Abstract
In 2020, the global prevalence of human immunodeficiency virus (HIV) infection was estimated to be 38 million, and a total of 690,000 people died from acquired immunodeficiency syndrome (AIDS)–related complications. Notably, around 12.6 million people living with HIIV/AIDS did not have access to life-saving treatment. The advent of the highly active antiretroviral therapy (HAART) in the mid-1990s remarkably enhanced the life expectancy of people living with HIV/AIDS as a result of improved immune functions. However, HAART has several drawbacks, especially when it is not used properly, including a high risk for the development of drug resistance, as well as undesirable side effects such as lipodystrophy and endocrine dysfunctions, which result in HAART intolerability. HAART is also not curative. Furthermore, new HIV infections continue to occur globally at a high rate, with an estimated 1.7 million new infections occurring in 2018 alone. Therefore, there is still an urgent need for an affordable, effective, and readily available preventive vaccine against HIV/AIDS. Despite this urgent need, however, progress toward an effective HIV vaccine has been modest over the last four decades. Reasons for this slow progress are mainly associated with the unique aspects of HIV itself and its ability to rapidly mutate, targeting immune cells and escape host immune responses. Several approaches to an HIV vaccine have been undertaken. However, this review will mainly discuss progress made, including the pre-clinical and clinical trials involving vector-based HIV DNA vaccines and the use of integrating lentiviral vectors in HIV vaccine development. We concluded by recommending particularly the use of integrase-defective lentiviral vectors, owing to their safety profiles, as one of the promising vectors in HIV DNA vaccine strategies both for prophylactic and therapeutic HIV vaccines.
1. Introduction
In the 1990s, the concept of DNA vaccination was introduced following the observation that an intramuscular injection with naked DNA triggered the expression of coded antigens [1]. Subsequently, Tang et al. [2] demonstrated that this approach elicited an immune response against the expressed antigen. Much interest in DNA vaccines was generated when it was discovered that the immune response induced following DNA injection was strong enough to protect mice and chicken against a challenge with an experimental influenza virus [3,4].
Indeed, unlike naked DNA vaccines, vector-based DNA immunization is a promising new approach to prevent those infectious diseases, for which classical vaccines, consisting of attenuated or inactivated pathogens or, more recently, recombinant proteins, do not have positive effects. Given that the live-attenuated or inactivated vaccines have been successfully used for several diseases [5], there are still diseases for which the use of live-attenuated pathogens could be problematic and of very high risk. Notably, these kinds of vaccines could be injurious to individuals with compromised immune systems, including cancer patients undergoing chemotherapy, AIDS patients, newborns, or the elderly. Moreover, there is a real danger of the live attenuated viruses reverting into virulence through mutations. In the case of HIV/AIDS, the risk of reversion to virulence could be fatal, and thus, unacceptable.
Interestingly, vector-based DNA vaccines also elicit durable and strong cell-mediated and humoral immune responses without any of the risks associated with live attenuated vaccines [6].
Recent HIV DNA vaccine research efforts have mainly focused on utilizing HIV-based lentiviral vectors for antigen delivery. Despite concerns pertaining to the safety of HIV-based lentiviral vectors for vaccine delivery and gene transfer, HIV DNA vaccination strategy presents several advantages as discussed below. Notably, in addition to their use for transducing HIV-specific target cells or for in vivo gene therapy for HIV/AIDS infection, the lentiviral vectors, in particular, can be pseudotyped into a recombinant viral form that can infect different target cells, including neurological and cancer cells.
Generally, DNA vaccines can be delivered through any of the following different routes: intramuscular [7], intradermal [7], subcutaneous [8], oral [9], intranasal [10,11,12,13,14,15], intraperitoneal [7], intravenous [7], and vaginal [16,17]. Usually, needle injection via intramuscular and intradermal routes is the most effective way to deliver vector-based DNA vaccines. However, recently an alternative and very efficient method for intradermal delivery was established. This method includes bombarding the target cells with DNA-coated microparticles using a “gene gun”. Usually, inert gold microparticles covered with specific recombinant DNA sequences are used as vaccine, and DNA-coated gold particles are shot through the skin with gas pressure, normally helium [18,19].
The capacity of vector-based DNA vaccines in inducing both cell-mediated and humoral immune responses is the most crucial feature of this strategy of vaccination [20,21,22]. This characteristic makes vector-based DNA vaccination the most appropriate strategy for the prevention of diseases including HIV/AIDS [23].
2. Recent Animal and Human Studies of Different Vector-Based HIV DNA Vaccine Candidates
Some of the main limitations of using plasmid DNA as a vaccine for HIV are: (i) inability to deliver the DNA efficiently and (ii) low expression of plasmid DNA. Therefore, efforts have been made to circumvent these limitations, so that DNA viral vectors can be exploited for use in HIV vaccines. An efficient HIV vaccine should be able to elicit strong humoral and cellular immune responses, including the CD4+ and CD8+ T-cell responses. One novel approach comprises priming with DNA vaccine and boosting with HIV envelope (HIV-Env) or virus-like particles. To this effect, several animal and human trials have been conducted using vector-based HIV DNA vaccines and the results of these trials have been very promising. A summary of the advantages and disadvantages of the different viral vectors for DNA vaccine delivery is provided in Table 1. However, for a detailed review of these vectors, please refer to Vannucci et al. [24] and Ura et al. [25].
Table 1.
Advantages and disadvantages of major viral vectors for DNA vaccine delivery.
