Comparative Removal of Lead and Nickel Ions onto Nanofibrous Sheet of Activated Polyacrylonitrile in Batch Adsorption and Application of Conventional Kinetic and Isotherm Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication and Characterization of the PANmod
2.2. Experimental Setup and Analysis
3. Results and Discussion
3.1. PANmod Characteristcs
3.1.1. FTIR Analysis
3.1.2. FE-SEM and EDX Analysis
3.2. Influence of the Contact Time and Fitting of Kinetic Models to the Adsorption Data of Both Heavy Metal Ions
3.3. Influence of the Solution pH, Initial Ion Concentration, and Dose of Adsorbent on Adsorption Performance and Regeneration of PANmod
3.4. Application of Isotherm Models to Adsorption Data of Pb2+ and Ni2+
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qin, H.; Su, Q.; Khu, S.-T.; Tang, N. Water Quality Changes during Rapid Urbanization in the Shenzhen River Catchment: An Integrated View of Socio-Economic and Infrastructure Development. Sustainability 2014, 6, 7433–7451. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.A.; Awual, M.R.; Angove, M.J. A review on nickel(II) adsorption in single and binary component systems and future path. J. Environ. Chem. Eng. 2019, 7, 103305. [Google Scholar] [CrossRef]
- Montazer-Rahmati, M.M.; Rabbani, P.; Abdolali, A.; Keshtkar, A.R. Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae. J. Hazard. Mater. 2011, 185, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.T.; Alazba, A.A.; Shafiq, M. Comparative Sorption of Nickel from an Aqueous Solution Using Biochar Derived from Banana and Orange Peel Using a Batch System: Kinetic and Isotherm Models. Arab. J. Sci. Eng. 2019, 44, 10105–10116. [Google Scholar] [CrossRef]
- Bartczak, P.; Norman, M.; Klapiszewski, Ł.; Karwańska, N.; Kawalec, M.; Baczyńska, M.; Wysokowski, M.; Zdarta, J.; Ciesielczyk, F.; Jesionowski, T. Removal of nickel(II) and lead(II) ions from aqueous solution using peat as a low-cost adsorbent: A kinetic and equilibrium study. Arab. J. Chem. 2018, 11, 1209–1222. [Google Scholar] [CrossRef] [Green Version]
- Algureiri, A.H.; Abdulmajeed, Y.R. Removal of Heavy Metals from Industrial Wastewater by Using RO Membrane. Iraqi J. Chem. Pet. Eng. 2016, 17, 125–136. [Google Scholar]
- Zewail, T.M.; Yousef, N.S. Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed. Alex. Eng. J. 2015, 54, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Brbooti, M.M.; Abid, B.A.; Al-Shuwaiki, N.M. Removal of Heavy Metals Using Chemicals Precipitation. Eng. Technol. J. 2011, 29, 595–612. [Google Scholar]
- Mohammadi, T.; Moheb, A.; Sadrzadeh, M.; Razmi, A. Modeling of metal ion removal from wastewater by electrodialysis. Sep. Purif. Technol. 2005, 41, 73–82. [Google Scholar] [CrossRef]
- Tang, X.; Zheng, H.; Teng, H.; Sun, Y.; Guo, J.; Xie, W.; Yang, Q.; Chen, W. Chemical coagulation process for the removal of heavy metals from water: A review. Desalin. Water Treat. 2016, 57, 1733–1748. [Google Scholar] [CrossRef]
- Rajasulochana, P.; Preethy, V. Comparison on efficiency of various techniques in treatment of waste and sewage water—A comprehensive review. Resour. Effic. Technol. 2016, 2, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Barakat, M.A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011, 4, 361–377. [Google Scholar] [CrossRef] [Green Version]
- De Gisi, S.; Lofrano, G.; Grassi, M.; Notarnicola, M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustain. Mater. Technol. 2016, 9, 10–40. [Google Scholar] [CrossRef] [Green Version]
- Shafiq, M.; Alazba, A.A.; Amin, M.T. Lead and copper scavenging from aqueous solutions using Eucalyptus camaldulensis derived activated carbon: Equilibrium, kinetics and sorption mechanism. DWT 2019, 158, 187–198. [Google Scholar] [CrossRef]
- Deng, F.; Luo, X.-B.; Ding, L.; Luo, S.-L. Application of Nanomaterials and Nanotechnology in the Reutilization of Metal Ion From Wastewater. In Nanomaterials for the Removal of Pollutants and Resource Reutilization; Luo, X., Deng, F., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 149–178. ISBN 978-0-12-814837-2. [Google Scholar]
- Pandey, N.; Shukla, S.K.; Singh, N.B. Water purification by polymer nanocomposites: An overview. Nanocomposites 2017, 3, 47–66. [Google Scholar] [CrossRef]
- Amin, M.T.; Alazba, A.A.; Manzoor, U. A Review of Removal of Pollutants from Water/Wastewater Using Different Types of Nanomaterials. Available online: https://www.hindawi.com/journals/amse/2014/825910/ (accessed on 16 December 2020).
