RNA Vaccines against Infectious Diseases: Vital Progress with Room for Improvement
Abstract
:1. Introduction
2. RNA Vaccination from Conceptualization to Clinical Use
3. Mechanism of Action for mRNA Vaccines
4. Methods of Delivery for mRNA Vaccines
5. RNA Vaccines vs. Traditional Vaccination Modalities
6. RNA Vaccines for Infectious Diseases: Where Do RNA Vaccines Stand in Clinical Trials?
6.1. SARS-CoV-2
Infectious Disease Type/Virus Type | NCT Number | Drug Administration | Phase | Status |
---|---|---|---|---|
SARS-CoV-2 | NCT04523571 | BNT162b1 + placebo | I | Recruiting |
NCT04449276 | CVnCoV Vaccine + placebo | I | Recruiting | |
NCT04470427 | mRNA-1273 + placebo | III | Recruiting | |
NCT04368728 | BNT162b1 + BNT162b2 | I/II/III | Recruiting | |
NCT04515147 | CVnCoV | IIA | Not yet recruiting | |
NCT04283461 | mRNA-1273 | I | Active, not recruiting | |
NCT04405076 | mRNA-1273 + placebo | IIA | Active, not recruiting | |
Rabies | NCT02241135 | CV7201 mRNA encoding the rabies virus glycoprotein | I | Completed |
NCT03713086 | Rabipur®® | I | Active, not recruiting | |
HIV-1 Infection | NCT00833781 | mRNA-transfected autologous DCs+/− autologous DCs with no mRNA transfection | I/II | Completed |
NCT02413645 | TriMix mRNA+/−HIV mRNA | I | Completed | |
NCT02888756 | iHIVARNA-01 + TriMix+/−Placebo | IIA | Terminated | |
Zika Virus | NCT03014089 | mRNA-1325 + placebo | I | Completed |
NCT04064905 | mRNA-1893 + placebo | I | Active, not recruiting | |
Tuberculosis | NCT01669096 | GSK 692342 | II | Completed |
Human Metapneumovirus and Human Parainfluenza Infection | NCT03392389 | mRNA-1653 + placebo | I | Completed |
NCT04144348 | mRNA-1653 + placebo | Ib | Recruiting | |
Ebola Virus Disease | NCT02485912 | Two separate RNAs encoding two Zaire strain ebola glycoproteins, respectively | I | Completed |
Influenza | NCT03076385 | VAL-506440 + placebo | I | Completed |
Respiratory Syncytial Virus | NCT04528719 | mRNA-1345 + placebo | I | Not yet recruiting |
Cytomegalovirus Infection | NCT03382405 | mRNA-1647, mRNA-1443 | I | Active, not recruiting |
NCT04232280 | mRNA-1647 + placebo | II | Active, not recruiting |
6.2. Influenza
6.3. Mosquito-Borne Diseases
6.4. HIV
6.5. Cytomegalovirus (CMV)
6.6. Rabies
6.7. Ebola Virus (EBOV)
7. Challenges Faced by RNA Vaccination Technologies
7.1. Safety and Tolerability
7.2. Immunogenicity
7.3. Efficacy and Protection
8. Storage and Stability
9. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dolgin, E. How COVID Unlocked the Power of RNA Vaccines. Nature 2021, 589, 189–191. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the MRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 MRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Bloom, K.; van den Berg, F.; Arbuthnot, P. Self-Amplifying RNA Vaccines for Infectious Diseases. Gene Ther. 2021, 28, 117–129. [Google Scholar] [CrossRef]
- Fuller, D.H.; Berglund, P. Amplifying RNA Vaccine Development. N. Engl. J. Med. 2020, 382, 2469–2471. [Google Scholar] [CrossRef]
- Mulligan, M.J.; Lyke, K.E.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Raabe, V.; Bailey, R.; Swanson, K.A.; et al. Phase I/II Study of COVID-19 RNA Vaccine BNT162b1 in Adults. Nature 2020, 586, 589–593. [Google Scholar] [CrossRef]
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. MRNA Vaccines—A New Era in Vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef] [Green Version]
