Cross-Flow Microfiltration of Glycerol Fermentation Broths with Citrobacter freundii
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Fermentation Broths
3.2. The Efficiency of Microfiltration Process
3.3. Effect of the Operating Pressure
3.4. Effect of the Feed Flow Rate
3.5. Identification of the Critical Fluxes
3.6. Fouling Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Fouling Solution Characteristic | Membrane Characteristic | MF Process | Fouled Membrane Cleaning | Ref. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Solution type | Bacteria | [CFU/mL] | Material | Pore size [µm] | Resistance [m−1] | T [°C] | TMP [MPa] | u [m/s] | Cleaning agent | T [°C] | t [min] | u [m/s] | |
milk | NI | 5.0 × 104–2.0 × 105 | ZrO2–TiO2/TiO2; TiO2/TiO2; multilayer α-alumina | 1.40 | NI | 21; 45 | 0.05 | 6.0; 8.0 | 1% P-3 Ultrasil 25; 1% HNO3 | 75; 50 | 15 | NI | [1] |
skim milk | NI | 4.1 × 103–1.8 × 105 | NI | 1.40 | 3.00 × 1011 | 6 ± 1 | 0.05– 0.13 | 5.0– 7.0 | 20 g/L Ultrasil 25; 5 mL/L HNO3 | 85; 50 | 50; 15 | NI | [2] |
skim milk | Bacillus licheniformis (FSL strain F4-0073); Geobacillus sp. (FSL strain W8-0032) | 1.3 × 106–9.6 × 106 | NI | 1.40; 1.20 | NI | 6 | 0.07 | 4.1 | 17.5 mL/L Ultrasil 25; 5 mL/L HNO3 | 80; 50 | 30; 20 | NI | [3] |
skim milk | Clostridium tyrobutyricum; Bacillus cereus | NI | Al2O3 | 1.00 | NI | NI | 0.01– 0.14 | 1.0– 2.0 | acid (DIVOS 2); alkaline (DIVOS 124) | NI | NI | NI | [4] |
skim milk | NI | 1.0 × 108–1.0 × 109 | NI | 1.40 | NI | 50 | 0.10 | 5.0 | Ultrasil 11 | NI | NI | NI | [5] |
skim milk | Bacillus anthracis (Sterne) | 1.0 × 106 | NI | 0.80; 1.40 | 1.40 × 1012 | 50 | 0.13 | 6.2 | 0.5% NaOH+ 0.5% NaClO; 0.5% HNO3 | 70; 60 | 30; NI | NI | [6] |
skimmed colostrum | Listeria innocua ATCC 33090, Escherichia coli DSM 30083, Bacillus subtilis ATCC 6051 | 1.8 × 109; 3.0 × 108; 2.0 × 107 | NI | 1.40; 0.80 | NI | 30 ± 2 | 0.07 | 4.0 | NI | NI | NI | NI | [7] |
gum arabic suspension | Bacillus mycoides | 1.0 × 105 | Al2O3 | 0.80 | 1.06 × 1012 | 50 | 0.29 | 8.5 | 0.5% NaOH + 200 ppm NaOCl; 0.1% C6H8O7 | 60 | 30 | 11 | [8] |
cell suspension | Bacillus cereus CUETM 98/4 | 1.0 × 106 | ZrTiO4 | 0.45 | 1.00 × 1011–1.00 × 1012 | 15–20 | 0.08 | 4.0 | 0.5% NaOH, 0.5% HNO3 | 55 | 30 | 4.0 | [9] |
cell suspension | Mycobacterium M156 | NI | Al2O3 | NI | NI | 25 | 0.05– 0.30 | NI 1 | NI | NI | NI | NI | [10] |
cell suspension | Escherichia coli | 2.0 × 108 | NI | 0.20 | 4.48 × 1011 | 25 | 0.15 | 2.4 | 10 g/L NaOH; 5 mL/L HNO3 | 80; 60 | 30 | 2.4 | [11] |
cell suspension | Arthrospira sp. | NI | kaolinite clay; Al2O3 | 1.00 ± 0.39 | NI | NI | 0.05– 0.35 | NI 2 | 1 M NaOH | NI | NI | NI | [12] |
fermentation soy sauce | NI | 5.0 × 102 | Al2O3 | 0.20 | NI | 20 | NI | 2.0 | NI | NI | NI | NI | [13] |
fermentation soy sauce | NI | 3.2 × 103 | Al2O3; ZrO2 | 0.20; 0.50; 0.80 | 2.32 × 1011; 1.88 × 1011 3; 1.80 × 1011 3 | 22 ± 3 | 0.05– 0.20 | 0.3– 0.6 | 2.0% NaOH; 0.15 M HNO3 | 40 ± 3 | NI | NI | [14] |
