H.; Wang, J.; Jiang, Z. Bioadhesion-inspired polymer-inorganic nanohybrid membranes with enhanced CO2 capture properties. J. Mater. Chem. 2012, 22, 19617–19620. [Google Scholar] [CrossRef]
- Li, T.; Pan, Y.; Peinemann, K.V.; Lai, Z. Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. J. Membr. Sci. 2013, 425–426, 235–242. [Google Scholar] [CrossRef]
- Dai, Y.; Johnson, J.R.; Karvan, O.; Sholl, D.S.; Koros, W.J. Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations. J. Membr. Sci. 2012, 401–402, 76–82. [Google Scholar] [CrossRef]
- Sutrisna, P.D.; Hou, J.; Li, H.; Zhang, Y.; Chen, V. Improved operational stability of Pebax-based gas separation membranes with ZIF-8: A comparative study of flat sheet and composite hollow fibre membranes. J. Membr. Sci. 2017, 524, 266–279. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, Q.; Hou, J.; Sutrisna, P.D.; Chen, V. Shear-aligned graphene oxide laminate/Pebax ultrathin composite hollow fiber membranes using a facile dip-coating approach. J. Mater. Chem. A 2017, 5, 7732–7737. [Google Scholar] [CrossRef]
- Janakiram, S.; Espejo, J.L.M.; Høisæter, K.K.; Lindbråthen, A.; Ansaloni, L.; Deng, L. Three-phase hybrid facilitated transport hollow fiber membranes for enhanced CO2 separation. Appl. Mater. Today 2020, 21, 100801. [Google Scholar] [CrossRef]
- Scholes, C.A.; Chen, G.Q.; Stevens, G.W.; Kentish, S.E. Plasticization of ultra-thin polysulfone membranes by carbon dioxide. J. Membr. Sci. 2010, 346, 208–214. [Google Scholar] [CrossRef]
Support Polymer | 1 Hybrid Coating Material | Configuration | Pure Gas Permeance (GPU) | O2/N2 | CO2/CH4 | CO2/N2 | Reference | |||
---|---|---|---|---|---|---|---|---|---|---|
O2 | N2 | CO2 | CH4 | |||||||
PAN | β-CD/PIM/PDMS | Hollow fiber | 2 69.0 | 2 21.50 | 2 483.40 | - | 3.20 | - | 22.50 | [34] |
PSF | Cu3(BTC)2/PDMS | Hollow fiber | - | 3.10 | 109.20 | 3.70 | - | 29.51 | 35.23 | [35] |
PSF | TEOS/PDMS | Flat sheet | - | - | 21.50 | 3.90 | - | 39.81 | - | [49] |
PSF | Fe(DA)/Pebax | Hollow fiber | - | 1.61 | 90.00 | - | - | 56.00 | - | [50] |
PAN | ZIF-7/Pebax | Flat sheet | - | 0.37 | 39.00 | 0.89 | - | 44.00 | 105.00 | [51] |
PEI | ZIF-8/Ultem | Hollow fiber | - | 1.21 | 34.00 | - | - | - | 28.00 | [52] |
PVDF | ZIF-8/Pebax | Hollow fiber | - | 10.94 | 350.00 | 25.00 | - | 14.00 | 32.00 | [53] |
PVDF | GO/Pebax | Hollow fiber | - | 9.65 | 415.00 | - | - | - | 43.00 | [54] |
PPO | GO/SHPAA/PVA | Hollow fiber | 26.61 | 825.00 | 41.25 | - | 20.00 | 31.00 | [55] | |
PSF | GO/Pebax | Hollow fiber | 5.32 | 0.66 | 28.08 | 0.53 | 8.05 | 52.57 | 42.55 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roslan, R.A.; Lau, W.J.; Lai, G.S.; Zulhairun, A.K.; Yeong, Y.F.; Ismail, A.F.; Matsuura, T. Impacts of Multilayer Hybrid Coating on PSF Hollow Fiber Membrane for Enhanced Gas Separation. Membranes 2020, 10, 335. https://doi.org/10.3390/membranes10110335
Roslan RA, Lau WJ, Lai GS, Zulhairun AK, Yeong YF, Ismail AF, Matsuura T. Impacts of Multilayer Hybrid Coating on PSF Hollow Fiber Membrane for Enhanced Gas Separation. Membranes. 2020; 10(11):335. https://doi.org/10.3390/membranes10110335
Chicago/Turabian StyleRoslan, Rosyiela Azwa, Woei Jye Lau, Gwo Sung Lai, Abdul Karim Zulhairun, Yin Fong Yeong, Ahmad Fauzi Ismail, and Takeshi Matsuura. 2020. "Impacts of Multilayer Hybrid Coating on PSF Hollow Fiber Membrane for Enhanced Gas Separation" Membranes 10, no. 11: 335. https://doi.org/10.3390/membranes10110335
APA StyleRoslan, R. A., Lau, W. J., Lai, G. S., Zulhairun, A. K., Yeong, Y. F., Ismail, A. F., & Matsuura, T. (2020). Impacts of Multilayer Hybrid Coating on PSF Hollow Fiber Membrane for Enhanced Gas Separation. Membranes, 10(11), 335. https://doi.org/10.3390/membranes10110335