Transport Membrane Condenser Heat Exchangers to Break the Water-Energy Nexus—A Critical Review
Abstract
:1. Introduction: Challenges in Power Plants
2. Membrane-Based Flue Gas Dehydration: Three Different Technologies
3. Transport Membrane Condensers
3.1. Heat Transfer Efficiency of the TMC
3.2. Capillary Condensation
3.3. TMC Data and Parametric Study
3.4. TMC Materials (Ceramic vs. Polymeric)
3.5. Water Dehydration Performance Comparison and Water Purity
4. Other Applications for TMC Technology
5. Conclusions
- -
- The effect of pore size in the TMC is still vague from the capillary condensation perspectives, and the recovered water quality needs to be investigated in more detail. The SOX/water selectivity as a function of membrane pore size is still an open question.
- -
- Most TMC materials now are inorganic, but more research should be carried out with cost-competitive polymeric materials. More specifically, the thermal conductivity of polymeric materials needs to be improved, possibly by incorporating fillers.
- -
- It is yet not possible to cross-compare TMC literature data objectively. There is yet no figure of merit nor dimensionless parameter in this emerging field. Thus, a new dimensionless parameter should be developed.
- -
- The energetic value of the recovered water must be assessed. In order to claim that the TMC recovered “energy,” the outlet temperature must possess useful thermal energy with >50 °C.
Funding
Conflicts of Interest
References
- Falkner, R. The Paris Agreement and the new logic of international climate politics. Int. Aff. 2016, 92, 1107–1125. [Google Scholar] [CrossRef]
- Dieter, C.A. Water Availability and Use Science Program: Estimated Use of Water in the United States in 2015; Geological Survey: Reston, VA, USA, 2018. [Google Scholar]
- Maupin, M.A. Summary of Estimated Water Use in the United States in 2015; US Geological Survey: Reston, VA, USA, 2018. [Google Scholar] [CrossRef] [Green Version]
- Fleischli, S.; Hayat, B. Power plant cooling and associated impacts: The need to modernize US power plants and protect our water resources and aquatic ecosystems. Nat. Resour. Def. Counc. 2014. Available online: https://www.nrdc.org/sites/default/files/power-plant-cooling-IB.pdf (accessed on 1 May 2020).
- Particulate Matters, What are They; Korea-Ministry-of-Environment (Ed.) Korea-Ministry-of-Environment: Seoul, Korea, 2016. [Google Scholar]
- Kim, J.F.; Park, A.; Kim, S.-J.; Lee, P.; Cho, Y.; Park, H.; Nam, S.; Park, Y. Harnessing clean water from power plant emissions using membrane condenser technology. ACS Sustain. Chem. Eng. 2018, 6, 6425–6433. [Google Scholar] [CrossRef]
- Jeong, K.; Kessen, M.J.; Bilirgen, H.; Levy, E.K. Analytical modeling of water condensation in condensing heat exchanger. Int. J. Heat Mass Transf. 2010, 53, 2361–2368. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, Y.; Cao, S.; Li, X.; Su, X.; An, L.; Gao, D. Heat exchange and water recovery experiments of flue gas with using nanoporous ceramic membranes. Appl. Therm. Eng. 2017, 110, 686–694. [Google Scholar] [CrossRef]
- Levy, E.; Bilirgen, H.; Jeong, K.; Kessen, M.; Samuelson, C.; Whitcombe, C. Recovery of Water from Boiler Flue Gas; Office of Research and Sponsored Programs: Bethlehem, PA, USA, 2008. [Google Scholar]
- Folkedahl, B.C.; Weber, G.F.; Collings, M.E. Water Extraction from Coal-Fired Power Plant Flue Gas; National Energy Technology Laboratory: Pittsburgh, PA, USA, 2006. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Hussain, C.M.; Mitra, S. Carbon nanotube-immobilized super-absorbent membrane for harvesting water from the atmosphere. Environ. Sci. Water Res. Technol. 2015, 1, 753–760. [Google Scholar] [CrossRef]
- Sijbesma, H.; Nymeijer, K.; van Marwijk, R.; Heijboer, R.; Potreck, J.; Wessling, M. Flue gas dehydration using polymer membranes. J. Membr. Sci. 2008, 313, 263–276. [Google Scholar] [CrossRef]