- Rauch, S.; Jasny, E.; Schmidt, K.E.; Petsch, B. New Vaccine Technologies to Combat Outbreak Situations. Front. Immunol. 2018, 9, 1963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruggi, G.; Zhang, C.; Li, J.; Ulmer, J.B.; Yu, D. MRNA as a Transformative Technology for Vaccine Development to Control Infectious Diseases. Mol. Ther. 2019, 27, 757–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cobb, M. Who Discovered Messenger RNA? Curr. Biol. 2015, 25, R526–R532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malone, R.W.; Felgner, P.L.; Verma, I.M. Cationic Liposome-Mediated RNA Transfection. Proc. Natl. Acad. Sci. USA 1989, 86, 6077–6081. [Google Scholar] [CrossRef] [Green Version]
- Wolff, J.; Malone, R.; Williams, P.; Chong, W.; Acsadi, G.; Jani, A.; Felgner, P. Direct Gene Transfer into Mouse Muscle In Vivo. Science 1990, 247, 1465–1468. [Google Scholar] [CrossRef] [PubMed]
- Martinon, F.; Krishnan, S.; Lenzen, G.; Magné, R.; Gomard, E.; Guillet, J.-G.; Lévy, J.-P.; Meulien, P. Induction of Virus-Specific Cytotoxic T Lymphocytesin Vivo by Liposome-Entrapped MRNA. Eur. J. Immunol. 1993, 23, 1719–1722. [Google Scholar] [CrossRef]
- Conry, R.M.; LoBuglio, A.F.; Wright, M.; Pike, M.J.; Johanning, F. Characterization of a Messenger RNA Polynucleotide Vaccine Vector. Cancer Res. 1995, 55, 1397–1400. [Google Scholar] [PubMed]
- Zhou, X.; Berglund, P.; Rhodes, G.; Parker, S.E.; Jondal, M.; Liljeström, P. Self-Replicating Semliki Forest Virus RNA as Recombinant Vaccine. Vaccine 1994, 12, 1510–1514. [Google Scholar] [CrossRef]
- Johanning, F.W.; Conry, R.M.; LoBuglio, A.F.; Wright, M.; Sumerel, L.A.; Pike, M.J.; Curiel, D.T. A Sindbis Virus MRNA Polynucleotide Vector Achieves Prolonged and High Level Heterologous Gene Expression In Vivo. Nucleic Acids Res. 1995, 23, 1495–1501. [Google Scholar] [CrossRef] [Green Version]
- Gilboa, E.; Vieweg, J. Cancer Immunotherapy with MRNA-Transfected Dendritic Cells. Immunol. Rev. 2004, 199, 251–263. [Google Scholar] [CrossRef]
- Karikó, K.; Muramatsu, H.; Welsh, F.A.; Ludwig, J.; Kato, H.; Akira, S.; Weissman, D. Incorporation of Pseudouridine Into MRNA Yields Superior Nonimmunogenic Vector with Increased Translational Capacity and Biological Stability. Mol. Ther. 2008, 16, 8. [Google Scholar] [CrossRef]
- Probst, J.; Weide, B.; Scheel, B.; Pichler, B.J.; Hoerr, I.; Rammensee, H.-G.; Pascolo, S. Spontaneous Cellular Uptake of Exogenous Messenger RNA in Vivo Is Nucleic Acid-Specific, Saturable and Ion Dependent. Gene Ther. 2007, 14, 1175–1180. [Google Scholar] [CrossRef] [Green Version]
- Weide, B.; Pascolo, S.; Scheel, B.; Derhovanessian, E.; Pflugfelder, A.; Eigentler, T.K.; Pawelec, G.; Hoerr, I.; Rammensee, H.-G.; Garbe, C. Direct Injection of Protamine-Protected MRNA: Results of a Phase 1/2 Vaccination Trial in Metastatic Melanoma Patients. J. Immunother. 2009, 32, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Kreiter, S.; Selmi, A.; Diken, M.; Koslowski, M.; Britten, C.M.; Huber, C.; Türeci, Ö.; Sahin, U. Intranodal Vaccination with Naked Antigen-Encoding RNA Elicits Potent Prophylactic and Therapeutic Antitumoral Immunity. Cancer Res. 2010, 70, 9031–9040. [Google Scholar] [CrossRef] [Green Version]