Flatz et al. [34] demonstrated earlier that prime-boost vaccination with mismatched simian immunodeficiency virus (SIV) envelope (Env) gene derived from SIVmac239 prevented intrarectal infection by SIVsm660. In this case, analysis of different gene-based, prime-boost immunization regimens showed that recombinant adenovirus type 5 (rAd5)–prime followed by replication-deficient lymphocytic choriomeningitis virus (rLCMV)–boost elicited robust CD4+ and CD8+ T-cells and humoral immune responses. Subsequently, Shen et al. [35] examined if the addition of a glycoprotein 120 (gp120) protein in alum or Modified Vaccinia Ankara (MVA)–expressed secreted gp140 (MVAgp140) augments the immunogenicity of a DNA prime–MVA boost vaccine in rhesus macaques. In this case, they observed that both boost immunogens enhanced the breadth of HIV-1gp20 and variable regions V1V2 antibody responses. Interestingly, the gp120 boost elicited earlier and robust responses while the MVAgp140 resulted in improved antibody durability. In Thailand, Rerks-Ngarm et al. [31] evaluated four priming injections using recombinant canarypox vector vaccine (ALVAC-HIV) plus two booster injections of a recombinant gp120 subunit vaccine (AIDSVAX B/E). Results of this trial demonstrated that ALVAC-HIV and AIDSVAX B/E vaccine-elicited vaccine-induced HIV-1 Env V1V2–directed antibodies, though this vaccine exhibited modest vaccine efficacy of 31.2%. In another development, in a phase I clinical trial in which plasmid DNA vaccines encoding HIV antigens were administered, results demonstrated that there were low CD4+ and CD8+ T-cell responses in the absence of adjuvants and boosting with the alternative vaccine. The authors further observed that multiple factors, including both the dose and number of vaccinations, affect the immunogenicity of plasmid DNA vaccines in human clinical trials [36].
Furthermore, Nilsson et al. [37] compared the safety and the immunogenicity of intradermal vaccination with or without electroporation in a phase I, randomized, placebo-controlled trial of HIV-DNA-prime and HIV-MVA-boost vaccine in healthy Swedish volunteers. They found that intradermal or electroporation delivery was well tolerated and that, following three HIV-DNA immunizations, there were no statistically significant differences in interferon-gamma (IFN-γ) response to HIV-Gag between HIV-DNA intradermal and electroporation recipients and HIV-DNA intradermal recipients. Usually, immunization regimens that have been assessed for the development of HIV DNA vaccines have utilized purified HIV-Env proteins for boosting components of the vaccine regimen. However, Pantaleo et al. [38], for the first time, recently implored the effects of co-administration of HIV-Env proteins with either DNA or NYVAC vectors during the priming to determine whether it would result in early antibody response to HIV-Env V1V2 regions. Interestingly, they observed that co-administration of HIV gp120 Env protein together with DNA or NYVAC vectors during priming led to an early and more potent induction of Env V1V2 IgG antibody responses, suggesting that this immunization approach should be considered for induction of preventive antibodies in future HIV vaccine efficacy trials.
6. Vaccination Approaches Demonstrated to Enhance Immune Responses
Pre-clinical studies have shown that lentiviral vectors induce strong HIV-specific adaptive immune responses [48,49,54,55,56,57,90]. Lentiviral vectors expressing HIV-1 or SIV surface proteins, in both mouse models and human in vitro studies, have been shown to induce strong HIV-specific humoral and cytotoxic T-lymphocytes (CTLs) [49,54,56,57,90]. Interestingly, it was noted that an HIV-1-based lentiviral vector encoding HIV Gag, Pol, and Rev (VRX1023) induces more potent and durable mucosal and systemic cellular and humoral immune responses compared with adenovirus-based vectors [57]. A single dose of the lentiviral vector elicited strong and diverse Gag-specific T-cell responses, which peaked 16 days following prime-boost regardless of the dose used. However, a subsequent challenge with high-dose SIVmac251 resulted in an infection in all animals although the acute phase of infection demonstrated a more than two-fold reduction in viral replication and protection from CD4+ T-cell depletion.
Most recently, Joachim et al. [91] evaluated antibody responses to the HIV envelope variable region in twenty-nine individuals who received HIV DNA prime and HIV-MVA boost in phase I and II clinical trials. They observed that HIV DNA/MVA vaccine regiment induced durable V1V2 immunoglobulin G (IgG) antibody responses in the majority of the vaccinated individuals. Similarly, Msafiri et al. [92] also reported frequent antibody responses directed at the V1V2 region of the glycoprotein 120 induced by HIV DNA prime followed by HIV-MVA boost in healthy African volunteers. Furthermore, several recent clinical trials evaluated DNA vaccine delivery strategies that enhanced the expression of heterologous antigens and improved immune stimulation. In this regard, in a randomized placebo-controlled trial of HIV DNA prime and HIV MVA boost vaccination, Nilsson et al. [37] compared the safety and immunogenicity of intradermal (ID) vaccination with or without electroporation (EP) in healthy Swedish volunteers. They observed that, although ID/EP of HIV DNA was well tolerated, strong cell- and antibody-mediated immune responses were elicited by HIV DNA prime and HIV MVA boost vaccination with or without ID/EP. In a related development, in a randomized trial in Mozambique, Viegas et al. [93] evaluated ID HIV DNA immunization using needle-free Zetajet injection followed by HIV-MVA boost and found it to be safe and immunogenic. Similarly, Bakari et al. [94] reported broad and potent immune responses to a low-dose ID HIV DNA prime, boosted with recombinant HIV-MVA among healthy adults in Tanzania. Likewise, Hossenipour et al. [95] most recently compared the safety and immunogenicity of DNA prime followed by DNA/protein boost. The DNA/protein boost was co-administered intramuscularly (IM) via needle or needle-free injection device (Biojector). They observed that all vaccinations were safe and well tolerated. Further, they observed that DNA/protein co-administration was associated with HIV-1 V1V2 antibody responses. However, DNA administration by Biojector elicited higher CD4+ T cell responses to HIV envelope protein compared with the needle injection.
Author Contributions
J.H., A.L.S. and M.T. managed the production of this paper. J.H., A.L.S. and M.T. designed this study. M.T. supervised this study. All authors have read and agreed to the published version of the manuscript.
Funding
This work was supported by a grant from the National Institute on Drug Abuse (NIDA), NIH Grant, 1R01DA041746-01 to M.T. The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the National Center for Research Resources or the U.S. National Institutes of Health.
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
Not applicable.