- Hakami, M.W.; Alkhudhiri, A.; Al-Batty, S.; Zacharof, M.-P.; Maddy, J.; Hilal, N. Ceramic Microfiltration Membranes in Wastewater Treatment: Filtration Behavior, Fouling and Prevention. Membranes 2020, 10, 248. [Google Scholar] [CrossRef]
- Li, L.; Xu, R.; Song, C.; Zhang, B.; Liu, Q.; Wang, T. A Review on the Progress in Nanoparticle/C Hybrid CMS Membranes for Gas Separation. Membranes 2018, 8, 134. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; Tsuru, T. Organosilica-Based Membranes in Gas and Liquid-Phase Separation. Membranes 2019, 9, 107. [Google Scholar] [CrossRef] [Green Version]
- Brämer, C.; Tünnermann, L.; Gonzalez Salcedo, A.; Reif, O.-W.; Solle, D.; Scheper, T.; Beutel, S. Membrane Adsorber for the Fast Purification of a Monoclonal Antibody Using Protein A Chromatography. Membranes 2019, 9, 159. [Google Scholar] [CrossRef] [Green Version]
- Bazinet, L.; Geoffroy, T.R. Electrodialytic Processes: Market Overview, Membrane Phenomena, Recent Developments and Sustainable Strategies. Membranes 2020, 10, 221. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Thompson, S.M.; Serbanescu-Martin, A.; Wijmans, J.G.; Amo, K.D.; Lokhandwala, K.A.; Merkel, T.C. Dehydration of natural gas using membranes. Part I: Composite membranes. J. Membr. Sci. 2012, 413, 70–81. [Google Scholar] [CrossRef]
- Li, G.M.; Feng, C.; Li, J.F.; Liu, J.Z.; Wu, Y.L. Water vapor permeation and compressed air dehydration performances of modified polyimide membrane. Sep. Purif. Technol. 2008, 60, 330–334. [Google Scholar] [CrossRef]
- Metz, S.J.; van de Ven, W.J.C.; Potreck, J.; Mulder, M.H.V.; Wessling, M. Transport of water vapor and inert gas mixtures through highly selective and highly permeable polymer membranes. J. Membr. Sci. 2005, 251, 29–41. [Google Scholar] [CrossRef]
- Scholes, C.A.; Kentish, S.E.; Stevens, G.W.; deMontigny, D. Comparison of thin film composite and microporous membrane contactors for CO2 absorption into monoethanolamine. Int. J. Greenh. Gas Control 2015, 42, 66–74. [Google Scholar] [CrossRef]
- Macedonio, F.; Brunetti, A.; Barbieri, G.; Drioli, E. Membrane condenser as a new technology for water recovery from humidified “waste” gaseous streams. Ind. Eng. Chem. Res. 2013, 52, 1160–1167. [Google Scholar] [CrossRef]
- Macedonio, F.; Cersosimo, M.; Brunetti, A.; Barbieri, G.; Drioli, E. Water recovery from humidified waste gas streams: Quality control using membrane condenser technology. Chem. Eng. Process. Process Intensif. 2014, 86, 196–203. [Google Scholar] [CrossRef]
- Brunetti, A.; Santoro, S.; Macedonio, F.; Figoli, A.; Drioli, E.; Barbieri, G. Waste gaseous streams: From environmental issue to source of water by using membrane condensers. CLEAN Soil Air Water 2014, 42, 1145–1153. [Google Scholar] [CrossRef]
- Drioli, E.; Santoro, S.; Simone, S.; Barbieri, G.; Brunetti, A.; Macedonio, F.; Figoli, A. ECTFE membrane preparation for recovery of humidified gas streams using membrane condenser. React. Funct. Polym. 2014, 79, 1–7. [Google Scholar] [CrossRef]
- Brunetti, A.; Macedonio, F.; Barbieri, G.; Drioli, E. Membrane condenser as emerging technology for water recovery and gas pre-treatment: Current status and perspectives. BMC Chem. Eng. 2019, 1, 19. [Google Scholar] [CrossRef]
- Enright, R.; Miljkovic, N.; Al-Obeidi, A.; Thompson, C.V.; Wang, E.N. Condensation on superhydrophobic surfaces: The role of local energy barriers and structure length scale. Langmuir 2012, 28, 14424–14432. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Bao, A.; Kunc, W.; Liss, W. Coal power plant flue gas waste heat and water recovery. Appl. Energy 2012, 91, 341–348. [Google Scholar] [CrossRef]
- Wang, D. Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas; Institute of Gas Technology: Des Plaines, IL, USA, 2012. [Google Scholar]
- Cannon Boiler Works, Inc. Ultramizer. Available online: https://cannonboilerworks.com/boiler-economizers/ultramizer/ (accessed on 19 September 2020).