- Kübler, H.; Scheel, B.; Gnad-Vogt, U.; Miller, K.; Schultze-Seemann, W.; Vom Dorp, F.; Parmiani, G.; Hampel, C.; Wedel, S.; Trojan, L.; et al. Self-Adjuvanted MRNA Vaccination in Advanced Prostate Cancer Patients: A First-in-Man Phase I/IIa Study. J. Immunother. Cancer 2015, 3, 26. [Google Scholar] [CrossRef] [Green Version]
- Kranz, L.M.; Diken, M.; Haas, H.; Kreiter, S.; Loquai, C.; Reuter, K.C.; Meng, M.; Fritz, D.; Vascotto, F.; Hefesha, H.; et al. Systemic RNA Delivery to Dendritic Cells Exploits Antiviral Defence for Cancer Immunotherapy. Nature 2016, 534, 396–401. [Google Scholar] [CrossRef]
- Sahin, U.; Türeci, Ö. Personalized Vaccines for Cancer Immunotherapy. Science 2018, 359, 1355–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cafri, G.; Gartner, J.J.; Zaks, T.; Hopson, K.; Levin, N.; Paria, B.C.; Parkhurst, M.R.; Yossef, R.; Lowery, F.J.; Jafferji, M.S.; et al. MRNA Vaccine–Induced Neoantigen-Specific T Cell Immunity in Patients with Gastrointestinal Cancer. J. Clin. Investig. 2020, 130, 5976–5988. [Google Scholar] [CrossRef]
- Kowalski, P.S.; Rudra, A.; Miao, L.; Anderson, D.G. Delivering the Messenger: Advances in Technologies for Therapeutic MRNA Delivery. Mol. Ther. 2019, 27, 710–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Maruggi, G.; Shan, H.; Li, J. Advances in MRNA Vaccines for Infectious Diseases. Front. Immunol. 2019, 10, 594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalczyk, A.; Doener, F.; Zanzinger, K.; Noth, J.; Baumhof, P.; Fotin-Mleczek, M.; Heidenreich, R. Self-Adjuvanted MRNA Vaccines Induce Local Innate Immune Responses That Lead to a Potent and Boostable Adaptive Immunity. Vaccine 2016, 34, 3882–3893. [Google Scholar] [CrossRef] [PubMed]
- Tenforde, M.W.; Olson, S.M.; Self, W.H.; Talbot, H.K.; Casey, J.D.; Mohr, N.M.; Zepeski, A.; Gaglani, M.; McNeal, T.; Ghamande, S.; et al. Effectiveness of Pfizer-BioNTech and Moderna Vaccines against COVID-19 among Hospitalized Adults Aged ≥65 Years—United States, January–March 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Midoux, P.; Pichon, C. Lipid-Based MRNA Vaccine Delivery Systems. Expert Rev. Vaccines 2015, 14, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Schlake, T.; Thess, A.; Fotin-Mleczek, M.; Kallen, K.-J. Developing MRNA-Vaccine Technologies. RNA Biol. 2012, 9, 1319–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, J.Y.; Thone, M.N.; Kwon, Y.J. COVID-19 Vaccines: The Status and Perspectives in Delivery Points of View. Adv. Drug Deliv. Rev. 2021, 170, 1–25. [Google Scholar] [CrossRef]
- Aldosari, B.N.; Alfagih, I.M.; Almurshedi, A.S. Lipid Nanoparticles as Delivery Systems for RNA-Based Vaccines. Pharmaceutics 2021, 13, 206. [Google Scholar] [CrossRef]
- Theobald, N. Emerging Vaccine Delivery Systems for COVID-19. Drug Discov. Today 2020, 25, 1556–1558. [Google Scholar] [CrossRef] [PubMed]
- On behalf of the COVID-19 Commission of Accademia Nazionale dei Lincei, Rome; Forni, G.; Mantovani, A. COVID-19 Vaccines: Where We Stand and Challenges Ahead. Cell Death Differ. 2021, 28, 626–639. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, J.C.; Kowalski, P.S.; Anderson, D.G. Advances in the Delivery of RNA Therapeutics: From Concept to Clinical Reality. Genome Med. 2017, 9, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaccines and Immunization: What Is Vaccination? Available online: https://www.who.int/news-room/q-a-detail/vaccines-and-immunization-what-is-vaccination (accessed on 6 April 2021).