Acknowledgments
We thank all the lab members of the Center for translational medicine, Thomas Jefferson University who read and commented on the article.
Conflicts of Interest
The authors declare no conflict of interest. The funders had no role in study design, data collection, and analysis, decision to publish, or preparation of the manuscript.
References
- Wolff, J.A.; Malone, R.W.; Williams, P.; Chong, W.; Acsadi, G.; Jani, A.; Felgner, P.L. Direct gene transfer into mouse muscle in vivo. Science 1990, 247, 1465–1468. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.C.; DeVit, M.; Johnston, S.A. Genetic immunization is a simple method for eliciting an immune response. Nature 1992, 356, 152–154. [Google Scholar] [CrossRef] [PubMed]
- Ulmer, J.B.; Donnelly, J.J.; Parker, S.E.; Rhodes, G.H.; Felgner, P.L.; Dwarki, V.J.; Gromkowski, S.H.; Deck, R.R.; DeWitt, C.M.; Friedman, A.; et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993, 259, 1745–1749. [Google Scholar] [CrossRef] [PubMed]
- Robinson, H.L.; Hunt, L.A.; Webster, R.G. Protection against a lethal influenza virus challenge by immunization with a haemagglutinin-expressing plasmid DNA. Vaccine 1993, 11, 957–960. [Google Scholar] [CrossRef]
- Weiner, D.B.; Kennedy, R.C. Genetic vaccines. Sci. Am. 1999, 281, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.A. DNA vaccines: A review. J. Intern. Med. 2003, 253, 402–410. [Google Scholar] [CrossRef]
- Fynan, E.F.; Webster, R.G.; Fuller, D.H.; Haynes, J.R.; Santoro, J.C.; Robinson, H.L. DNA vaccines: Protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc. Natl. Acad. Sci. USA 1993, 90, 11478–11482. [Google Scholar] [CrossRef]
- Katsumi, A.; Emi, N.; Abe, A.; Hasegawa, Y.; Ito, M.; Saito, H. Humoral and cellular immunity to an encoded protein induced by direct DNA injection. Hum. Gene Ther. 1994, 5, 1335–1339. [Google Scholar] [CrossRef]
- Chen, S.C.; Jones, D.H.; Fynan, E.F.; Farrar, G.H.; Clegg, J.C.; Greenberg, H.B.; Herrmann, J.E. Protective immunity induced by oral immunization with a rotavirus DNA vaccine encapsulated in microparticles. J. Virol. 1998, 72, 5757–5761. [Google Scholar] [CrossRef]
- Klavinskis, L.S.; Gao, L.; Barnfield, C.; Lehner, T.; Parker, S. Mucosal immunization with DNA-liposome complexes. Vaccine 1997, 15, 818–820. [Google Scholar] [CrossRef]
- Ban, E.M.; van Ginkel, F.W.; Simecka, J.W.; Kiyono, H.; Robinson, H.L.; McGhee, J.R. Mucosal immunization with DNA encoding influenza hemagglutinin. Vaccine 1997, 15, 811–813. [Google Scholar] [CrossRef]
- Kuklin, N.; Daheshia, M.; Karem, K.; Manickan, E.; Rouse, B.T. Induction of mucosal immunity against herpes simplex virus by plasmid DNA immunization. J. Virol. 1997, 71, 3138–3145. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, S.; Hamajima, K.; Fukushima, J.; Ihata, A.; Ishii, N.; Gorai, I.; Hirahara, F.; Mohri, H.; Okuda, K. Comparison of intranasal and intramuscular immunization against human immunodeficiency virus type 1 with a DNA-monophosphoryl lipid A adjuvant vaccine. Infect. Immun. 1998, 66, 823–826. [Google Scholar] [CrossRef]
- Sasaki, S.; Sumino, K.; Hamajima, K.; Fukushima, J.; Ishii, N.; Kawamoto, S.; Mohri, H.; Kensil, C.R.; Okuda, K. Induction of systemic and mucosal immune responses to human immunodeficiency virus type 1 by a DNA vaccine formulated with QS-21 saponin adjuvant via intramuscular and intranasal routes. J. Virol. 1998, 72, 4931–4939. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, S.; Fukushima, J.; Hamajima, K.; Ishii, N.; Tsuji, T.; Xin, K.Q.; Mohri, H.; Okuda, K. Adjuvant effect of Ubenimex on a DNA vaccine for HIV-1. Clin. Exp. Immunol. 1998, 111, 30–35. [Google Scholar] [CrossRef]
- Wang, B.; Dang, K.; Agadjanyan, M.G.; Srikantan, V.; Li, F.; Ugen, K.E.; Boyer, J.; Merva, M.; Williams, W.V.; Weiner, D.B. Mucosal immunization with a DNA vaccine induces immune responses against HIV-1 at a mucosal site. Vaccine 1997, 15, 821–825. [Google Scholar] [CrossRef] [PubMed]
- Livingston, J.B.; Lu, S.; Robinson, H.; Anderson, D.J. Immunization of the female genital tract with a DNA-based vaccine. Infect. Immun. 1998, 66, 322–329. [Google Scholar] [CrossRef]
- Yang, N.S.; Burkholder, J.; Roberts, B.; Martinell, B.; McCabe, D. In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc. Natl. Acad. Sci. USA 1990, 87, 9568–9572. [Google Scholar] [CrossRef]
- Williams, R.S.; Johnston, S.A.; Riedy, M.; DeVit, M.J.; McElligott, S.G.; Sanford, J.C. Introduction of foreign genes into tissues of living mice by DNA-coated microprojectiles. Proc. Natl. Acad. Sci. USA 1991, 88, 2726–2730. [Google Scholar] [CrossRef]
