Prevalence of Anti-SARS-CoV-2 Antibodies in Poznań, Poland, after the First Wave of the COVID-19 Pandemic
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Laboratory Analysis
2.3. Statistical Analysis
2.4. Ethics Approval
3. Results
3.1. Characteristics of Study Participants
3.2. Anti-SARS-CoV-2 Seroprevalence
3.3. SARS-CoV-2 Infection Risk Factors
3.4. Comparison of ELISA and Immunoblot Methods of Anti-SARS-CoV-2 Antibodies Detection
3.5. Anti-SARS-CoV-2 Antibody Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Baj, J.; Karakuła-Juchnowicz, H.; Teresiński, G.; Buszewicz, G.; Ciesielka, M.; Sitarz, E.; Forma, A.; Karakuła, K.; Flieger, W.; Portincasa, P.; et al. COVID-19: Specific and Non-Specific Clinical Manifestations and Symptoms: The Current State of Knowledge. J. Clin. Med. 2020, 9, 1753. [Google Scholar] [CrossRef]
- Bar-On, Y.M.; Flamholz, A.; Phillips, R.; Milo, R. Sars-cov-2 (Covid-19) by the numbers. Elife 2020, 9, e57309. [Google Scholar] [CrossRef]
- Nikolai, L.A.; Meyer, C.G.; Kremsner, P.G.; Velavan, T.P. Asymptomatic SARS Coronavirus 2 infection: Invisible yet invincible. Int. J. Inf. Dis. 2020, 100, 112–116. [Google Scholar] [CrossRef]
- Kubina, R.; Dziedzic, A. Molecular and Serological Tests for COVID-19. A Comparative Review of SARS-CoV-2 Coronavirus Laboratory and Point-of-Care Diagnostics. Diagnostics 2020, 10, 434. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Wang, M.X.; Ang, I.Y.H.; Tan, S.H.X.; Lewis, R.F.; Chen, J.I.-P.; Gutierrez, R.A.; Gwee, S.X.W.; Chua, P.E.Y.; Yang, Q.; et al. Potential Rapid Diagnostics, Vaccine and Therapeutics for 2019 Novel Coronavirus (2019-nCoV): A Systematic Review. J. Clin. Med. 2020, 9, 623. [Google Scholar] [CrossRef] [PubMed]
- Dramé, M.; Tabue Teguo, M.; Proye, E.; Hequet, F.; Hentzien, M.; Kanagaratnam, L.; Godaert, L. Should RT-PCR be considered a gold standard in the diagnosis of COVID-19? J. Med. Virol. 2020, 92, 2312–2313. [Google Scholar] [CrossRef] [PubMed]
- Boeger, B.B.; Fachi, M.M.; Vilhena, R.O.; Cobre, A.F.; Tonin, F.S.; Pontarolo, R. Systematic review with meta-analysis of the accuracy of diagnostic tests for COVID-19. Am. J. Inf. Control. 2021, 49, 21–29. [Google Scholar] [CrossRef]
- WHO | World Health Organization. Available online: https://www.who.int/ (accessed on 14 May 2021).
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Inf. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef]
- Gabutti, G.; D’anchera, E.; De Motoli, F.; Savio, M.; Stefanati, A. The epidemiological characteristics of the covid-19 pandemic in europe: Focus on Italy. Int. J. Environ. Res. Public Health 2021, 18, 2942. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Available online: https://www.ecdc.europa.eu/en (accessed on 14 May 2021).
- Polish Ministry of Health. Available online: https://www.gov.pl/web/zdrowie (accessed on 14 May 2021).
- Beavis, K.G.; Matushek, S.M.; Abeleda, A.P.F.; Bethel, C.; Hunt, C.; Gillen, S.; Moran, A.; Tesic, V. Evaluation of the EUROIMMUN Anti-SARS-CoV-2 ELISA Assay for detection of IgA and IgG antibodies. J. Clin. Virol. 2020, 129, 104468. [Google Scholar] [CrossRef]
- Coronavirus Pandemic (COVID-19)—The Data—Statistics and Research—Our World in Data. Available online: https://ourworldindata.org/coronavirus-data (accessed on 14 May 2021).