fermentation broth | Bacillus coagulans (A20; A369; A107; A59) | NI | ZrO2–TiO2 | 0.20 | NI | NI | 0.15 | NI | NI | NI | NI | NI | [15] |
fermentation broth | Lactobacillus helveticus CNRZ 303 | 1.0 × 109–5.0 × 109 | Al2O3 | 0.20 | (1.70 ± 0.20) × 1011 | 43 ± 1 | 0.01– 0.29 | 6.0 ± 1.0 | NaClO; 0.03 M HNO3 | 50 | 40 | 7.0 | [16] |
fermentation broth | Lactobacillus delbrueckii spp. lactis (Ezal LB 120) | NI | Al2O3, TiO2 | 0.10 | NI | 48 | 0.15; 0.20 | 3.0; 4.0 | 5 g/L Ultrasil 25 F; 10 g/L HNO3 | 50; 85 | NI | NI | [17] |
fermentation broth | Saccharopolyspora erythraea CA340 | NI | NI | 0.20 | NI | 21 | 0.01– 0.08 | 0.66 | 5% hypochlorite; 5% Redphos Special | 50 | 60 | NI | [18] |
fermentation broth | Sinorhizobium meliloti M5N1 | 9.0 × 108 | NI | 0.50 | NI | 30 | 0.04; 0.10 | NI | chlorine solution | 70 | 60 | NI | [19] |
fermentation broth | Bacillus velezensis | 2.2 109–2.3 × 109 | NI | 0.20 | NI | 25 | 0.02; 0.06; 0.10 | 0.4; 0.9; 1.3 | acid–base cleaning sequence | NI | NI | NI | [20] |
fermentation broth | Lactobacillus delbrueckii ssp. lactis | NI | Al2O3, TiO2 | 0.10; 0.80 | 3.27 × 1011; 6.00 × 1010 | 44 | 0.05– 0.20 | 4.0 | 5 g/L Ultrasil 25 F; 10 g/L HNO3 | 50; 85 | NI | NI | [21] |
fermentation broth | Lactococcus lactis ssp. lactis ATCC 19 435 | NI | Al2O3 | 0.20 | NI | 30 | 0.03– 0.14 | 5.3– 10.8 | 0.2% Ultrasil 10; 0.4% Ultrasil 10; 0.2% Ultrasil 10 | 50; 50; NI | NI, 60, NI 4 | NI | [22] |
fermentation broth | Lactobacillus delbrueckii subsp. bulgaricus CFL1 | 1.3 × 10 ± 1.3 × 107 | Al2O3 | 0.10 | 1.74 × 1012 | NI | 0.02– 0.46 | 0.1– 11.0 | 1.0% Ultrasil 25F; 0.2% HNO3; 1.0% NaOH + 200 mg/L NaClO | 45 and 80; 30; 20 | 10 and 30; 15; 30 | NI | [23] |
fermentation broth | Actinobacillus succinogenes ATCC 55618 | NI | NI | 0.10 | 4.90 × 1012 | 30 | NI | 0.1 | 1.0% NaOH; 1.5% H3PO4 | NI | NI | NI | [24] |
fermentation broth | NI | NI | ZrO2 | 0.05; 0.20; 0.50 | 1.96 × 1011 3 | 20–40 | 0.05– 0.20 | 2.0– 5.0 | 0.1% NaOH; 0.1 mol/L C₂H₂O₄ | 40 ± 3 | 30; 20 | NI | [25] |
References
- Fernández García, L.; Riera Rodríguez, F.A. Microfiltration of milk with third generation ceramic membranes. Chem. Eng. Commun. 2015, 202, 1455–1462. [Google Scholar] [CrossRef]
- Fritsch, J.; Moraru, C.I. Development and optimization of a carbon dioxide-aided cold microfiltration process for the physical removal of microorganisms and somatic cells from skim milk. J. Dairy Sci. 2008, 91, 3744–3760. [Google Scholar] [CrossRef]
- Griep, E.R.; Cheng, Y.; Moraru, C.I. Efficient removal of spores from skim milk using cold microfiltration: Spore size and surface property considerations. J. Dairy Sci. 2018, 101, 9703–9713. [Google Scholar] [CrossRef] [Green Version]
- Guerra, A.; Jonsson, G.; Rasmussen, A.; Waagner Nielsen, E.; Edelsten, D. Low cross-flow velocity microfiltration of skim milk for removal of bacterial spores. Int. Dairy J. 1997, 7, 849–861. [Google Scholar] [CrossRef]