- MODULE 2—Overview and Outcomes—WHO Vaccine Safety Basics. Available online: https://vaccine-safety-training.org/overview-and-outcomes-2.html (accessed on 28 April 2021).
- Karch, C.P.; Burkhard, P. Vaccine Technologies: From Whole Organisms to Rationally Designed Protein Assemblies. Biochem. Pharmacol. 2016, 120, 1–14. [Google Scholar] [CrossRef]
- Vaccine Types|NIH: National Institute of Allergy and Infectious Diseases. Available online: https://www.niaid.nih.gov/research/vaccine-types (accessed on 28 April 2021).
- Rodrigues, A.F.; Soares, H.R.; Guerreiro, M.R.; Alves, P.M.; Coroadinha, A.S. Viral Vaccines and Their Manufacturing Cell Substrates: New Trends and Designs in Modern Vaccinology. Biotechnol. J. 2015, 10, 1329–1344. [Google Scholar] [CrossRef]
- Lee, N.-H.; Lee, J.-A.; Park, S.-Y.; Song, C.-S.; Choi, I.-S.; Lee, J.-B. A Review of Vaccine Development and Research for Industry Animals in Korea. Clin. Exp. Vaccine Res. 2012, 1, 18–34. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Shang, J.; Jiang, S.; Du, L. Subunit Vaccines Against Emerging Pathogenic Human Coronaviruses. Front. Microbiol. 2020, 11, 298. [Google Scholar] [CrossRef]
- Kyriakidis, N.C.; López-Cortés, A.; González, E.V.; Grimaldos, A.B.; Prado, E.O. SARS-CoV-2 Vaccines Strategies: A Comprehensive Review of Phase 3 Candidates. NPJ Vaccines 2021, 6, 28. [Google Scholar] [CrossRef]
- Alkandari, D.; Herbert, J.A.; Alkhalaf, M.A.; Yates, C.; Panagiotou, S. SARS-CoV-2 Vaccines: Fast Track versus Efficacy. Lancet Microbe 2021, 2, e89–e90. [Google Scholar] [CrossRef]
- CDC. Understanding mRNA COVID-19 Vaccines. Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/mrna.html (accessed on 1 May 2021).
- Thran, M.; Mukherjee, J.; Pönisch, M.; Fiedler, K.; Thess, A.; Mui, B.L.; Hope, M.J.; Tam, Y.K.; Horscroft, N.; Heidenreich, R.; et al. MRNA Mediates Passive Vaccination against Infectious Agents, Toxins, and Tumors. EMBO Mol. Med. 2017, 9, 1434–1447. [Google Scholar] [CrossRef]
- Xu, S.; Yang, K.; Li, R.; Zhang, L. MRNA Vaccine Era—Mechanisms, Drug Platform and Clinical Prospection. Int. J. Mol. Sci. 2020, 21, 6582. [Google Scholar] [CrossRef]
- Velikova, T.; Georgiev, T. SARS-CoV-2 Vaccines and Autoimmune Diseases amidst the COVID-19 Crisis. Rheumatol. Int. 2021, 41, 509–518. [Google Scholar] [CrossRef]
- Draft Landscape and Tracker of COVID-19 Candidate Vaccines. Available online: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines (accessed on 9 April 2021).