- Che, D.; Da, Y.; Zhuang, Z. Heat and mass transfer characteristics of simulated high moisture flue gases. Heat Mass Transfer. 2005, 41, 250–256. [Google Scholar] [CrossRef]
- Levy, E.; Bilirgen, H.; DuPoint, J. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers; Lehigh University: Bethlehem, PA, USA, 2011. [Google Scholar]
- Bao, A.; Wang, D.; Lin, C.-X. Nanoporous membrane tube condensing heat transfer enhancement study. Int. J. Heat Mass Transfer 2015, 84, 456–462. [Google Scholar] [CrossRef]
- Soleimanikutanaei, S.; Lin, C.X.; Wang, D. Modeling and simulation of cross-flow transport membrane condenser heat exchangers. Int. Commun. Heat Mass Transfer 2018, 95, 92–97. [Google Scholar] [CrossRef]
- Soleimanikutanaei, S.; Lin, C.-X.; Wang, D. Numerical modeling and analysis of Transport Membrane Condensers for waste heat and water recovery from flue gas. Int. J. Therm. Sci. 2019, 136, 96–106. [Google Scholar] [CrossRef]
- Lin, C.-X.; Wang, D.; Bao, A. Numerical modeling and simulation of condensation heat transfer of a flue gas in a bundle of transport membrane tubes. Int. J. Heat Mass Transfer 2013, 60, 41–50. [Google Scholar] [CrossRef]
- Fisher, L.; Israelachvili, J. Direct experimental verification of the Kelvin equation for capillary condensation. Nature 1979, 277, 548–549. [Google Scholar] [CrossRef]
- Fisher, L.; Gamble, R.; Middlehurst, J. The Kelvin equation and the capillary condensation of water. Nature 1981, 290, 575–576. [Google Scholar] [CrossRef]
- Rhim, H.; Hwang, S.-T. Transport of capillary condensate. J. Colloid Interface Sci. 1975, 52, 174–181. [Google Scholar] [CrossRef]
- Asaeda, M.; Du, L.D.; Fuji, M. Separation of alcohol/water gaseous mixtures by an improved ceramic membrane. J. Chem. Eng. Jpn. 1986, 19, 84–85. [Google Scholar] [CrossRef] [Green Version]
- Asaeda, M.; Du, L.D. Separation of alcohol/water gaseous mixtures by thin ceramic membrane. J. Chem. Eng. Jpn. 1986, 19, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Xue, K.; Zhang, H.; Chen, H.; Gao, D. Numerical investigation on condensation mode of the transport membrane condenser. Int. J. Heat Mass Transf. 2020, 161, 120305. [Google Scholar] [CrossRef]
- Gao, D.; Li, Z.; Zhang, H.; Zhang, J.; Chen, H.; Fu, H. Moisture recovery from gas-fired boiler exhaust using membrane module array. J. Clean. Prod. 2019, 231, 1110–1121. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.; Chen, H. Application of transport membrane condenser for recovering water in a coal-fired power plant: A pilot study. J. Clean. Prod. 2020, 261, 121229. [Google Scholar] [CrossRef]
- Zhao, S.; Yan, S.; Wang, D.K.; Wei, Y.; Qi, H.; Wu, T.; Feron, P.H.M. Simultaneous heat and water recovery from flue gas by membrane condensation: Experimental investigation. Appl. Therm. Eng. 2017, 113, 843–850. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Liang, D.; Zhang, Y.; Zhang, H.; Chen, H.; Gao, D. Pilot-scale study on flue gas moisture recovery in a coal-fired power plant. Sep. Purif. Technol. 2021, 254, 117254. [Google Scholar] [CrossRef]
- Cheng, C.; Zhang, H.; Chen, H. Experimental Study on Water Recovery from Flue Gas Using Macroporous Ceramic Membrane. Materials 2020, 13, 804. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Zhang, H.; Chen, H. Experimental study on water recovery and SO2 permeability of ceramic membranes with different pore sizes. Int. J. Energy Res. 2020, 44, 6313–6324. [Google Scholar] [CrossRef]