- Pafylias, I.; Cheryan, M.; Mehaia, M.A.; Saglam, N. Microfiltration of milk with ceramic membranes. Food Res. Int. 1996, 29, 141–146. [Google Scholar] [CrossRef]
- Tomasula, P.M.; Mukhopadhyay, S.; Datta, N.; Porto-Fett, A.; Call, J.E.; Luchansky, J.B.; Renye, J.; Tunick, M. Pilot-scale crossflow-microfiltration and pasteurization to remove spores of Bacillus anthracis (Sterne) from milk. J. Dairy Sci. 2011, 94, 4277–4291. [Google Scholar] [CrossRef] [Green Version]
- Gosch, T.; Apprich, S.; Kneifel, W.; Novalin, S. A combination of microfiltration and high pressure treatment for the elimination of bacteria in bovine colostrum. Int. Dairy J. 2014, 34, 41–46. [Google Scholar] [CrossRef]
- Bechervaise, P.; Carr, D.; Bird, M.R. Removal of thermophilic spores from gum Arabic streams using ceramic alumina microfiltration membranes. Food Bioprod. Process. 2016, 99, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Blanpain-Avet, P.; Faille, C.; Delaplace, G.; Bénézech, T. Cell adhesion and related fouling mechanism on a tubular ceramic microfiltration membrane using Bacillus cereus spores. J. Membr. Sci. 2011, 385–386, 200–216. [Google Scholar] [CrossRef]
- Caridis, K.A.; Papathanasiou, T.D. Pressure effects in cross-flow microfiltration of suspensions of whole bacterial cells. Bioprocess Eng. 1997, 16, 199. [Google Scholar] [CrossRef]
- Hassan, I.; Ennouri, M.; Lafforgue, C.; Schmitz, P.; Ayadi, A. Experimental study of membrane fouling during crossflow microfiltration of yeast and bacteria suspensions: towards an analysis at the microscopic level. Membranes 2013, 3, 44–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jana, A.; Ghosh, S.; Majumdar, S. Energy efficient harvesting of Arthrospira sp. using ceramic membranes: analyzing the effect of membrane pore size and incorporation of flocculant as fouling control strategy: Energy efficient harvesting of Arthrospira sp. using ceramic membranes. J. Chem. Technol. Biotechnol. 2018, 93, 1085–1096. [Google Scholar] [CrossRef]
- Guo, H.; Huang, J.; Zhou, R.; Wu, C.; Jin, Y. Microfiltration of raw soy sauce: membrane fouling mechanisms and characterization of physicochemical, aroma and shelf-life properties. RSC Adv. 2019, 9, 2928–2940. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhao, Y.; Zhou, S.; Xing, W.; Wong, F.-S. Resistance analysis for ceramic membrane microfiltration of raw soy sauce. J. Membr. Sci. 2007, 299, 122–129. [Google Scholar] [CrossRef]
- Alexandri, M.; Schneider, R.; Venus, J. Membrane technologies for lactic acid separation from fermentation broths derived from renewable resources. Membranes 2018, 8, 94. [Google Scholar] [CrossRef] [Green Version]
- Boyaval, P.; Lavenant, C.; Gésan, G.; Daufin, G. Transient and stationary operating conditions on performance of lactic acid bacteria crossflow microfiltration. Biotechnol. Bioeng. 2000, 49, 78–86. [Google Scholar] [CrossRef]
- Carrère, H.; Blaszkow, F. Comparison of operating modes for clarifying lactic acid fermentation broths by batch cross-flow microfiltration. Process Biochem. 2001, 36, 751–756. [Google Scholar] [CrossRef]