- Tighe, H.; Corr, M.; Roman, M.; Raz, E. Gene vaccination: Plasmid DNA is more than just a blueprint. Immunol. Today 1998, 19, 89–97. [Google Scholar] [CrossRef]
- Gurunathan, S.; Klinman, D.M.; Seder, R.A. DNA vaccines: Immunology, application, and optimization*. Annu. Rev. Immunol. 2000, 18, 927–974. [Google Scholar] [CrossRef]
- Schirmbeck, R.; Konig-Merediz, S.A.; Riedl, P.; Kwissa, M.; Sack, F.; Schroff, M.; Junghans, C.; Reimann, J.; Wittig, B. Priming of immune responses to hepatitis B surface antigen with minimal DNA expression constructs modified with a nuclear localization signal peptide. J. Mol. Med. 2001, 79, 343–350. [Google Scholar] [CrossRef]
- Seder, R.A.; Hill, A.V. Vaccines against intracellular infections requiring cellular immunity. Nature 2000, 406, 793–798. [Google Scholar] [CrossRef]
- Vannucci, L.; Lai, M.; Chiuppesi, F.; Ceccherini-Nelli, L.; Pistello, M. Viral vectors: A look back and ahead on gene transfer technology. New Microbiol. 2013, 36, 1–22. [Google Scholar]
- Ura, T.; Okuda, K.; Shimada, M. Developments in Viral Vector-Based Vaccines. Vaccines 2014, 2, 624–641. [Google Scholar] [CrossRef] [PubMed]
- Tebas, P.; Stein, D.; Binder-Scholl, G.; Mukherjee, R.; Brady, T.; Rebello, T.; Humeau, L.; Kalos, M.; Papasavvas, E.; Montaner, L.J.; et al. Antiviral effects of autologous CD4 T cells genetically modified with a conditionally replicating lentiviral vector expressing long antisense to HIV. Blood 2013, 121, 1524–1533. [Google Scholar] [CrossRef] [PubMed]
- Dropulic, B.; Hermankova, M.; Pitha, P.M. A conditionally replicating HIV-1 vector interferes with wild-type HIV-1 replication and spread. Proc. Natl. Acad. Sci. USA 1996, 93, 11103–11108. [Google Scholar] [CrossRef] [PubMed]
- Sekaly, R.P. The failed HIV Merck vaccine study: A step back or a launching point for future vaccine development? J. Exp. Med. 2008, 205, 7–12. [Google Scholar] [CrossRef]
- Ferreira, V.; Petry, H.; Salmon, F. Immune Responses to AAV-Vectors, the Glybera Example from Bench to Bedside. Front. Immunol. 2014, 5, 82. [Google Scholar] [CrossRef]
- Cavazzana-Calvo, M.; Hacein-Bey, S.; de Saint Basile, G.; Gross, F.; Yvon, E.; Nusbaum, P.; Selz, F.; Hue, C.; Certain, S.; Casanova, J.L.; et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000, 288, 669–672. [Google Scholar] [CrossRef]
- Rerks-Ngarm, S.; Pitisuttithum, P.; Nitayaphan, S.; Kaewkungwal, J.; Chiu, J.; Paris, R.; Premsri, N.; Namwat, C.; de Souza, M.; Adams, E.; et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 2009, 361, 2209–2220. [Google Scholar] [CrossRef]
- Hansen, S.G.; Ford, J.C.; Lewis, M.S.; Ventura, A.B.; Hughes, C.M.; Coyne-Johnson, L.; Whizin, N.; Oswald, K.; Shoemaker, R.; Swanson, T.; et al. Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 2011, 473, 523–527. [Google Scholar] [CrossRef]
- Slobod, K.S.; Shenep, J.L.; Lujan-Zilbermann, J.; Allison, K.; Brown, B.; Scroggs, R.A.; Portner, A.; Coleclough, C.; Hurwitz, J.L. Safety and immunogenicity of intranasal murine parainfluenza virus type 1 (Sendai virus) in healthy human adults. Vaccine 2004, 22, 3182–3186. [Google Scholar] [CrossRef]
- Flatz, L.; Cheng, C.; Wang, L.; Foulds, K.E.; Ko, S.Y.; Kong, W.P.; Roychoudhuri, R.; Shi, W.; Bao, S.; Todd, J.P.; et al. Gene-based vaccination with a mismatched envelope protects against simian immunodeficiency virus infection in nonhuman primates. J. Virol. 2012, 86, 7760–7770. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Basu, R.; Sawant, S.; Beaumont, D.; Kwa, S.F.; LaBranche, C.; Seaton, K.E.; Yates, N.L.; Montefiori, D.C.; Ferrari, G.; et al. HIV-1 gp120 and Modified Vaccinia Virus Ankara (MVA) gp140 Boost Immunogens Increase Immunogenicity of a DNA/MVA HIV-1 Vaccine. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Morgan, C.; Yu, X.; DeRosa, S.; Tomaras, G.D.; Montefiori, D.C.; Kublin, J.; Corey, L.; Keefer, M.C. Multiple factors affect immunogenicity of DNA plasmid HIV vaccines in human clinical trials. Vaccine 2015, 33, 2347–2353. [Google Scholar] [CrossRef]
- Nilsson, C.; Hejdeman, B.; Godoy-Ramirez, K.; Tecleab, T.; Scarlatti, G.; Brave, A.; Earl, P.L.; Stout, R.R.; Robb, M.L.; Shattock, R.J.; et al. HIV-DNA Given with or without Intradermal Electroporation Is Safe and Highly Immunogenic in Healthy Swedish HIV-1 DNA/MVA Vaccinees: A Phase I Randomized Trial. PLoS ONE 2015, 10, e0131748. [Google Scholar] [CrossRef]
- Pantaleo, G.; Janes, H.; Karuna, S.; Grant, S.; Ouedraogo, G.L.; Allen, M.; Tomaras, G.D.; Frahm, N.; Montefiori, D.C.; Ferrari, G.; et al. Safety and immunogenicity of a multivalent HIV vaccine comprising envelope protein with either DNA or NYVAC vectors (HVTN 096): A phase 1b, double-blind, placebo-controlled trial. Lancet HIV 2019, 6, e737–e749. [Google Scholar] [CrossRef]