- Wang, Y.; Zhang, Z.; Luo, J.; Han, X.; Wei, Y.; Wei, X. MRNA Vaccine: A Potential Therapeutic Strategy. Mol. Cancer 2021, 20, 33. [Google Scholar] [CrossRef]
- Widge, A.T.; Rouphael, N.G.; Jackson, L.A.; Anderson, E.J.; Roberts, P.C.; Makhene, M.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; Pruijssers, A.J.; et al. Durability of Responses after SARS-CoV-2 MRNA-1273 Vaccination. N. Engl. J. Med. 2020, 384, 80–82. [Google Scholar] [CrossRef] [PubMed]
- Jackson, L.A.; Anderson, E.J.; Rouphael, N.G.; Roberts, P.C.; Makhene, M.; Coler, R.N.; McCullough, M.P.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; et al. An MRNA Vaccine against SARS-CoV-2–Preliminary Report. N. Engl. J. Med. 2020, 383, 1920–1931. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Allergy and Infectious Diseases (NIAID). Phase 1, Open-Label., Randomized Study of the Safety and Immunogenicity of a SARS-CoV-2 Variant Vaccine (MRNA-1273.351) in Naïve and Previously Vaccinated Adults; Clinical Trial Registration NCT04785144. 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT04785144 (accessed on 22 June 2021).
- Dagan, N.; Barda, N.; Kepten, E.; Miron, O.; Perchik, S.; Katz, M.A.; Hernán, M.A.; Lipsitch, M.; Reis, B.; Balicer, R.D. BNT162b2 MRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting. N. Engl. J. Med. 2021, 384, 1412–1423. [Google Scholar] [CrossRef] [PubMed]
- Rauch, S.; Roth, N.; Schwendt, K.; Fotin-Mleczek, M.; Mueller, S.O.; Petsch, B. MRNA-Based SARS-CoV-2 Vaccine Candidate CVnCoV Induces High Levels of Virus-Neutralising Antibodies and Mediates Protection in Rodents. NPJ Vaccines 2021, 6, 57. [Google Scholar] [CrossRef]
- Kremsner, P.; Mann, P.; Bosch, J.; Fendel, R.; Gabor, J.J.; Kreidenweiss, A.; Kroidl, A.; Leroux-Roels, I.; Leroux-Roels, G.; Schindler, C.; et al. Phase 1 Assessment of the Safety and Immunogenicity of an MRNA-Lipid Nanoparticle Vaccine Candidate Against SARS-CoV-2 in Human Volunteers. medRxiv 2020. [Google Scholar] [CrossRef]
- CureVac, A.G. COVID-19: A Phase 3, Randomized, Observer-Blinded, Placebo-Controlled Clinical Study Evaluating the Safety and Immunogenicity of Investigational SARS-CoV-2 MRNA Vaccine CVnCoV in Adult Health Care Workers in Mainz (Germany); Clinical Trial Registration NCT04674189; CureVac AG: Tubingen, Germany, 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT04674189 (accessed on 22 June 2021).
- de Alwis, R.; Gan, E.S.; Chen, S.; Leong, Y.S.; Tan, H.C.; Zhang, S.L.; Yau, C.; Low, J.G.H.; Kalimuddin, S.; Matsuda, D.; et al. A Single Dose of Self-Transcribing and Replicating RNA Based SARS-CoV-2 Vaccine Produces Protective Adaptive Immunity In Mice. Mol. Ther. 2021, 29, 1970–1983. [Google Scholar] [CrossRef]
- Kalnin, K.V.; Plitnik, T.; Kishko, M.; Zhang, J.; Zhang, D.; Beauvais, A.; Anosova, N.G.; Tibbitts, T.; DiNapoli, J.M.; Huang, P.-W.; et al. Immunogenicity of Novel MRNA COVID-19 Vaccine MRT5500 in Mice and Non-Human Primates. bioRxiv 2020. [Google Scholar] [CrossRef]
- Study of mRNA Vaccine Formulation against COVID-19 in Healthy Adults 18 Years of Age and Older—Tabular View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/record/NCT04798027 (accessed on 11 April 2021).