- Davies, J.L.; Baganz, F.; Ison, A.P.; Lye, G.J. Studies on the interaction of fermentation and microfiltration operations: Erythromycin recovery fromSaccharopolyspora erythraea fermentation broths. Biotechnol. Bioeng. 2000, 69, 429–439. [Google Scholar] [CrossRef]
- Harscoat, C.; Jaffrin, M.Y.; Bouzerar, R.; Courtois, J. Influence of fermentation conditions and microfiltration processes on membrane fouling during recovery of glucuronane polysaccharides from fermentation broths. Biotechnol. Bioeng. 1999, 65, 12. [Google Scholar] [CrossRef]
- Jokić, A.; Pajčin, I.; Grahovac, J.; Lukić, N.; Dodić, J.; Rončević, Z.; Šereš, Z. Energy efficient turbulence promoter flux-enhanced microfiltration for the harvesting of rod-shaped bacteria using tubular ceramic membrane. Chem. Eng. Res. Des. 2019, 150, 359–368. [Google Scholar] [CrossRef]
- Milcent, S. Clarification of lactic acid fermentation broths. Sep. Purif. Technol. 2001, 22–23, 393–401. [Google Scholar] [CrossRef]
- Persson, A.; Jönsson, A.-S.; Zacchi, G. Separation of lactic acid-producing bacteria from fermentation broth using a ceramic microfiltration membrane with constant permeate flow. Biotechnol. Bioeng. 2001, 72, 269–277. [Google Scholar] [CrossRef]
- Streit, F.; Athès, V.; Bchir, A.; Corrieu, G.; Béal, C. Microfiltration conditions modify Lactobacillus bulgaricus cryotolerance in response to physiological changes. Bioprocess Biosyst. Eng. 2011, 34, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Thuy, N.T.H.; Boontawan, A. Production of very-high purity succinic acid from fermentation broth using microfiltration and nanofiltration-assisted crystallization. J. Membr. Sci. 2017, 524, 470–481. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, S.; Li, M.; Wang, R.; Zhao, Y. Purification of cellulase fermentation broth via low cost ceramic microfiltration membranes with nanofibers-like attapulgite separation layers. Sep. Purif. Technol. 2017, 175, 435–442. [Google Scholar] [CrossRef]
- Tomczak, W.; Gryta, M. The application of ultrafiltration for separation of glycerol solution fermented by bacteria. Pol. J. Chem. Technol. 2013, 15, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Beqqour, D.; Achiou, B.; Bouazizi, A.; Ouaddari, H.; Elomari, H.; Ouammou, M.; Bennazha, J.; Alami Younssi, S. Enhancement of microfiltration performances of pozzolan membrane by incorporation of micronized phosphate and its application for industrial wastewater treatment. J. Environ. Chem. Eng. 2019, 7, 102981. [Google Scholar] [CrossRef]
- Kumar, C.M.; Roshni, M.; Vasanth, D. Treatment of aqueous bacterial solution using ceramic membrane prepared from cheaper clays: A detailed investigation of fouling and cleaning. J. Water Process Eng. 2019, 29, 100797. [Google Scholar] [CrossRef]