- Qiu, X.; Nergiz, A.I.; Maraolo, A.E.; Bogoch, I.I.; Low, N.; Cevik, M. The role of asymptomatic and pre-symptomatic infection in SARS-CoV-2 transmission—A living systematic review. Clin. Microbiol. Inf. 2021, 27, 511–519. [Google Scholar] [CrossRef]
- Pollock, A.M.; Lancaster, J. Asymptomatic transmission of covid-19. What we know, and what we don’t. BMJ 2020, 371, m4851. [Google Scholar] [CrossRef]
- Nishiura, H.; Kobayashi, T.; Miyama, T.; Suzuki, A.; Jung, S.-M.; Hayashi, K.; Kinoshita, R.; Yang, Y.; Yuan, B.; Akhmetzhanov, A.R.; et al. Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19). Int. J. Inf. Dis. 2020, 94, 154–155. [Google Scholar] [CrossRef]
- Oran, D.P.; Topol, E.J. Prevalence of Asymptomatic SARS-CoV-2 Infection: A Narrative Review. Ann. Intern. Med. 2020, 173, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Rogawski McQuade, E.T.; Guertin, K.A.; Becker, L.; Operario, D.; Gratz, J.; Guan, D.; Khan, F.; White, J.; McMurry, T.L.; Shah, B.; et al. Assessment of Seroprevalence of SARS-CoV-2 and Risk Factors Associated With COVID-19 Infection among Outpatients in Virginia. JAMA Netw. Open 2021, 4, e2035234. [Google Scholar] [CrossRef] [PubMed]
- Poustchi, H.; Darvishian, M.; Mohammadi, Z.; Shayanrad, A.; Delavari, A.; Bahadorimonfared, A.; Eslami, S.; Javanmard, S.H.; Shakiba, E.; Somi, M.H.; et al. SARS-CoV-2 antibody seroprevalence in the general population and high-risk occupational groups across 18 cities in Iran: A population-based cross-sectional study. Lancet Infect. Dis. 2021, 21, 473–481. [Google Scholar] [CrossRef]
- COVID-19 Public Monitor | YouGov. Available online: https://yougov.co.uk/covid-19 (accessed on 14 May 2021).
- Pollán, M.; Pérez-Gómez, B.; Pastor-Barriuso, R.; Oteo, J.; Hernán, M.A.; Pérez-Olmeda, M.; Sanmartin, J.L.; Fernández-García, A.; Cruz, I.; Fernández de Larrea, N.; et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): A nationwide, population-based seroepidemiological study. Lancet 2020, 396, 535–544. [Google Scholar] [CrossRef]
- Stringhini, S.; Wisniak, A.; Piumatti, G.; Azman, A.S.; Lauer, S.A.; Baysson, H.; Ridder, D.D.; Petrovis, D.; Schrempft, S.; Marcus, K.; et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): A population-based study. Lancet 2020, 396, 313–319. [Google Scholar] [CrossRef]
- Anderson, R.M.; Vegvari, C.; Truscott, J.; Collyer, B.S. Challenges in creating herd immunity to SARS-CoV-2 infection by mass vaccination. Lancet 2020, 396, 1614–1616. [Google Scholar] [CrossRef]
- Booth, A.; Reed, A.B.; Ponzo, S.; Yassaee, A.; Aral, M.; Plans, D.; Labrique, A.; Mohan, D. Population risk factors for severe disease and mortality in COVID-19: A global systematic review and meta-analysis. PLoS ONE 2021, 16, e0247461. [Google Scholar] [CrossRef]
- Holdcroft, A. Gender bias in research: How does it affect evidence based medicine? J. R. Soc. Med. 2007, 100, 2–3. [Google Scholar] [CrossRef] [PubMed]
- Polish Tourism Organisation. Available online: https://www.pot.gov.pl/en (accessed on 14 May 2021).