- Jiang, J.; Srinivas, K.; Kiziltas, A.; Geda, A.; Ahring, B.K. Rheology of Polyacrylonitrile/Lignin Blends in Ionic Liquids under Melt Spinning Conditions. Molecules 2019, 24, 2650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaúque, E.F.C.; Dlamini, L.N.; Adelodun, A.A.; Greyling, C.J.; Catherine Ngila, J. Modification of electrospun polyacrylonitrile nanofibers with EDTA for the removal of Cd and Cr ions from water effluents. Appl. Surf. Sci. 2016, 369, 19–28. [Google Scholar] [CrossRef]
- Chen, I.-H.; Wang, C.-C.; Chen, C.-Y. Fabrication and Structural Characterization of Polyacrylonitrile and Carbon Nanofibers Containing Plasma-Modified Carbon Nanotubes by Electrospinning. J. Phys. Chem. C 2010, 114, 13532–13539. [Google Scholar] [CrossRef]
- Aijaz, M.O.; Karim, M.R.; Alharbi, H.F.; Alharthi, N.H. Novel optimised highly aligned electrospun PEI-PAN nanofibre mats with excellent wettability. Polymer 2019, 180, 121665. [Google Scholar] [CrossRef]
- Anjum, M.; Miandad, R.; Waqas, M.; Gehany, F.; Barakat, M.A. Remediation of wastewater using various nano-materials. Arab. J. Chem. 2019, 12, 4897–4919. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wang, J.; Zeng, L.; Qiao, Z.; Liu, X.; Liu, H.; Zhang, J.; Ding, J. Fabrication of Electrospun Polymer Nanofibers with Diverse Morphologies. Molecules 2019, 24, 834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.-Y.; Kim, D.-S. Adsorption behavior of zinc and cadmium ion on granular activated carbon in singular and binary systems and the influence of nitrilotricetic acid as a complexing agent. J. Environ. Sci. Health A Tox Hazard Subst Environ. Eng. 2002, 37, 1701–1719. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Hota, G. Adsorptive removal of malachite green dye by functionalized electrospun PAN nanofibers membrane. Fibers Polym. 2014, 15, 2272–2282. [Google Scholar] [CrossRef]
- Arjmandi, R.; Hassan, A.; Eichhorn, S.J.; Mohamad Haafiz, M.K.; Zakaria, Z.; Tanjung, F.A. Enhanced ductility and tensile properties of hybrid montmorillonite/cellulose nanowhiskers reinforced polylactic acid nanocomposites. J. Mater. Sci. 2015, 50, 3118–3130. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, Q.; Cheng, L.; Wang, H.; Li, K. Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile. Polym. Degrad. Stab. 2008, 93, 1415–1421. [Google Scholar] [CrossRef]
- Arshad, S.N.; Naraghi, M.; Chasiotis, I. Strong carbon nanofibers from electrospun polyacrylonitrile. Carbon 2011, 49, 1710–1719. [Google Scholar] [CrossRef]
- Hildebrando, E.A.; Andrade, C.G.B.; da Rocha Junior, C.A.F.; Angélica, R.S.; Valenzuela-Diaz, F.R.; Neves, R.D.F. Synthesis and characterization of zeolite NaP using kaolin waste as a source of silicon and aluminum. Mat. Res. 2014, 17, 174–179. [Google Scholar] [CrossRef] [Green Version]