- Sanofi: Press Releases, Friday. 12 March 2021. Available online: https://www.sanofi.com/media-room/press-releases/2021/2021-03-1207-00-002191846 (accessed on 11 April 2021).
- McKay, P.F.; Hu, K.; Blakney, A.K.; Samnuan, K.; Brown, J.C.; Penn, R.; Zhou, J.; Bouton, C.R.; Rogers, P.; Polra, K.; et al. Self-Amplifying RNA SARS-CoV-2 Lipid Nanoparticle Vaccine Candidate Induces High Neutralizing Antibody Titers in Mice. Nat. Commun. 2020, 11, 3523. [Google Scholar] [CrossRef] [PubMed]
- ISRCTN—ISRCTN17072692: Clinical Trial to Assess the Safety of a Coronavirus Vaccine in Healthy Men and Women. Available online: https://www.isrctn.com/ISRCTN17072692 (accessed on 11 April 2021).
- Landmark Coronavirus Study to Trial Inhaled Imperial and Oxford Vaccines|Imperial News|Imperial College London. Available online: https://www.imperial.ac.uk/news/203653/landmark-coronavirus-study-trial-inhaled-imperial/ (accessed on 11 April 2021).
- Zhang, N.-N.; Li, X.-F.; Deng, Y.-Q.; Zhao, H.; Huang, Y.-J.; Yang, G.; Huang, W.-J.; Gao, P.; Zhou, C.; Zhang, R.-R.; et al. A Thermostable MRNA Vaccine against COVID-19. Cell 2020, 182, 1271–1283.e16. [Google Scholar] [CrossRef] [PubMed]
- The Latest Development in ChulaCov19 Vaccine. Available online: https://www.chula.ac.th/en/news/44920/ (accessed on 16 April 2021).
- Chulalongkorn University. A Phase 1/2, Dose-Finding Study to Evaluate Safety, Tolerability, and Immunogenicity of the ChulaCov19 MRNA Vaccine in Healthy Adults; Clinical Trial Registration NCT04566276. 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT04566276 (accessed on 22 June 2021).
- Alameh, M.-G.; Weissman, D.; Pardi, N. Messenger RNA-Based Vaccines against Infectious Diseases. In Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–35. [Google Scholar] [CrossRef]
- Bahl, K.; Senn, J.J.; Yuzhakov, O.; Bulychev, A.; Brito, L.A.; Hassett, K.J.; Laska, M.E.; Smith, M.; Almarsson, Ö.; Thompson, J.; et al. Preclinical and Clinical Demonstration of Immunogenicity by MRNA Vaccines against H10N8 and H7N9 Influenza Viruses. Mol. Ther. 2017, 25, 1316–1327. [Google Scholar] [CrossRef] [Green Version]
- Feldman, R.A.; Fuhr, R.; Smolenov, I.; Ribeiro, A.; Panther, L.; Watson, M.; Senn, J.J.; Smith, M.; Almarsson, Ö.; Pujar, H.S.; et al. MRNA Vaccines against H10N8 and H7N9 Influenza Viruses of Pandemic Potential Are Immunogenic and Well Tolerated in Healthy Adults in Phase 1 Randomized Clinical Trials. Vaccine 2019, 37, 3326–3334. [Google Scholar] [CrossRef]
- Pardi, N.; Hogan, M.J.; Pelc, R.S.; Muramatsu, H.; Andersen, H.; DeMaso, C.R.; Dowd, K.A.; Sutherland, L.L.; Scearce, R.M.; Parks, R.; et al. Zika Virus Protection by a Single Low-Dose Nucleoside-Modified MRNA Vaccination. Nature 2017, 543, 248–251. [Google Scholar] [CrossRef]