- Li, M.; Zhao, Y.; Zhou, S.; Xing, W. Clarification of raw rice wine by ceramic microfiltration membranes and membrane fouling analysis. Desalination 2010, 256, 166–173. [Google Scholar] [CrossRef]
- Ogunbiyi, O.O.; Miles, N.J.; Hilal, N. The effects of performance and cleaning cycles of new tubular ceramic microfiltration membrane fouled with a model yeast suspension. Desalination 2008, 220, 273–289. [Google Scholar] [CrossRef]
- Vasanth, D.; Pugazhenthi, G.; Uppaluri, R. Biomass assisted microfiltration of chromium(VI) using Baker’s yeast by ceramic membrane prepared from low cost raw materials. Desalination 2012, 285, 239–244. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, H.; Xie, T.; Wang, B.; An, L. Effect of mass transfer on heat transfer of microporous ceramic membranes for water recovery. Int. J. Heat Mass Transfer 2017, 112, 643–648. [Google Scholar] [CrossRef]
- Field, R.W.; Wu, D.; Howell, J.A.; Gupta, B.B. Critical flux concept for microfiltration fouling. J. Membr. Sci. 1995, 100, 259–272. [Google Scholar] [CrossRef]
- Gençal, Y.; Durmaz, E.N.; Çulfaz-Emecen, P.Z. Preparation of patterned microfiltration membranes and their performance in crossflow yeast filtration. J. Membr. Sci. 2015, 476, 224–233. [Google Scholar] [CrossRef]
- Guo, W.; Ngo, H.-H.; Li, J. A mini-review on membrane fouling. Bioresour. Technol. 2012, 122, 27–34. [Google Scholar] [CrossRef]
- Gryta, M.; Tomczak, W. Microfiltration of post-fermentation broth with backflushing membrane cleaning. Chem. Pap. 2015, 69, 544–552. [Google Scholar] [CrossRef]
- Head, L.E.; Bird, M.R. The removal of psychrotropic spores from Milk Protein Isolate feeds using tubular ceramic microfilters. J. Food Process Eng. 2013, 36, 113–124. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Tomasula, P.M.; Luchansky, J.B.; Porto-Fett, A.; Call, J.E. Removal of Salmonella Enteritidis from commercial unpasteurized liquid egg white using pilot scale cross flow tangential microfiltration. Int. J. Food Microbiol. 2010, 142, 309–317. [Google Scholar] [CrossRef]
- Wang, K.; Li, W.; Fan, Y.; Xing, W. Integrated membrane process for the purification of lactic acid from a fermentation broth neutralized with sodium hydroxide. Ind. Eng. Chem. Res. 2013, 52, 2412–2417. [Google Scholar] [CrossRef]
- Middlewood, P.G.; Carson, J.K. Extraction of amaranth starch from an aqueous medium using microfiltration: Membrane fouling and cleaning. J. Membr. Sci. 2012, 411–412, 22–29. [Google Scholar] [CrossRef]
- Anis, S.F.; Hashaikeh, R.; Hilal, N. Microfiltration membrane processes: A review of research trends over the past decade. J. Water Process Eng. 2019, 32, 100941. [Google Scholar] [CrossRef]
- Wojciech, B.; Celińska, E.; Dembczyński, R.; Szymanowska, D.; Nowacka, M.; Jesionowski, T.; Grajek, W. Cross-flow microfiltration of fermentation broth containing native corn starch. J. Membr. Sci. 2013, 427, 118–128. [Google Scholar] [CrossRef]