- Buchbinder, S.P.; Mehrotra, D.V.; Duerr, A.; Fitzgerald, D.W.; Mogg, R.; Li, D.; Gilbert, P.B.; Lama, J.R.; Marmor, M.; Del Rio, C.; et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): A double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 2008, 372, 1881–1893. [Google Scholar] [CrossRef]
- Flynn, N.M.; Forthal, D.N.; Harro, C.D.; Judson, F.N.; Mayer, K.H.; Para, M.F. Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J. Infect. Dis. 2005, 191, 654–665. [Google Scholar] [CrossRef] [PubMed]
- Gray, G.E.; Allen, M.; Moodie, Z.; Churchyard, G.; Bekker, L.G.; Nchabeleng, M.; Mlisana, K.; Metch, B.; de Bruyn, G.; Latka, M.H.; et al. Safety and efficacy of the HVTN 503/Phambili study of a clade-B-based HIV-1 vaccine in South Africa: A double-blind, randomised, placebo-controlled test-of-concept phase 2b study. Lancet Infect. Dis. 2011, 11, 507–515. [Google Scholar] [CrossRef]
- Hammer, S.M.; Sobieszczyk, M.E.; Janes, H.; Karuna, S.T.; Mulligan, M.J.; Grove, D.; Koblin, B.A.; Buchbinder, S.P.; Keefer, M.C.; Tomaras, G.D.; et al. Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine. N. Engl. J. Med. 2013, 369, 2083–2092. [Google Scholar] [CrossRef] [PubMed]
- Achenbach, C.J.; Assoumou, L.; Deeks, S.G.; Wilkin, T.J.; Berzins, B.; Casazza, J.P.; Lambert-Niclot, S.; Koup, R.A.; Costagliola, D.; Calvez, V.; et al. Effect of therapeutic intensification followed by HIV DNA prime and rAd5 boost vaccination on HIV-specific immunity and HIV reservoir (EraMune 02): A multicentre randomised clinical trial. Lancet HIV 2015, 2, e82–e91. [Google Scholar] [CrossRef]
- Autran, B.; Murphy, R.L.; Costagliola, D.; Tubiana, R.; Clotet, B.; Gatell, J.; Staszewski, S.; Wincker, N.; Assoumou, L.; El-Habib, R.; et al. Greater viral rebound and reduced time to resume antiretroviral therapy after therapeutic immunization with the ALVAC-HIV vaccine (vCP1452). AIDS 2008, 22, 1313–1322. [Google Scholar] [CrossRef]
- Gandhi, R.T.; O’Neill, D.; Bosch, R.J.; Chan, E.S.; Bucy, R.P.; Shopis, J.; Baglyos, L.; Adams, E.; Fox, L.; Purdue, L.; et al. A randomized therapeutic vaccine trial of canarypox-HIV-pulsed dendritic cells vs. canarypox-HIV alone in HIV-1-infected patients on antiretroviral therapy. Vaccine 2009, 27, 6088–6094. [Google Scholar] [CrossRef]
- Kinloch-de Loes, S.; Hoen, B.; Smith, D.E.; Autran, B.; Lampe, F.C.; Phillips, A.N.; Goh, L.E.; Andersson, J.; Tsoukas, C.; Sonnerborg, A.; et al. Impact of therapeutic immunization on HIV-1 viremia after discontinuation of antiretroviral therapy initiated during acute infection. J. Infect. Dis. 2005, 192, 607–617. [Google Scholar] [CrossRef]
- Hansen, S.G.; Piatak, M., Jr.; Ventura, A.B.; Hughes, C.M.; Gilbride, R.M.; Ford, J.C.; Oswald, K.; Shoemaker, R.; Li, Y.; Lewis, M.S.; et al. Immune clearance of highly pathogenic SIV infection. Nature 2013, 502, 100–104. [Google Scholar] [CrossRef]
- Beignon, A.S.; Mollier, K.; Liard, C.; Coutant, F.; Munier, S.; Riviere, J.; Souque, P.; Charneau, P. Lentiviral vector-based prime/boost vaccination against AIDS: Pilot study shows protection against Simian immunodeficiency virus SIVmac251 challenge in macaques. J. Virol. 2009, 83, 10963–10974. [Google Scholar] [CrossRef]
- Norton, T.D.; Miller, E.A.; Bhardwaj, N.; Landau, N.R. Vpx-containing dendritic cell vaccine induces CTLs and reactivates latent HIV-1 in vitro. Gene Ther. 2015, 22, 227–236. [Google Scholar] [CrossRef]
- Miller, E.A.; Spadaccia, M.R.; Norton, T.; Demmler, M.; Gopal, R.; O’Brien, M.; Landau, N.; Dubensky, T.W., Jr.; Lauer, P.; Brockstedt, D.G.; et al. Attenuated Listeria monocytogenes vectors overcome suppressive plasma factors during HIV infection to stimulate myeloid dendritic cells to promote adaptive immunity and reactivation of latent virus. AIDS Res. Hum. Retrovir. 2015, 31, 127–136. [Google Scholar] [CrossRef]
- Bartosch, B.; Cosset, F.L. Strategies for retargeted gene delivery using vectors derived from lentiviruses. Curr. Gene Ther. 2004, 4, 427–443. [Google Scholar] [CrossRef]
- Symonds, G.P.; Johnstone, H.A.; Millington, M.L.; Boyd, M.P.; Burke, B.P.; Breton, L.R. The use of cell-delivered Gene therapy for the treatment of HIV/AIDS. Immunol. Res. 2010, 48, 84–98. [Google Scholar] [CrossRef]
- Wolstein, O.; Boyd, M.; Millington, M.; Impey, H.; Boyer, J.; Howe, A.; Delebecque, F.; Cornetta, K.; Rothe, M.; Baum, C.; et al. Preclinical safety and efficacy of an anti-HIV-1 lentiviral vector containing a short hairpin RNA to CCR5 and the C46 fusion inhibitor. Mol. Ther. Methods Clin. Dev. 2014, 1, 11. [Google Scholar] [CrossRef]