- Huo, Z.; Xu, X.; Lv, Z.; Song, J.; He, M.; Li, Z.; Wang, Q.; Yan, L.; Li, Y. Thermal study of NaP zeolite with different morphologies. J. Therm. Anal. Calorim. 2013, 111, 365–369. [Google Scholar] [CrossRef]
- Tang, H.; Zhou, W.; Zhang, L. Adsorption isotherms and kinetics studies of malachite green on chitin hydrogels. J. Hazard. Mater. 2012, 209–210, 218–225. [Google Scholar] [CrossRef]
- Chowdhury, S.; Mishra, R.; Saha, P.; Kushwaha, P. Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 2011, 265, 159–168. [Google Scholar] [CrossRef]
- Taty-Costodes, V.C.; Fauduet, H.; Porte, C.; Delacroix, A. Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris. J. Hazard. Mater. 2003, 105, 121–142. [Google Scholar] [CrossRef] [PubMed]
- Karapinar, N.; Donat, R. Adsorption behaviour of Cu2+ and Cd2+ onto natural bentonite. Desalination 2009, 249, 123–129. [Google Scholar] [CrossRef]
- Raji, F.; Pakizeh, M. Study of Hg(II) species removal from aqueous solution using hybrid ZnCl2-MCM-41 adsorbent. Appl. Surf. Sci. 2013, 282, 415–424. [Google Scholar] [CrossRef]
- Karthik, R.; Meenakshi, S. Removal of Pb(II) and Cd(II) ions from aqueous solution using polyaniline grafted chitosan. Chem. Eng. J. 2015, 263, 168–177. [Google Scholar] [CrossRef]
- Kampalanonwat, P.; Supaphol, P. Preparation and Adsorption Behavior of Aminated Electrospun Polyacrylonitrile Nanofiber Mats for Heavy Metal Ion Removal. ACS Appl. Mater. Interfaces 2010, 2, 3619–3627. [Google Scholar] [CrossRef]
- Dastbaz, A.; Keshtkar, A.R. Adsorption of Th4+, U6+, Cd2+, and Ni2+ from aqueous solution by a novel modified polyacrylonitrile composite nanofiber adsorbent prepared by electrospinning. Appl. Surf. Sci. 2014, 293, 336–344. [Google Scholar] [CrossRef]
- Abdullah, N.; Tajuddin, M.H.; Yusof, N.; Jaafar, J.; Aziz, F.; Misdan, N. Removal of Lead(II) from Aqueous Solution Using Polyacrylonitrile/Zinc Oxide Activated Carbon Nanofibers. MJAS 2017, 21. [Google Scholar] [CrossRef]
- Mokhtari, M.; Keshtkar, A.R. Removal of Th(IV), Ni(II)and Fe(II) from aqueous solutions by a novel PAN–TiO2 nanofiber adsorbent modified with aminopropyltriethoxysilane. Res. Chem. Intermed. 2016, 42, 4055–4076. [Google Scholar] [CrossRef]
- Zhao, R.; Li, X.; Sun, B.; Shen, M.; Tan, X.; Ding, Y.; Jiang, Z.; Wang, C. Preparation of phosphorylated polyacrylonitrile-based nanofiber mat and its application for heavy metal ion removal. Chem. Eng. J. 2015, 268, 290–299. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 activation. Bioresour. Technol. 2012, 104, 679–686. [Google Scholar] [CrossRef]
- Malik, P.K. Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: A case study of Acid Yellow 36. Dye. Pigment. 2003, 56, 239–249. [Google Scholar] [CrossRef]