- Vaportzis, E.; Clausen, M.G.; Gow, A.J. Older adults perceptions of technology and barriers to interacting with tablet computers: A focus group study. Front. Psychol. 2017, 8, 1687. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, K.A.; Dewald, F.; Heger, E.; Gieselmann, L.; Vanshylla, K.; Wirtz, M.; Kleipass, F.; Johannis, W.; Schommers, P.; Gruell, H.; et al. Evaluation of a New Spike (S)-Protein-Based Commercial Immunoassay for the Detection of Anti-SARS-CoV-2 IgG. Microorganisms 2021, 9, 733. [Google Scholar] [CrossRef] [PubMed]
Category | Participants | ELISA | Immunoblot | ||
---|---|---|---|---|---|
Positive Results | Seroprevalence (95% CI) | Positive Results | Seroprevalence (95% CI) | ||
Overall | |||||
1500 | 25 | 1.67% (1.13–2.45) | 14 | 0.93% (0.56–1.56) | |
Gender | |||||
Female | 896 | 14 | 1.56% (0.93–2.60) | 8 | 0.89% (0.45–1.75) |
Male | 604 | 11 | 1.82% (1.02–3.23) | 6 | 0.99% (0.46–2.15) |
Age | |||||
18–33 | 623 | 10 | 1.61% (0.87–2.92) | 5 | 0.80% (0.34–1.87) |
34–49 | 606 | 11 | 1.82% (1.02–3.22) | 7 | 1.16% (0.56–2.37) |
50–65 | 194 | 2 | 1.03% (0.18–3.68) | 0 | 0.00% (0.00–1.94) |
65+ | 77 | 2 | 2.60% (0.46–8.99) | 2 | 2.60% (0.46–8.99) |
Test for the SARS-CoV-2 presence | |||||
Positive | 7 | 3 | 42.86% (15.82–74.95) | 3 | 42.86% (15.82–74.95) |
Negative | 349 | 8 | 2.29% (1.17–4.46) | 6 | 1.72% (0.79–3.70) |
Not tested | 1144 | 14 | 1.22% (0.73–2.04) | 5 | 0.44% (0.19–1.02) |
Category | Participants | ELISA | Immunoblot | ||
---|---|---|---|---|---|
Positive Results | Seroprevalence (95% CI) | Positive Results | Seroprevalence (95% CI) | ||
Chronic diseases | |||||
None | 964 | 16 | 1.66% (1.02–2.70) | 11 | 1.14% (0.64–2.03) |
CS-CDs | 185 | 1 | 0.54% (0.03–3.00) | 1 | 0.54% (0.03–3.00) |
RS-CDs | 78 | 3 | 3.85% (1.05–10.71) | 0 | 0.00% (0.00–4.69) |
I-CDs | 8 | 0 | 0.00% (0.00–32.44) | 0 | 0.00% (0.00–32.44) |
CKD | 1 | 0 | 0.00% (0.00–94.87) | 0 | 0.00% (0.00–94.87) |
DT-CDs | 23 | 0 | 0.00% (0.00–14.31) | 0 | 0.00% (0.00–14.31) |
A-CDs | 170 | 4 | 2.35% (0.90–5.76) | 1 | 0.59% (0.03–3.26) |
NeoD | 5 | 0 | 0.00% (0.00–43.45) | 0 | 0.00% (0.00–43.45) |
MetD | 50 | 1 | 2.00% (0.10–10.50) | 1 | 2.00% (0.10–10.50) |
MentD | 29 | 0 | 0.00% (0.00–11.70) | 0 | 0.00% (0.00–11.70) |
Severity of flu-like illness in the last 9 months before serological tests | |||||
No symptoms | 260 | 8 | 3.08% (1.57–5.95) | 5 | 1.92% (0.82–4.42) |
Mild | 454 | 5 | 1.10% (0.42–2.30) | 4 | 0.88% (0.34–2.24) |
Moderate | 720 | 12 | 1.67% (0.96–2.89) | 5 | 0.69% (0.30–1.62) |
Severe | 66 | 0 | 0.00% (0.00–5.50) | 0 | 0.00% (0.00–5.50) |