- Buffa, V.; Negri, D.R.; Leone, P.; Borghi, M.; Bona, R.; Michelini, Z.; Compagnoni, D.; Sgadari, C.; Ensoli, B.; Cara, A. Evaluation of a self-inactivating lentiviral vector expressing simian immunodeficiency virus gag for induction of specific immune responses in vitro and in vivo. Viral Immunol. 2006, 19, 690–701. [Google Scholar] [CrossRef] [PubMed]
- Esslinger, C.; Chapatte, L.; Finke, D.; Miconnet, I.; Guillaume, P.; Levy, F.; MacDonald, H.R. In vivo administration of a lentiviral vaccine targets DCs and induces efficient CD8(+) T cell responses. J. Clin. Investig. 2003, 111, 1673–1681. [Google Scholar] [CrossRef]
- Iglesias, M.C.; Mollier, K.; Beignon, A.S.; Souque, P.; Adotevi, O.; Lemonnier, F.; Charneau, P. Lentiviral vectors encoding HIV-1 polyepitopes induce broad CTL responses in vivo. Mol. Ther. J. Am. Soc. Gene Ther. 2007, 15, 1203–1210. [Google Scholar] [CrossRef]
- Lemiale, F.; Asefa, B.; Ye, D.; Chen, C.; Korokhov, N.; Humeau, L. An HIV-based lentiviral vector as HIV vaccine candidate: Immunogenic characterization. Vaccine 2010, 28, 1952–1961. [Google Scholar] [CrossRef]
- Steinman, R.M.; Cohn, Z.A. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 1973, 137, 1142–1162. [Google Scholar] [CrossRef]
- Norton, T.D.; Miller, E.A. Recent Advances in Lentiviral Vaccines for HIV-1 Infection. Front. Immunol. 2016, 7, 243. [Google Scholar] [CrossRef]
- Naldini, L. Lentiviruses as gene transfer agents for delivery to non-dividing cells. Curr. Opin. Biotechnol. 1998, 9, 457–463. [Google Scholar] [CrossRef]
- Yang, L.; Yang, H.; Rideout, K.; Cho, T.; Joo, K.I.; Ziegler, L.; Elliot, A.; Walls, A.; Yu, D.; Baltimore, D.; et al. Engineered lentivector targeting of dendritic cells for in vivo immunization. Nat. Biotechnol. 2008, 26, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Dai, B.; Yang, L.; Yang, H.; Hu, B.; Baltimore, D.; Wang, P. HIV-1 Gag-specific immunity induced by a lentivector-based vaccine directed to dendritic cells. Proc. Natl. Acad. Sci. USA 2009, 106, 20382–20387. [Google Scholar] [CrossRef]
- Tareen, S.U.; Kelley-Clarke, B.; Nicolai, C.J.; Cassiano, L.A.; Nelson, L.T.; Slough, M.M.; Vin, C.D.; Odegard, J.M.; Sloan, D.D.; Van Hoeven, N.; et al. Design of a novel integration-deficient lentivector technology that incorporates genetic and posttranslational elements to target human dendritic cells. Mol. Ther. J. Am. Soc. Gene Ther. 2014, 22, 575–587. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bryson, P.D.; Zhang, C.; Lee, C.L.; Wang, P. A tetracycline-regulated cell line produces high-titer lentiviral vectors that specifically target dendritic cells. J. Vis. Exp. 2013. [Google Scholar] [CrossRef]
- Lee, C.L.; Chou, M.; Dai, B.; Xiao, L.; Wang, P. Construction of stable producer cells to make high-titer lentiviral vectors for dendritic cell-based vaccination. Biotechnol. Bioeng. 2012, 109, 1551–1560. [Google Scholar] [CrossRef] [PubMed]
- Stripecke, R. Lentivirus-Induced Dendritic Cells (iDC) for Immune-Regenerative Therapies in Cancer and Stem Cell Transplantation. Biomedicines 2014, 2, 229–246. [Google Scholar] [CrossRef] [PubMed]
- Daenthanasanmak, A.; Salguero, G.; Borchers, S.; Figueiredo, C.; Jacobs, R.; Sundarasetty, B.S.; Schneider, A.; Schambach, A.; Eiz-Vesper, B.; Blasczyk, R.; et al. Integrase-defective lentiviral vectors encoding cytokines induce differentiation of human dendritic cells and stimulate multivalent immune responses in vitro and in vivo. Vaccine 2012, 30, 5118–5131. [Google Scholar] [CrossRef]
- Cousin, C.; Oberkampf, M.; Felix, T.; Rosenbaum, P.; Weil, R.; Fabrega, S.; Morante, V.; Negri, D.; Cara, A.; Dadaglio, G.; et al. Persistence of Integrase-Deficient Lentiviral Vectors Correlates with the Induction of STING-Independent CD8(+) T Cell Responses. Cell Rep. 2019, 26, 1242–1257.e7. [Google Scholar] [CrossRef]
- Smit, J.M.; Bittman, R.; Wilschut, J. Low-pH-dependent fusion of Sindbis virus with receptor-free cholesterol- and sphingolipid-containing liposomes. J. Virol. 1999, 73, 8476–8484. [Google Scholar] [CrossRef] [PubMed]
- Funke, S.; Maisner, A.; Muhlebach, M.D.; Koehl, U.; Grez, M.; Cattaneo, R.; Cichutek, K.; Buchholz, C.J. Targeted cell entry of lentiviral vectors. Mol. Ther. J. Am. Soc. Gene Ther. 2008, 16, 1427–1436. [Google Scholar] [CrossRef]
- Humbert, J.M.; Frecha, C.; Amirache Bouafia, F.; N’Guyen, T.H.; Boni, S.; Cosset, F.L.; Verhoeyen, E.; Halary, F. Measles virus glycoprotein-pseudotyped lentiviral vectors are highly superior to vesicular stomatitis virus G pseudotypes for genetic modification of monocyte-derived dendritic cells. J. Virol. 2012, 86, 5192–5203. [Google Scholar] [CrossRef]