- Kumar, P.S.; Ramakrishnan, K.; Gayathri, R. Removal of Nickel(II) from Aqueous Solutions by Ceralite IR 120 Cationic Exchange Resins. J. Eng. Sci. Technol. 2010, 5, 232–243. [Google Scholar]
- Gimbert, F.; Morin-Crini, N.; Renault, F.; Badot, P.-M.; Crini, G. Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: Error analysis. J. Hazard. Mater. 2008, 157, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Abtahi, M.; Mesdaghinia, A.; Saeedi, R.; Nazmara, S. Biosorption of As(III) and As(V) from aqueous solutions by brown macroalga Colpomenia sinuosa biomass: Kinetic and equilibrium studies. Desalin. Water Treat. 2013, 51, 3224–3232. [Google Scholar] [CrossRef]
- Naddafi, K.; Rastkari, N.; Nabizadeh, R.; Saeedi, R.; Gholami, M.; Sarkhosh, M. Adsorption of 2,4,6-trichlorophenol from aqueous solutions by a surfactant-modified zeolitic tuff: Batch and continuous studies. Desalin. Water Treat. 2016, 57, 5789–5799. [Google Scholar] [CrossRef]
- Günay, A.; Arslankaya, E.; Tosun, İ. Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics. J. Hazard. Mater. 2007, 146, 362–371. [Google Scholar] [CrossRef]
Kinetic Model | Parameter | Initial Metal Conc. (mg L−1) | ||||||
---|---|---|---|---|---|---|---|---|
Pb2+ | Ni2+ | |||||||
5 | 10 | 15 | 20 | 10 | 15 | 20 | ||
qe exp (mg g−1) | 6.24 | 10.07 | 12.51 | 12.67 | 21.36 | 29.43 | 37.41 | |
PFO | qe cal (mg g−1) | 6.11 | 9.73 | 12.21 | 12.24 | 20.68 | 28.5 | 36.51 |
k1 (min−1) | 0.13 | 0.13 | 0.14 | 0.099 | 0.31 | 0.31 | 0.29 | |
R2 | 0.9 | 0.74 | 0.92 | 0.93 | 0.62 | 0.65 | 0.7 | |
PSO | qe cal (mg g−1) | 6.49 | 10.42 | 12.96 | 13.05 | 21.4 | 29.5 | 37.89 |
k2 (g mg−1 min−1) | 0.035 | 0.02 | 0.019 | 0.013 | 0.034 | 0.024 | 0.017 | |
h (mg g−1 min−1) | 1.47 | 2.17 | 3.19 | 2.21 | 15.57 | 20.89 | 24.41 | |
R2 | 0.98 | 0.94 | 0.99 | 0.9 | 0.94 | 0.95 | 0.98 | |
ID-WM | Kip (mg g−1 min1/2) | 0.15 | 0.27 | 0.28 | 0.33 | 0.21 | 0.31 | 0.45 |
C (mg g−1) | 4.41 | 6.78 | 9.07 | 8.18 | 18.53 | 25.38 | 32.05 | |
R2 | 0.51 | 0.64 | 0.49 | 0.6 | 0.46 | 0.5 | 0.55 | |
Elovich | α (mg g−1 min−1) | 70.69 | 65.3 | 241.7 | 41.1 | 2.31 × 107 | 1.45 × 107 | 3.57 × 106 |
β (g mg−1) | 1.51 | 0.88 | 0.8 | 0.66 | 1.03 | 0.72 | 0.51 | |
R2 | 0.79 | 0.89 | 0.77 | 0.68 | 0.74 | 0.78 | 0.81 |
Adsorbent | Contaminant | Maximum Adsorption Capacity, mg g−1 | Reference |
---|---|---|---|
PANmod | Pb2+ | 15 | This study |
PANmod | Ni2+ | 60 | This study |
Polyaniline grafted chitosan | Pb2+ | 16 | [36] |
APAN nanofiber mat | Pb2+ | 60 | [37] |
PAN/SiO2 composite nanofiber | Ni2+ | 138.7 | [38] |
ACNFs PAN/ZnO | Pb2+ | 120 | [39] |
PAN–TiO2–APTES | Ni2+ | 147 | [40] |
P-PAN fibers | Pb2+ | 72.5 | [41] |
Isotherm | Nonlinear | Linearized |
---|---|---|
