Expanding COVID-19 Vaccine Availability: Role for Combined Orthogonal Serology Testing (COST)
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burgos, R.M.; Badowski, M.E.; Drwiega, E.; Ghassemi, S.; Griffith, N.; Herald, F.; Johnson, M.; Smith, R.O.; Michienzi, S.M. The race to a COVID-19 vaccine: Opportunities and challenges in development and distribution. Drugs Context 2021, 10, 2020-12-2. [Google Scholar] [CrossRef]
- Mlcochova, P.; Collier, D.; Ritchie, A.; Assennato, S.M.; Hosmillo, M.; Goel, N.; Meng, B.; Chatterjee, K.; Mendoza, V.; Temperton, N.; et al. Combined point-of-care nucleic acid and antibody testing for SARS-CoV-2 following emergence of d614g spike variant. Cell Rep. Med. 2020, 1, 100099. [Google Scholar] [CrossRef]
- Fiore, B.D.; Paola, L.; Eugenio, M.; Gaetano, B.; Anna, V.; Antonella, L.; Annalisa, S.; Laura, M. Anti-spike S1 receptor-binding domain antibodies against SARS-CoV-2 persist several months after infection regardless of disease severity. J. Med. Virol. 2021, 93, 3158–3164. [Google Scholar] [CrossRef]
- Ripperger, T.J.; Uhrlaub, J.L.; Watanabe, M.; Wong, R.; Castaneda, Y.; Pizzato, H.A.; Thompson, M.R.; Bradshaw, C.; Weinkauf, C.C.; Bime, C.; et al. Orthogonal SARS-CoV-2 serological assays enable surveillance of low-prevalence communities and reveal durable humoral immunity. Immunity 2020, 53, 925–933.e4. [Google Scholar] [CrossRef] [PubMed]
- Narasimhan, M.; Mahimainathan, L.; Raj, E.; Clark, A.E.; Markantonis, J.; Green, A.; Xu, J.; SoRelle, J.A.; Alexis, C.; Fankhauser, K.; et al. Clinical evaluation of the Abbott Alinity SARS-CoV-2 spike-specific quantitative IgG and IgM assays in infected, recovered, and vaccinated groups. J. Clin. Microbiol. 2021. [Google Scholar] [CrossRef]
- Mazzoni, A.; Di Lauria, N.; Maggi, L.; Salvati, L.; Vanni, A.; Capone, M.; Lamacchia, G.; Mantengoli, E.; Spinicci, M.; Zammarchi, L.; et al. First dose mRNA vaccination is sufficient to reactivate immunological memory to SARS-CoV-2 in ex COVID-19 subjects. MedRxiv 2021. [Google Scholar] [CrossRef]
- Phipps, W.S.; SoRelle, J.A.; Li, Q.Z.; Mahimainathan, L.; Araj, E.; Markantonis, J.; Lacelle, C.; Balani, J.; Parikh, H.; Solow, E.B.; et al. SARS-CoV-2 antibody responses do not predict COVID-19 disease severity. Am. J. Clin. Pathol. 2020, 154, 459–465. [Google Scholar] [CrossRef]
- Wang, W.L.; Xu, Y.L.; Gao, R.Q.; Lu, R.J.; Han, K.; Wu, G.Z.; Tan, W.J. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020, 323, 1843–1844. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.F.; Chen, J.; Hu, J.L.; Long, Q.X.; Deng, H.J.; Liu, P.; Fan, K.; Liao, P.; Liu, B.Z.; Wu, G.C.; et al. A peptide-based magnetic chemiluminescence enzyme immunoassay for serological diagnosis of coronavirus disease 2019 (COVID-19). J. Infect. Dis. 2020, 222, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Chew, K.; Tan, S.; Saw, S.; Pajarillaga, A.; Zaine, S.; Khoo, C.; Wang, W.; Tambyah, P.; Jureen, R.; Sethi, S. Clinical evaluation of serological IgG antibody response on the Abbott Architect for established SARS-CoV-2 infection. Clin. Microbiol. Infect. 2020, 26, 1256.e9–1256.e116. [Google Scholar] [CrossRef] [PubMed]
- Eyre, D.W.; Lumley, S.F.; O’Donnell, D.; Stoesser, N.E.; Matthews, P.C.; Howarth, A.; Hatch, S.B.; Marsden, B.D.; Cox, S.; James, T.; et al. Stringent thresholds in SARS-CoV-2 IgG assays lead to under-detection of mild infections. BMC Infect. Dis. 2021, 21, 187. [Google Scholar] [CrossRef] [PubMed]
- CDC. Interim Guidelines for Covid-19 Antibody Testing. 2020. Available online: https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antibody-tests-guidelines.html (accessed on 22 March 2021).
