Ultralight, Strong and Renewable Hybrid Carbon Nanotubes Film for Oil-Water Emulsions Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Hybrid CNTs Film
2.2. Water-in-Oil Emulsion Separation Experiments
2.3. Characterizations and Instruments
3. Results and Discussions
3.1. Surface Morphology and Wetting Behaviors
3.2. Combustion Regeneration Process
3.3. Surface Composition Characterization
3.4. Separation Efficiency
3.5. Chemical and Mechanical Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, Q.; Cao, Y.; Liu, N.; Zhang, W.; Chen, Y.; Lin, X.; Tao, L.; Wei, Y.; Feng, L. A facile approach for fabricating dual-function membrane: Simultaneously removing oil from water and adsorbing water-soluble proteins. Adv. Mater. Interfaces 2016, 3, 1600291. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, M.; Zhang, W.; Cao, Y.; Chen, Y.; Lin, X.; Xu, L.; Feng, L.; Li, C.; Wei, Y. Ultralight free-standing reduced graphene oxide membranes for oil-in-water emulsions separation. J. Mater. Chem. A 2015, 3, 20113–20117. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Liu, Q. ZnO nanorod array-coated mesh film for the separation of water and oil. Nanoscale Res. Lett. 2013, 8, 183. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Chen, Y.; Liu, N.; Lin, X.; Feng, L.; Wei, Y. Mussel-inspired chemistry and Stöber method for highly stabilized water-in-oil emulsions separation. J. Mater. Chem. A 2014, 2, 20439–20443. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, N.; Cao, Y.; Chen, Y.; Xu, L.; Lin, X.; Feng, L. A solvothermal route decorated on different substrates: Controllable separation of an oil/water mixture to a stabilized nanoscale emulsion. Adv. Mater. 2015, 27, 7349–7355. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, N.; Cao, Y.; Lin, X.; Liu, Y.; Feng, L. Superwetting porous materials for wastewater treatment: From immiscible oil/water mixture to emulsion separation. Adv. Mater. Interfaces 2017, 4, 1600029. [Google Scholar] [CrossRef]
- Guha, I.F.; Varanasi, K.K. Separating nanoscale emulsions: Progress and challenges to date. Curr. Opin. Colloid Interface Sci. 2018, 36, 110–117. [Google Scholar] [CrossRef]
- Chen, C.; Weng, D.; Mahmood, A.; Chen, S.; Wang, J. The separation mechanism and construction of surfaces with special wettability for oil/water separation. ACS Appl. Mater. Interfaces 2019, 11, 11006–11027. [Google Scholar] [CrossRef]
- Sato, M.; Sumita, I. Experiments on gravitational phase separation of binary immiscible fluids. J. Fluid Mech. 2007, 591, 289–319. [Google Scholar] [CrossRef]
- Megid, M.H.; Amer, A.A.; Elsayed, K.H. Coagulation and dissolved air floatation for treatment of oilwater emulsion. Int. J. Eng. Sci. 2014, 3, 120–129. [Google Scholar]
- Chen, G. Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 2004, 38, 11–41. [Google Scholar] [CrossRef]
- Kwon, W.T.; Park, K.; Han, S.D.; Yoon, S.M.; Kim, J.Y.; Bae, W.; Rhee, Y.W. Investigation of water separation from water-in-oil emulsion using electric field. J. Ind. Eng. Chem. 2010, 6, 684–687. [Google Scholar] [CrossRef]
- Rajasekhar, T.; Trinadh, M.; Veera Babu, P.; Sainath, A.V.; Reddy, A.V. Oil–water emulsion separation using ultrafiltration membranes based on novel blends of poly(vinylidene fluoride) and amphiphilic tri-block copolymer containing carboxylic acid functional group. J. Membr. Sci. 2015, 481, 82–93. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, D.; Jiang, L.; Jin, J. Recent progress in developing advanced membranes for emulsified oil/water separation. NPG Asia Mater. 2014, 6, e101. [Google Scholar] [CrossRef]
- Xue, Z.; Cao, Y.; Liu, N.; Feng, L.; Jiang, L. Special wettable materials for oil/water separation. J. Mater. Chem. A 2014, 2, 2445–2460. [Google Scholar] [CrossRef]