Category | Participants | ELISA | Immunoblot | ||
---|---|---|---|---|---|
Positive Results | Seroprevalence (95% CI) | Positive Results | Seroprevalence (95% CI) | ||
Occupation involving constant contact with people (i.e., physicians, nurses, shop assistants, civil servants) | |||||
Yes | 749 | 11 | 1.47% (0.82–2.61) | 9 | 1.20% (0.63–2.27) |
No | 751 | 14 | 1.86% (1.11–3.11) | 5 | 0.67% (0.29–1.55) |
Travelling abroad | |||||
Yes | 574 | 16 | 2.93% (1.81–4.70) | 8 | 1.46% (0.74–2.86) |
No | 953 | 9 | 0.94% (0.50–1.78) | 6 | 0.63% (0.29–1.37) |
Compliance with epidemiological recommendations (i.e., remote work, wearing a mask covering nose and mouth, avoiding contact with other people, avoiding the use of public transport) | |||||
No | 46 | 1 | 2.17% (0.11–11.33) | 1 | 2.17% (0.11–11.34) |
At some point | 405 | 6 | 1.48% (0.68–3.19) | 4 | 0.99% (0.39–2.51) |
Yes, in general | 1049 | 18 | 1.72% (1.09–2.70) | 9 | 0.86% (0.45–1.62) |
Known contact with SARS-CoV-2 infected person | |||||
Yes | 40 | 2 | 5.00% (0.85–15.79) | 2 | 5.00% (0.89–16.50) |
No | 375 | 7 | 1.87% (0.91–3.80) | 5 | 1.33% (0.57–3.08) |
Not known | 1085 | 16 | 1.47% (0.91–2.38) | 7 | 0.65% (0.31–1.33) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorent, D.; Nowak, R.; Roxo, C.; Lenartowicz, E.; Makarewicz, A.; Zaremba, B.; Nowak, S.; Kuszel, L.; Stefaniak, J.; Kierzek, R.; et al. Prevalence of Anti-SARS-CoV-2 Antibodies in Poznań, Poland, after the First Wave of the COVID-19 Pandemic. Vaccines 2021, 9, 541. https://doi.org/10.3390/vaccines9060541
Lorent D, Nowak R, Roxo C, Lenartowicz E, Makarewicz A, Zaremba B, Nowak S, Kuszel L, Stefaniak J, Kierzek R, et al. Prevalence of Anti-SARS-CoV-2 Antibodies in Poznań, Poland, after the First Wave of the COVID-19 Pandemic. Vaccines. 2021; 9(6):541. https://doi.org/10.3390/vaccines9060541
Chicago/Turabian StyleLorent, Dagny, Rafal Nowak, Carolina Roxo, Elzbieta Lenartowicz, Aleksandra Makarewicz, Bartosz Zaremba, Szymon Nowak, Lukasz Kuszel, Jerzy Stefaniak, Ryszard Kierzek, and et al. 2021. "Prevalence of Anti-SARS-CoV-2 Antibodies in Poznań, Poland, after the First Wave of the COVID-19 Pandemic" Vaccines 9, no. 6: 541. https://doi.org/10.3390/vaccines9060541
APA StyleLorent, D., Nowak, R., Roxo, C., Lenartowicz, E., Makarewicz, A., Zaremba, B., Nowak, S., Kuszel, L., Stefaniak, J., Kierzek, R., & Zmora, P. (2021). Prevalence of Anti-SARS-CoV-2 Antibodies in Poznań, Poland, after the First Wave of the COVID-19 Pandemic. Vaccines, 9(6), 541. https://doi.org/10.3390/vaccines9060541