Langmuir | RL = (1+KLC0) −1 | |
Freundlich | ||
Dubinin–Radus-Kevich | E = | |
Halsey | ||
Temkin | ||
Harkins–Jura |
Isotherm | Parameter | Pb2+ | Ni2+ | ||
---|---|---|---|---|---|
Nonlinear | Linear | Nonlinear | Linear | ||
qe exp, mg g−1 | 13.05 (against 30 mg L−1) | 56 (against 50 mg L−1) | |||
Langmuir | qm, mg g−1 | 13.67 | 14.12 | 49.38 | 44.25 |
KL, L mg−1 | 0.56 | 0.44 | 2.66 | 11.89 | |
RL | 0.056 | 0.07 | 0.0075 | 0.002 | |
R2 | 0.91 | 0.96 | 0.62 | 0.78 | |
Freundlich | qm, mg g−1 | 12.90 | 13.75 | 63.44 | 64.22 |
KF, ((mg g−1)(L mg−1)1/n) | 7.74 | 7.20 | 31.37 | 33.44 | |
n | 6.67 | 5.26 | 5.56 | 6.00 | |
R2 | 0.64 | 0.72 | 0.97 | 0.97 | |
D–R | qm, mg g−1 | 12.74 | 12.7 | 48.55 | 44.54 |
KDR, (mol kJ−1)2 | 66 × 10−8 | 60 × 10−8 | 15 × 10−8 | 2 × 10−8 | |
E, kJ mol−1 | 0.87 | 0.91 | 1.8 | 5.0 | |
R2 | 0.96 | 0.98 | 0.31 | 0.66 | |
Halsey | qe cal, mg g−1 | 12.3 | 11.02 | 54.15 | 62.3 |
nH | −6.7 | −5.26 | −5.7 | −6.00 | |
KH | 0.000 | 0.65 | 0.000 | 0.177 | |
R2 | 0.64 | 0.72 | 0.97 | 0.97 | |
Temkin | KT, L mg−1 | 45.20 | 45.09 | 278.57 | 278.58 |
Hads, kJ mol−1 | 0.56 | 1.4 | 0.17 | 0.4 | |
R2 | 0.71 | 0.74 | 0.92 | 0.97 | |
H–J | AHJ, mg g−1 | 76.9 | 89.29 | 175 | 1428.6 |
BHJ | 4.5 | 1.96 | 2.9 | 1.71 | |
R2 | 0.63 | 0.65 | 1.00 | 0.95 | |
Sips | qm, mg g−1 | 12.87 | 64.81 | ||
KS, L g−1 | 0.29 | 0.5 | |||
nS | 0.76 | 0.18 | |||
R2 | 0.97 | 0.99 | |||
R–P | KRP, L g−1 | 4.73 | 7.1 | ||
α, L mg−1 | 0.2 | 2.25 | |||
β | 0.15 | 0.82 | |||
R2 | 0.97 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amin, M.T.; Alazba, A.A.; Shafiq, M. Comparative Removal of Lead and Nickel Ions onto Nanofibrous Sheet of Activated Polyacrylonitrile in Batch Adsorption and Application of Conventional Kinetic and Isotherm Models. Membranes 2021, 11, 10. https://doi.org/10.3390/membranes11010010
Amin MT, Alazba AA, Shafiq M. Comparative Removal of Lead and Nickel Ions onto Nanofibrous Sheet of Activated Polyacrylonitrile in Batch Adsorption and Application of Conventional Kinetic and Isotherm Models. Membranes. 2021; 11(1):10. https://doi.org/10.3390/membranes11010010
Chicago/Turabian StyleAmin, Muhammad Tahir, Abdulrahman Ali Alazba, and Muhammad Shafiq. 2021. "Comparative Removal of Lead and Nickel Ions onto Nanofibrous Sheet of Activated Polyacrylonitrile in Batch Adsorption and Application of Conventional Kinetic and Isotherm Models" Membranes 11, no. 1: 10. https://doi.org/10.3390/membranes11010010
APA StyleAmin, M. T., Alazba, A. A., & Shafiq, M. (2021). Comparative Removal of Lead and Nickel Ions onto Nanofibrous Sheet of Activated Polyacrylonitrile in Batch Adsorption and Application of Conventional Kinetic and Isotherm Models. Membranes, 11(1), 10. https://doi.org/10.3390/membranes11010010