- Yang, S.; Si, Y.; Fu, Q.; Hong, F.; Yu, J.; Al-Deyab, S.S.; EI-Newehy, M.; Ding, B. Superwetting hierarchical porous silica nanofibrous membranes for oil/water microemulsion separation. Nanoscale 2014, 6, 12445–12449. [Google Scholar] [CrossRef]
- Zhang, G.; Li, M.; Zhang, B.; Huang, Y.; Su, Z. A switchable mesh for on-demand oil–water separation. J. Mater. Chem. A 2014, 2, 15284–15287. [Google Scholar] [CrossRef]
- Yong, J.; Huo, J.; Chen, F.; Yang, Q.; Huo, X. Oil/water separation based on the natural materials with super-wettability: Recent advances. Phys. Chem. Chem. Phys. 2018, 20, 25140–25163. [Google Scholar] [CrossRef]
- Wei, Y.; Qi, H.; Gong, X.; Zhao, S. Specially wettable membranes for oil-water separation. Adv. Mater. Interfaces 2018, 5, 1800576. [Google Scholar] [CrossRef]
- Ge, M.; Cao, C.; Huang, J.; Zhang, X.; Tang, Y.; Zhou, X.; Zhang, K.; Chen, Z.; Lai, Y. Rational design of materials interface at nanoscale towards intelligent oil-water separation. Nanoscale 2018, 3, 235–260. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, X.; Zou, J.; Gu, T.; Chai, W.; Li, H. Graphite/isobutylene-isoprene rubber highly porous cryogels as new sorbents for oil spills and organic liquids. ACS Appl. Mater. Interfaces 2013, 3, 7737–7742. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, M.; Kawahara, A.; Nishi, Y.; Iwashita, N. Heavy oil sorption and recovery by using carbon fiber felts. Carbon 2002, 40, 1487–1492. [Google Scholar] [CrossRef]
- Inagaki, M.; Kawahara, A.; Konno, H. Sorption and recovery of heavy oils using carbonized fir fibers and recycling. Carbon 2002, 40, 105–111. [Google Scholar] [CrossRef]
- Rambabu, G.; Bhat, S.D. Simultaneous tuning of methanol crossover and ionic conductivity of sPEEK membrane electrolyte by incorporation of PSSA functionalized MWCNTs: A comparative study in DMFCs. Chem. Eng. J. 2014, 243, 517–525. [Google Scholar] [CrossRef]
- De Volder, M.F.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Q.; Rogers, J.A. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv. Mater. 2009, 21, 29–53. [Google Scholar] [CrossRef]
- Hu, L.; Hecht, D.S.; Gruner, G. Carbon nanotube thin films: Fabrication, properties, and application. Chem. Rev. 2010, 110, 5790–5844. [Google Scholar] [CrossRef]
- Schnorr, J.M.; Swager, T.M. Emerging applications of carbon nanotubes. Chem. Mater. 2010, 23, 646–657. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.H.; Yi, B.; Shao, Z.G.; Xing, D.M.; Zhang, H.M. Carbon Nanotubes Reinforced Nafion Composite Membrane for Fuel Cell Applications. Electrochem. Solid State Lett. 2006, 9, 356–359. [Google Scholar] [CrossRef]
- Fan, Z.; Yan, J.; Ning, G.; Wei, T.; Qian, W.; Zhang, S.; Zheng, C.; Zhang, Q.; Wei, F. Oil sorption and recovery by using vertically aligned carbon nanotubes. Carbon 2010, 48, 4197–4200. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Cao, Y.; Jia, Y.; Dai, C.; Wang, P. Ultralight, Strong and Renewable Hybrid Carbon Nanotubes Film for Oil-Water Emulsions Separation. Membranes 2021, 11, 1. https://doi.org/10.3390/membranes11010001
Lu Y, Cao Y, Jia Y, Dai C, Wang P. Ultralight, Strong and Renewable Hybrid Carbon Nanotubes Film for Oil-Water Emulsions Separation. Membranes. 2021; 11(1):1. https://doi.org/10.3390/membranes11010001
Chicago/Turabian StyleLu, Yamei, Yingze Cao, Yi Jia, Chunai Dai, and Pengfei Wang. 2021. "Ultralight, Strong and Renewable Hybrid Carbon Nanotubes Film for Oil-Water Emulsions Separation" Membranes 11, no. 1: 1. https://doi.org/10.3390/membranes11010001
APA StyleLu, Y., Cao, Y., Jia, Y., Dai, C., & Wang, P. (2021). Ultralight, Strong and Renewable Hybrid Carbon Nanotubes Film for Oil-Water Emulsions Separation. Membranes, 11(1), 1. https://doi.org/10.3390/membranes11010001