- Ageichik, A.; Buchholz, C.J.; Collins, M.K. Lentiviral vectors targeted to MHC II are effective in immunization. Hum. Gene Ther. 2011, 22, 1249–1254. [Google Scholar] [CrossRef]
- Cire, S.; Da Rocha, S.; Yao, R.; Fisson, S.; Buchholz, C.J.; Collins, M.K.; Galy, A. Immunization of mice with lentiviral vectors targeted to MHC class II+ cells is due to preferential transduction of dendritic cells in vivo. PLoS ONE 2014, 9, e101644. [Google Scholar] [CrossRef]
- Anliker, B.; Abel, T.; Kneissl, S.; Hlavaty, J.; Caputi, A.; Brynza, J.; Schneider, I.C.; Munch, R.C.; Petznek, H.; Kontermann, R.E.; et al. Specific gene transfer to neurons, endothelial cells and hematopoietic progenitors with lentiviral vectors. Nat. Methods 2010, 7, 929–935. [Google Scholar] [CrossRef]
- Goyvaerts, C.; De Groeve, K.; Dingemans, J.; Van Lint, S.; Robays, L.; Heirman, C.; Reiser, J.; Zhang, X.Y.; Thielemans, K.; De Baetselier, P.; et al. Development of the Nanobody display technology to target lentiviral vectors to antigen-presenting cells. Gene Ther. 2012, 19, 1133–1140. [Google Scholar] [CrossRef]
- Goyvaerts, C.; Kurt de, G.; Van Lint, S.; Heirman, C.; Van Ginderachter, J.A.; De Baetselier, P.; Raes, G.; Thielemans, K.; Breckpot, K. Immunogenicity of targeted lentivectors. Oncotarget 2014, 5, 704–715. [Google Scholar] [CrossRef][Green Version]
- Fu, C.; Zhou, L.; Mi, Q.S.; Jiang, A. DC-Based Vaccines for Cancer Immunotherapy. Vaccines 2020, 8, 706. [Google Scholar] [CrossRef]
- Merten, O.W.; Hebben, M.; Bovolenta, C. Production of lentiviral vectors. Mol. Ther. Methods Clin. Dev. 2016, 3, 16017. [Google Scholar] [CrossRef] [PubMed]
- Levine, B.L.; Miskin, J.; Wonnacott, K.; Keir, C. Global Manufacturing of CAR T Cell Therapy. Mol. Ther. Methods Clin. Dev. 2017, 4, 92–101. [Google Scholar] [CrossRef]
- Baekelandt, V.; Eggermont, K.; Michiels, M.; Nuttin, B.; Debyser, Z. Optimized lentiviral vector production and purification procedure prevents immune response after transduction of mouse brain. Gene Ther. 2003, 10, 1933–1940. [Google Scholar] [CrossRef]
- Zhou, S.; Fatima, S.; Ma, Z.; Wang, Y.D.; Lu, T.; Janke, L.J.; Du, Y.; Sorrentino, B.P. Evaluating the Safety of Retroviral Vectors Based on Insertional Oncogene Activation and Blocked Differentiation in Cultured Thymocytes. Mol. Ther. J. Am. Soc. Gene Ther. 2016, 24, 1090–1099. [Google Scholar] [CrossRef]
- Finkelshtein, D.; Werman, A.; Novick, D.; Barak, S.; Rubinstein, M. LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc. Natl. Acad. Sci. USA 2013, 110, 7306–7311. [Google Scholar] [CrossRef]
- Amirache, F.; Levy, C.; Costa, C.; Mangeot, P.E.; Torbett, B.E.; Wang, C.X.; Negre, D.; Cosset, F.L.; Verhoeyen, E. Mystery solved: VSV-G-LVs do not allow efficient gene transfer into unstimulated T cells, B cells, and HSCs because they lack the LDL receptor. Blood 2014, 123, 1422–1424. [Google Scholar] [CrossRef]
- Burns, J.C.; Friedmann, T.; Driever, W.; Burrascano, M.; Yee, J.K. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: Concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. USA 1993, 90, 8033–8037. [Google Scholar] [CrossRef]
- Dull, T.; Zufferey, R.; Kelly, M.; Mandel, R.J.; Nguyen, M.; Trono, D.; Naldini, L. A third-generation lentivirus vector with a conditional packaging system. J. Virol. 1998, 72, 8463–8471. [Google Scholar] [CrossRef]
- Sirven, A.; Ravet, E.; Charneau, P.; Zennou, V.; Coulombel, L.; Guetard, D.; Pflumio, F.; Dubart-Kupperschmitt, A. Enhanced transgene expression in cord blood CD34(+)-derived hematopoietic cells, including developing T cells and NOD/SCID mouse repopulating cells, following transduction with modified trip lentiviral vectors. Mol. Ther. J. Am. Soc. Gene Ther. 2001, 3, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Milone, M.C.; Fish, J.D.; Carpenito, C.; Carroll, R.G.; Binder, G.K.; Teachey, D.; Samanta, M.; Lakhal, M.; Gloss, B.; Danet-Desnoyers, G.; et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol. Ther. J. Am. Soc. Gene Ther. 2009, 17, 1453–1464. [Google Scholar] [CrossRef] [PubMed]
- Isaguliants, M.G.; Iakimtchouk, K.; Petrakova, N.V.; Yermalovich, M.A.; Zuber, A.K.; Kashuba, V.I.; Belikov, S.V.; Andersson, S.; Kochetkov, S.N.; Klinman, D.M.; et al. Gene immunization may induce secondary antibodies reacting with DNA. Vaccine 2004, 22, 1576–1585. [Google Scholar] [CrossRef]
- Schambach, A.; Zychlinski, D.; Ehrnstroem, B.; Baum, C. Biosafety features of lentiviral vectors. Hum. Gene Ther. 2013, 24, 132–142. [Google Scholar] [CrossRef]