- Tu, T.; Liu, S.; Cui, Q.; Xu, L.; Ji, L.; Yan, S. Techno-economic assessment of waste heat recovery enhancement using multi-channel ceramic membrane in carbon capture process. Chem. Eng. J. 2020, 400, 125677. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.; Chen, H.; Huang, J.; Fu, H. Water vapor capture using microporous ceramic membrane. Desalination 2020, 482, 114405. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Zhang, H.; Chen, H.; Gao, D. Numerical study on recovering moisture and heat from flue gas by means of a macroporous ceramic membrane module. Energy 2020, 207, 118230. [Google Scholar] [CrossRef]
- Yan, S.; Cui, Q.; Xu, L.; Tu, T.; He, Q. Reducing CO2 regeneration heat requirement through waste heat recovery from hot stripping gas using nanoporous ceramic membrane. Int. J. Greenh. Gas Control 2019, 82, 269–280. [Google Scholar] [CrossRef]
- Yan, S.; Cui, Q.; Tu, T.; Xu, L.; He, Q.; Feron, P.H.M.; Zhao, S. Membrane heat exchanger for novel heat recovery in carbon capture. J. Membr. Sci. 2019, 577, 60–68. [Google Scholar] [CrossRef]
- Tu, T.; Cui, Q.; Liang, F.; Xu, L.; He, Q.; Yan, S. Water recovery from stripping gas overhead CO2 desorber through air cooling enhanced by transport membrane condensation. Sep. Purif. Technol. 2019, 215, 625–633. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.; Chen, H.; Zhang, J.; Cheng, C. Experimental research on the heat transfer and water recovery performance of transport membrane condenser. Appl. Therm. Eng. 2019, 160, 114060. [Google Scholar] [CrossRef]
- Gao, D.; Li, Z.; Zhang, H.; Chen, H.; Wang, L.; Liu, H. The investigation of desulphurization and water recovery from flue gas using ceramic composite membrane. Int. J. Energy Res. 2019, 43, 1747–1759. [Google Scholar] [CrossRef]
- Chen, H.; Yang, B. Experiment and simulation method to investigate the flow within porous ceramic membrane. J. Aust. Ceram. Soc. 2018, 54, 575–586. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, Y.; Su, X.; Cao, S.; Liu, Y.; Gao, D.; An, L. Experimental study of water recovery from flue gas using hollow micro–nano porous ceramic composite membranes. J. Ind. Eng. Chem. 2018, 57, 349–355. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, H.; Xie, T.; Wang, B.; An, L. Effect of mass transfer on heat transfer of microporous ceramic membranes for water recovery. Int. J. Heat Mass Transfer 2017, 112, 643–648. [Google Scholar] [CrossRef]
- Yue, M.; Zhao, S.; Feron, P.H.; Qi, H. Multichannel tubular ceramic membrane for water and heat recovery from waste gas streams. Ind. Eng. Chem. Res. 2016, 55, 2615–2622. [Google Scholar] [CrossRef]
- Wang, T.; Yue, M.; Qi, H.; Feron, P.H.; Zhao, S. Transport membrane condenser for water and heat recovery from gaseous streams: Performance evaluation. J. Membr. Sci. 2015, 484, 10–17. [Google Scholar] [CrossRef]
- Yan, S.; Zhao, S.; Wardhaugh, L.; Feron, P.H. Innovative use of membrane contactor as condenser for heat recovery in carbon capture. Environ. Sci. Technol. 2015, 49, 2532–2540. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Qian, X.; Yang, R. Thermal conductivity of polymers and polymer nanocomposites. Mater. Sci. Eng. R Rep. 2018, 132, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Kuipers, N.; van Leerdam, R.; van Medevoort, J.; van Tongeren, W.; Verhasselt, B.; Verelst, L.; Vermeersch, M.; Corbisier, D. Techno-economic assessment of boiler feed water production by membrane distillation with reuse of thermal waste energy from cooling water. Desalin. Water Treat. 2015, 55, 3506–3518. [Google Scholar] [CrossRef]