- Bubar, K.M.; Reinholt, K.; Kissler, S.M.; Lipsitch, M.; Cobey, S.; Grad, Y.H.; Larremore, D.B. Model-informed COVID-19 vaccine prioritization strategies by age and serostatus. Science 2021, 371, 916–921. [Google Scholar] [CrossRef] [PubMed]
- Peeling, R.W.; Wedderburn, C.J.; Garcia, P.J.; Boeras, D.; Fongwen, N.; Nkengasong, J.; Sall, A.; Tanuri, A.; Heymann, D.L. Serology testing in the COVID-19 pandemic response. Lancet Infect. Dis. 2020, 20, e245–e249. [Google Scholar] [CrossRef]
Information | n (%) |
---|---|
Total UTSW PCR orders | 108,505 |
COVID-19 PCR+ | 6871/108,505 (6.3) |
COVID-19 PCR– | 101,634/108,505 (93.6) |
Total UTSW IgGNC orders | 2533 |
IgGNC+ | 986/2533 (38.9) |
IgGNC– | 1547/2533 (61.1) |
IgGNC orders against total PCR orders | 2533/108,505 (2.3) |
PCR Status | Information/Explanations | n (%) |
---|---|---|
Total patients tested | 21,388 | |
Excluded: Confirmed vaccinated, no paired PCR or IgGNC results) | 287/21,388 (1.3) | |
PCR+ | 646/21,101 (3.1) | |
PCR- | 20,455/21,101 (96.9) | |
PCR+ and PCR– | Manufacturer-recommended IgGNC+ (≥1.4) | 1500/21,101 (7.1) |
PCR+ | Manufacturer-recommended IgGNC+ (≥1.4) | 250/21,101 (1.2) |
PCR– | Manufacturer-recommended IgGNC+ (≥1.4) | 1250/20,455 (6.1) |
Manufacturer-recommended grey-zone IgGNC+ threshold approved in Europe (≥0.5) 1 | 1789/20,455 (8.7) | |
UTSW IgGNC+ threshold that accounts for exCOVID-19 cases (≥0.2 to <1.4) 2 | 2475/20,455 (12.1) |
PCR Status | Information | n (%) |
---|---|---|
Total patients tested | 684 | |
Excluded: confirmed vaccinated and no information for any one of the antibody assays | 70 (10.2) | |
PCR+ | 30/614 (4.9) | |
PCR- | 584/614 (95.1) | |
PCR+ and PCR– | IgGNC+ (≥1.4) | 97/614 (15.8) |
IgMSP+ (≥1.0) | 107/614 (17.4) | |
IgGSP+ (≥50.0) | 155/614 (25.2) | |
PCR– | IgGNC+ (≥1.4) | 78/584 (13.4) |
Grey-zone IgGNC+ (≥0.5) | 100/584 (17.1) | |
≥UTSW IgGNC+ (≥0.2) | 130/584 (22.3) | |
Either IgGNC+ or IgMSP+ | 105/584 (18.0) | |
Either IgGNC+ or IgGSP+ | 137/584 (23.5) | |
Either IgMSP+ or IgGSP+ | 139/584 (23.8) | |
Either IgGNC+ or IgMSP+ or IgGSP+ | 141/584 (24.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narasimhan, M.; Mahimainathan, L.; Araj, E.; Clark, A.E.; Wilkinson, K.; Yekkaluri, S.; Tiro, J.; Lee, F.M.; Balani, J.; Sarode, R.; et al. Expanding COVID-19 Vaccine Availability: Role for Combined Orthogonal Serology Testing (COST). Vaccines 2021, 9, 376. https://doi.org/10.3390/vaccines9040376
Narasimhan M, Mahimainathan L, Araj E, Clark AE, Wilkinson K, Yekkaluri S, Tiro J, Lee FM, Balani J, Sarode R, et al. Expanding COVID-19 Vaccine Availability: Role for Combined Orthogonal Serology Testing (COST). Vaccines. 2021; 9(4):376. https://doi.org/10.3390/vaccines9040376
Chicago/Turabian StyleNarasimhan, Madhusudhanan, Lenin Mahimainathan, Ellen Araj, Andrew E Clark, Kathleen Wilkinson, Sruthi Yekkaluri, Jasmin Tiro, Francesca M Lee, Jyoti Balani, Ravi Sarode, and et al. 2021. "Expanding COVID-19 Vaccine Availability: Role for Combined Orthogonal Serology Testing (COST)" Vaccines 9, no. 4: 376. https://doi.org/10.3390/vaccines9040376
APA StyleNarasimhan, M., Mahimainathan, L., Araj, E., Clark, A. E., Wilkinson, K., Yekkaluri, S., Tiro, J., Lee, F. M., Balani, J., Sarode, R., Singal, A. G., & Muthukumar, A. (2021). Expanding COVID-19 Vaccine Availability: Role for Combined Orthogonal Serology Testing (COST). Vaccines, 9(4), 376. https://doi.org/10.3390/vaccines9040376