- Buffa, V.; Negri, D.R.; Leone, P.; Bona, R.; Borghi, M.; Bacigalupo, I.; Carlei, D.; Sgadari, C.; Ensoli, B.; Cara, A. A single administration of lentiviral vectors expressing either full-length human immunodeficiency virus 1 (HIV-1)(HXB2) Rev/Env or codon-optimized HIV-1(JR-FL) gp120 generates durable immune responses in mice. J. Gen. Virol. 2006, 87, 1625–1634. [Google Scholar] [CrossRef]
- Joachim, A.; Msafiri, F.; Onkar, S.; Munseri, P.; Aboud, S.; Lyamuya, E.F.; Bakari, M.; Billings, E.; Robb, M.L.; Wahren, B.; et al. Frequent and Durable Anti-HIV Envelope VIV2 IgG Responses Induced by HIV-1 DNA Priming and HIV-MVA Boosting in Healthy Tanzanian Volunteers. Vaccines 2020, 8, 681. [Google Scholar] [CrossRef] [PubMed]
- Msafiri, F.; Joachim, A.; Held, K.; Nadai, Y.; Chissumba, R.M.; Geldmacher, C.; Aboud, S.; Stohr, W.; Viegas, E.; Kroidl, A.; et al. Frequent Anti-V1V2 Responses Induced by HIV-DNA Followed by HIV-MVA with or without CN54rgp140/GLA-AF in Healthy African Volunteers. Microorganisms 2020, 8, 1722. [Google Scholar] [CrossRef] [PubMed]
- Viegas, E.O.; Tembe, N.; Nilsson, C.; Meggi, B.; Maueia, C.; Augusto, O.; Stout, R.; Scarlatti, G.; Ferrari, G.; Earl, P.L.; et al. Intradermal HIV-1 DNA Immunization Using Needle-Free Zetajet Injection Followed by HIV-Modified Vaccinia Virus Ankara Vaccination Is Safe and Immunogenic in Mozambican Young Adults: A Phase I Randomized Controlled Trial. AIDS Res. Hum. Retrovir. 2018, 34, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Bakari, M.; Aboud, S.; Nilsson, C.; Francis, J.; Buma, D.; Moshiro, C.; Aris, E.A.; Lyamuya, E.F.; Janabi, M.; Godoy-Ramirez, K.; et al. Broad and potent immune responses to a low dose intradermal HIV-1 DNA boosted with HIV-1 recombinant MVA among healthy adults in Tanzania. Vaccine 2011, 29, 8417–8428. [Google Scholar] [CrossRef]
- Hosseinipour, M.C.; Innes, C.; Naidoo, S.; Mann, P.; Hutter, J.; Ramjee, G.; Sebe, M.; Maganga, L.; Herce, M.E.; deCamp, A.C.; et al. Phase 1 Human Immunodeficiency Virus (HIV) Vaccine Trial to Evaluate the Safety and Immunogenicity of HIV Subtype C DNA and MF59-Adjuvanted Subtype C Envelope Protein. Clin. Infect. Dis. 2021, 72, 50–60. [Google Scholar] [CrossRef]
- Kymalainen, H.; Appelt, J.U.; Giordano, F.A.; Davies, A.F.; Ogilvie, C.M.; Ahmed, S.G.; Laufs, S.; Schmidt, M.; Bode, J.; Yanez-Munoz, R.J.; et al. Long-term episomal transgene expression from mitotically stable integration-deficient lentiviral vectors. Hum. Gene Ther. 2014, 25, 428–442. [Google Scholar] [CrossRef] [PubMed]
- Verghese, S.C.; Goloviznina, N.A.; Skinner, A.M.; Lipps, H.J.; Kurre, P. S/MAR sequence confers long-term mitotic stability on non-integrating lentiviral vector episomes without selection. Nucleic Acids Res. 2014, 42, e53. [Google Scholar] [CrossRef] [PubMed]
- Negri, D.; Blasi, M.; LaBranche, C.; Parks, R.; Balachandran, H.; Lifton, M.; Shen, X.; Denny, T.; Ferrari, G.; Vescio, M.F.; et al. Immunization with an SIV-based IDLV Expressing HIV-1 Env 1086 Clade C Elicits Durable Humoral and Cellular Responses in Rhesus Macaques. Mol. Ther. J. Am. Soc. Gene Ther. 2016, 24, 2021–2032. [Google Scholar] [CrossRef]
- Blasi, M.; Negri, D.; Saunders, K.O.; Baker, E.J.; Stadtler, H.; LaBranche, C.; Mildenberg, B.; Morton, G.; Ciarla, A.; Shen, X.; et al. Immunogenicity, safety, and efficacy of sequential immunizations with an SIV-based IDLV expressing CH505 Envs. NPJ Vaccines 2020, 5, 107. [Google Scholar] [CrossRef]
- Gallinaro, A.; Borghi, M.; Pirillo, M.F.; Cecchetti, S.; Bona, R.; Canitano, A.; Michelini, Z.; Di Virgilio, A.; Olvera, A.; Brander, C.; et al. Development and Preclinical Evaluation of an Integrase Defective Lentiviral Vector Vaccine Expressing the HIVACAT T Cell Immunogen in Mice. Mol. Ther. Methods Clin. Dev. 2020, 17, 418–428. [Google Scholar] [CrossRef]
- Blasi, M.; Wescott, E.C.; Baker, E.J.; Mildenberg, B.; LaBranche, C.; Rountree, W.; Haynes, B.F.; Saunders, K.O.; Moody, M.A.; Negri, D.; et al. Therapeutic vaccination with IDLV-SIV-Gag results in durable viremia control in chronically SHIV-infected macaques. NPJ Vaccines 2020, 5, 36. [Google Scholar] [CrossRef] [PubMed]
- Nakamura-Hoshi, M.; Takahara, Y.; Matsuoka, S.; Ishii, H.; Seki, S.; Nomura, T.; Yamamoto, H.; Sakawaki, H.; Miura, T.; Tokusumi, T.; et al. Therapeutic vaccine-mediated Gag-specific CD8(+) T-cell induction under anti-retroviral therapy augments anti-virus efficacy of CD8(+) cells in simian immunodeficiency virus-infected macaques. Sci. Rep. 2020, 10, 11394. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).