- Koo, C.H.; Mohammad, A.W. Recycling of oleochemical wastewater for boiler feed water using reverse osmosis membranes—A case study. Desalination 2011, 271, 178–186. [Google Scholar] [CrossRef]
Species | Composition |
---|---|
H2O | 11.2 vol% |
CO2 | 13.6 vol% |
N2 | 71.8 vol% |
O2 | 3.4 vol% |
NOx, SOx derivatives | 150–300 vppm, 50–100 vppm |
Membrane Pore Size (Material) | Inlet Gas Temperature (°C) | Cooling Stream Temperature (°C) | Water Flux (kg/m2/h) | Heat Flux (MJ/m2/h) | Note | Year, Ref |
---|---|---|---|---|---|---|
1 μm (Ceramic) | 49–53 | 30–36 | 10–22.23 | Flue Gas, Pilot Scale | 2021 [46] | |
1 μm (Ceramic) | 40–60 | 15–35 | 0.5–2.93 | 3.6–9 | Flue Gas, Lab Scale | 2020 [47] |
30, 50, 200 nm (Ceramic) | 45–60 | 15–30 | 1.7–4.8 | Flue Gas, Pilot Scale, SO2 | 2020 [48] | |
2, 12, 30 nm (Monolith Ceramic) | 90–110 | 45–66 | 2–3 | 4–5 | CO2 Capture, Lab-scale | 2020 [49] |
1 μm (Ceramic) | 50 | 22 | 5–43.65 | 75–110 | Flue Gas, Pilot Scale | 2020 [44] |
1 μm (Ceramic) | 50 | 24–36 | 20–35 | 60–80 | Flue Gas, Pilot Scale, Numerical | 2020 [42] |
0.4 nm (NaA zeolite sieve) | 35–55 | 12–38 | 2–16 | Flue Gas, Lab Scale | 2020 [50] | |
1 μm (Ceramic) | 40–50 | 20–25 | 16–22 | 50–70 | Flue Gas, Lab Scale | 2020 [51] |
4 nm, 10 nm (Ceramic) | 90–110 | 45–65 | 6–14 | 27–30 | CO2 Capture, Lab-scale | 2019 [52] |
4 nm (Ceramic) | 90–110 | 45–65 | 6–14 | 27–30 | CO2 Capture, Lab scale | 2019 [53] |
4 nm Ceramic | 90–110 | 15–60 | 4–6 | CO2 Capture, Lab scale | 2019 [54] | |
1 μm (Ceramic) | 40–60 | 20–32 | 15.8 | Flue Gas, Lab Scale | 2019 [55] | |
1 μm (Ceramic) | 40–60 | 20–32 | 15.77 | 15 | Flue Gas, Lab Scale | 2019 [43] |
10 nm (Ceramic) | 25–70 | 30–50 | 1.5–2.2 | Flue Gas, Lab Scale, SO2 | 2019 [56] | |
6–8 nm (Ceramic) | 70–80 | 20–43 | 1–7 | 10–15 | Flue Gas, Numerical | 2019 [35] |
40, 90 nm (Ceramic) | 50–80 | 20 | 1–13 | Flue Gas, Lab Scale, SO2 | 2019 [6] | |
13 nm (Ceramic) | 62 | 20 | 10 | Flue Gas, Lab Scale, | 2018 [57] | |
20, 30, 50, 100 nm (Ceramic) | 50–70 | N/A | 1–3 | Flue Gas, Lab Scale | 2018 [58] | |
6–8 nm (Ceramic) | 70–80 | 20–43 | N/A | Flue Gas, Numerical | 2018 [34] | |
N/A | 50–90 | 10–20 | 10 | Flue Gas, Numerical | 2017 [59] | |
20 nm (Ceramic) | 80–120 | 25–50 | 4–6 | 18–25 | Flue Gas, Lab Scale | 2017 [45] |
20 nm (Ceramic) | 50–70 | 16–65 | 1–15 | 2–15 | Flue Gas, Lab Scale | 2017 [8] |
8–10 nm ceramic | 45–85 | N/A | 2–15 | 5–45 | Flue Gas, Lab Scale | 2016 [60] |
6–8 nm Ceramic | 45–85 | 33 | 8–22 | 30–74 | Flue Gas, Lab Scale | 2015 [61] |
N/A | 90–110 | 45–115 | CO2 Capture, Numerical | 2015 [62] | ||
6–8 nm (Ceramic) | 65–95 | 20–45 | N/A | Flue Gas, Numerical | 2015 [33] | |
6–8 nm (Ceramic) | 82 | 44 | 1–7.2 | Flue Gas, Numerical | 2013 [36] | |
6–8 nm (Ceramic) | 65–85 | 33–55 | 3–7 | Flue Gas, Pilot Scale | 2012 [28] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.F.; Drioli, E. Transport Membrane Condenser Heat Exchangers to Break the Water-Energy Nexus—A Critical Review. Membranes 2021, 11, 12. https://doi.org/10.3390/membranes11010012
Kim JF, Drioli E. Transport Membrane Condenser Heat Exchangers to Break the Water-Energy Nexus—A Critical Review. Membranes. 2021; 11(1):12. https://doi.org/10.3390/membranes11010012
Chicago/Turabian StyleKim, Jeong F., and Enrico Drioli. 2021. "Transport Membrane Condenser Heat Exchangers to Break the Water-Energy Nexus—A Critical Review" Membranes 11, no. 1: 12. https://doi.org/10.3390/membranes11010012
APA StyleKim, J. F., & Drioli, E. (2021). Transport Membrane Condenser Heat Exchangers to Break the Water-Energy Nexus—A Critical Review. Membranes, 11(1), 12. https://doi.org/10.3390/membranes11010012