- Carrère, H.; Blaszkowa, F.; Roux de Balmann, H. Modelling the microfiltration of lactic acid fermentation broths and comparison of operating modes. Desalination 2002, 145, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Hwang, K.-J.; Wang, C.-Y. Microfiltration characteristics of Bacillus subtilis fermentation broths. J. Taiwan Inst. Chem. Eng. 2012, 43, 347–353. [Google Scholar] [CrossRef]
- Kujundzic, E.; Greenberg, A.R.; Fong, R.; Moore, B.; Kujundzic, D.; Hernandez, M. Biofouling potential of industrial fermentation broth components during microfiltration. J. Membr. Sci. 2010, 349, 44–55. [Google Scholar] [CrossRef]
- Adikane, H.V.; Singh, R.K.; Nene, S.N. Recovery of penicillin G from fermentation broth by microfiltration. J. Membr. Sci. 1999, 162, 119–123. [Google Scholar]
- Kweon, J.H.; Jung, J.H.; Lee, S.R.; Hur, H.W.; Shin, Y.; Choi, Y.H. Effects of consecutive chemical cleaning on membrane performance and surface properties of microfiltration. Desalination 2012, 286, 324–331. [Google Scholar] [CrossRef]
- Shi, X.; Tal, G.; Hankins, N.P.; Gitis, V. Fouling and cleaning of ultrafiltration membranes: A review. J. Water Process Eng. 2014, 1, 121–138. [Google Scholar] [CrossRef]
- Bansal, B.; Al-Ali, R.; Mercadé-Prieto, R.; Chen, X.D. Rinsing and cleaning of α-lactalbumin fouled MF membranes. Sep. Purif. Technol. 2006, 48, 202–207. [Google Scholar] [CrossRef]
- Li, Q.; Elimelech, M. Organic fouling and chemical cleaning of nanofiltration membranes: measurements and mechanisms. Environ. Sci. Technol. 2004, 38, 4683–4693. [Google Scholar] [CrossRef]
- Almecija, M.C.; Martinez-Ferez, A.; Guadix, A.; Paez, M.P.; Guadix, E.M. Influence of the cleaning temperature on the permeability of ceramic membranes. Desalination 2009, 245, 708–713. [Google Scholar] [CrossRef]
- Celińska, E.; Drożdżyńska, A.; Jankowska, M.; Białas, W.; Czaczyk, K.; Grajek, W. Genetic engineering to improve 1,3-propanediol production in an isolated Citrobacter freundii strain. Process Biochem. 2015, 50, 48–60. [Google Scholar] [CrossRef]
- Drożdżyńska, A.; Leja, K.; Czaczyk, K. Biotechnological production of 1,3-propanediol from crude glycerol. BioTechnologia 2011, 1, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Garg, R.; Baral, P.; Jain, L.; Kurmi, A.K.; Agrawal, D. Monitoring steady production of 1,3-propanediol during bioprospecting of glycerol-assimilating soil microbiome using dye-based pH-stat method. J. Appl. Microbiol. 2020, 128, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Maina, S.; Kachrimanidou, V.; Ladakis, D.; Papanikolaou, S.; de Castro, A.M.; Koutinas, A. Evaluation of 1,3-propanediol production by twoCitrobacter freundiistrains using crude glycerol and soybean cake hydrolysate. Environ. Sci. Pollut. Res. 2019, 26, 35523–35532. [Google Scholar] [CrossRef] [PubMed]
- Metsoviti, M.; Zeng, A.-P.; Koutinas, A.A.; Papanikolaou, S. Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. J. Biotechnol. 2013, 163, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Bacchin, P.; Aimar, P.; Field, R. Critical and sustainable fluxes: Theory, experiments and applications. J. Membr. Sci. 2006, 281, 42–69. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Montes, E.; Yáñez-Fernández, J.; Castro-Muñoz, R. Microfiltration-mediated extraction of dextran produced by Leuconostoc mesenteroides SF3. Food Bioprod. Process. 2020, 119, 317–328. [Google Scholar] [CrossRef]
- Hilal, N.; Ogunbiyi, O.O.; Miles, N.J.; Nigmatullin, R. Methods Employed for Control of Fouling in MF and UF Membranes: A Comprehensive Review. Sep. Sci. Technol. 2005, 40, 1957–2005. [Google Scholar] [CrossRef]
- Chen, J.C.; Li, Q.; Elimelech, M. In situ monitoring techniques for concentration polarization and fouling phenomena in membrane filtration. Adv. Colloid Interface Sci. 2004, 107, 83–108. [Google Scholar] [CrossRef]
- Jokić, A.; Zavargo, Z.; Šereš, Z.; Tekić, M. The effect of turbulence promoter on cross-flow microfiltration of yeast suspensions: A response surface methodology approach. J. Membr. Sci. 2010, 350, 269–278. [Google Scholar] [CrossRef]
- Balyan, U.; Sarkar, B. Analysis of flux decline using sequential fouling mechanisms during concentration of Syzygium cumini (L.) leaf extract. Chem. Eng. Res. Des. 2018, 130, 167–183. [Google Scholar] [CrossRef]
- Tanaka, T.; Usui, K.; Kouda, K.; Nakanishi, K. Filtration behaviors of rod-shaped bacterial broths in unsteady-state phase of cross-flow filtration. J. Chem. Eng. Jpn. 1996, 29, 973–981. [Google Scholar] [CrossRef] [Green Version]
- El Rayess, Y.; Albasi, C.; Bacchin, P.; Taillandier, P.; Raynal, J.; Mietton-Peuchot, M.; Devatine, A. Cross-flow microfiltration applied to oenology: A review. J. Membr. Sci. 2011, 382, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Dijkshoorn, J.P.; Schutyser, M.A.I.; Wagterveld, R.M.; Schroën, C.G.P.H.; Boom, R.M. A comparison of microfiltration and inertia-based microfluidics for large scale suspension separation. Sep. Purif. Technol. 2017, 173, 86–92. [Google Scholar] [CrossRef]
- Kazemi, M.A.; Soltanieh, M.; Yazdanshenas, M. Mathematical modeling of crossflow microfiltration of diluted malt extract suspension by tubular ceramic membranes. J. Food Eng. 2013, 116, 926–933. [Google Scholar] [CrossRef]
- Hwang, K.-J.; Yu, Y.-H.; Lu, W.-M. Cross-flow microfiltration of submicron microbial suspension. J. Membr. Sci. 2001, 194, 229–243. [Google Scholar] [CrossRef]
- Sur, H.W.; Cui, Z.F. Enhancement of microfiltration of yeast suspensions using gas sparging – effect of feed conditions. Sep. Purif. Technol. 2005, 41, 313–319. [Google Scholar] [CrossRef]
- Tomczak, W.; Gryta, M. Determination of critical flux for ultrafiltration used for separation of glycerol fermentation broths. In Proceedings of the 40th International Conference of Slovak Society of Chemical Engineering, Tatranské Matliare, Slovakia, 27–31 May 2013; Jozef Markoš, Ed.; Slovak Society of Chemical Engineering: Bratislava, Slovakia, 2013; pp. 707–714. [Google Scholar]
- Wicaksana, F.; Fane, A.G.; Pongpairoj, P.; Field, R. Microfiltration of algae (Chlorella sorokiniana): Critical flux, fouling and transmission. J. Membr. Sci. 2012, 387–388, 83–92. [Google Scholar] [CrossRef]
- Tanudjaja, H.J.; Chew, J.W. Critical flux and fouling mechanism in cross flow microfiltration of oil emulsion: Effect of viscosity and bidispersity. Sep. Purif. Technol. 2019, 212, 684–691. [Google Scholar] [CrossRef]
- Tanudjaja, H.J.; Pee, W.; Fane, A.G.; Chew, J.W. Effect of spacer and crossflow velocity on the critical flux of bidisperse suspensions in microfiltration. J. Membr. Sci. 2016, 513, 101–107. [Google Scholar] [CrossRef]
- Balcıoğlu, G.; Gönder, Z.B. Recovery of baker’s yeast wastewater with membrane processes for agricultural irrigation purpose: Fouling characterization. Chem. Eng. J. 2014, 255, 630–640. [Google Scholar] [CrossRef]
- Nandi, B.K.; Das, B.; Uppaluri, R.; Purkait, M.K. Microfiltration of mosambi juice using low cost ceramic membrane. J. Food Eng. 2009, 95, 597–605. [Google Scholar] [CrossRef]
Step | Q (dm3/h) | u (m/s) | Reynolds Number | TMP (MPa) | T (°C) | t (min) | R |
---|---|---|---|---|---|---|---|
Pure water flux | 500 | 5.64 | 30,505 | 0.02–0.12 | 30 | 10 | Rm |
Filtration - fouling | 250–1000 | 2.82–11.28 | 15,252–61,010 | 0.02–0.12 | 30 | 250 | RT |
Pure water rinsing | 500 | 5.64 | 30,505 | 0 | 30 | 10 | Rirr; Rrev |
3% NaOH cleaning | 500 | 5.64 | 30,505 | 0 | 45 | 60 | - |
Pure water rinsing | 500 | 5.64 | 30,505 | 0 | 30 | 10 | - |
3% H3PO4 rinsing | 500 | 5.64 | 30,505 | 0 | 45 | 60 | - |
Pure water rinsing | 500 | 5.64 | 30,505 | 0 | 30 | 10 | - |
Pure water flux (cleaned membrane) | 500 | 5.64 | 30,505 | 0.02–0.12 | 30 | 10 | Rm |
Component | 1,3-PD | lactic acid | acetic acid | Cl− | NO3− | PO43− | SO42− | Na+ | NH4+ | K+ | Ca2+ | Mg2+ |
Concentration (g/L) | 9.03–12.73 | 0.18–0.34 | 2.16–2.92 | 0.11–0.15 | 0.01–0.02 | 2.09–2.56 | 1.62–1.83 | 1.15–1.40 | 0.56–0.76 | 1.43–1.58 | 0.03–0.05 | 0.03–0.06 |
Turbidity (NTU) | pH | Dynamic Viscosity (Pa·s) | Number of Bacteria (CFU/mL) | Total Wet Biomass (g/dm3) | Sediment (yes or no) |
---|---|---|---|---|---|
1700–2100 | 7.0 | 0.85 × 10−3 | 3.55 × 107–5.48 × 109 | 5.06–10.08 | yes |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomczak, W.; Gryta, M. Cross-Flow Microfiltration of Glycerol Fermentation Broths with Citrobacter freundii. Membranes 2020, 10, 67. https://doi.org/10.3390/membranes10040067
Tomczak W, Gryta M. Cross-Flow Microfiltration of Glycerol Fermentation Broths with Citrobacter freundii. Membranes. 2020; 10(4):67. https://doi.org/10.3390/membranes10040067
Chicago/Turabian StyleTomczak, Wirginia, and Marek Gryta. 2020. "Cross-Flow Microfiltration of Glycerol Fermentation Broths with Citrobacter freundii" Membranes 10, no. 4: 67. https://doi.org/10.3390/membranes10040067
APA StyleTomczak, W., & Gryta, M. (2020). Cross-Flow Microfiltration of Glycerol Fermentation Broths with Citrobacter freundii. Membranes, 10(4), 67. https://doi.org/10.3390/membranes10040067