- Richner, J.M.; Himansu, S.; Dowd, K.A.; Butler, S.L.; Salazar, V.; Fox, J.M.; Julander, J.G.; Tang, W.W.; Shresta, S.; Pierson, T.C.; et al. Modified MRNA Vaccines Protect against Zika Virus Infection. Cell 2017, 168, 1114–1125.e10. [Google Scholar] [CrossRef] [Green Version]
- Wilder-Smith, A.; Vannice, K.; Durbin, A.; Hombach, J.; Thomas, S.J.; Thevarjan, I.; Simmons, C.P. Zika Vaccines and Therapeutics: Landscape Analysis and Challenges Ahead. BMC Med. 2018, 16, 84. [Google Scholar] [CrossRef] [Green Version]
- Kose, N.; Fox, J.M.; Sapparapu, G.; Bombardi, R.; Tennekoon, R.N.; de Silva, A.D.; Elbashir, S.M.; Theisen, M.A.; Humphris-Narayanan, E.; Ciaramella, G.; et al. A Lipid-Encapsulated MRNA Encoding a Potently Neutralizing Human Monoclonal Antibody Protects Against Chikungunya Infection. Sci. Immunol. 2019, 4, eaaw6647. [Google Scholar] [CrossRef]
- Goyal, M.; Chauhan, A.; Goyal, V.; Jaiswal, N.; Singh, S.; Singh, M. Recent Development in the Strategies Projected for Chikungunya Vaccine in Humans. Drug Des. Devel. Ther. 2018, 12, 4195–4206. [Google Scholar] [CrossRef] [Green Version]
- Shaw, C.; Panther, L.; August, A.; Zaks, T.; Smolenov, I.; Bart, S.; Watson, M. Safety and Immunogenicity of a MRNA-Based Chikungunya Vaccine in a Phase 1 Dose-Ranging Trial. Int. J. Infect. Dis. 2019, 79, 17. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, R.T.; Kwon, D.S.; Macklin, E.A.; Shopis, J.R.; McLean, A.P.; McBrine, N.; Flynn, T.; Peter, L.; Sbrolla, A.; Kaufmann, D.E.; et al. Immunization of HIV-1-Infected Persons with Autologous Dendritic Cells Transfected With MRNA Encoding HIV-1 Gag and Nef: Results of a Randomized, Placebo-Controlled Clinical Trial. JAIDS J. Acquir. Immune Defic. Syndr. 2016, 71, 246–253. [Google Scholar] [CrossRef] [Green Version]
- Gay, C.L.; DeBenedette, M.A.; Tcherepanova, I.Y.; Gamble, A.; Lewis, W.E.; Cope, A.B.; Kuruc, J.D.; McGee, K.S.; Kearney, M.F.; Coffin, J.M.; et al. Immunogenicity of AGS-004 Dendritic Cell Therapy in Patients Treated During Acute HIV Infection. AIDS Res. Hum. Retrovir. 2018, 34, 111–122. [Google Scholar] [CrossRef]
- de Jong, W.; Leal, L.; Buyze, J.; Pannus, P.; Guardo, A.; Salgado, M.; Mothe, B.; Molto, J.; Moron-Lopez, S.; Gálvez, C.; et al. Therapeutic Vaccine in Chronically HIV-1-Infected Patients: A Randomized, Double-Blind, Placebo-Controlled Phase IIa Trial with HTI-TriMix. Vaccines 2019, 7, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruters, R. A Phase IIa Randomized, Placebo Controlled, Double Blinded Study to Evaluate the Safety and Immunogenicity of IHIVARNA-01 in Chronically HIV-Infected Patients under Stable Combined Antiretroviral Therapy. 2019. Available online: https://clinicaltrials.gov/ct2/show/NCT02888756 (accessed on 22 June 2021).
- John, S.; Yuzhakov, O.; Woods, A.; Deterling, J.; Hassett, K.; Shaw, C.A.; Ciaramella, G. Multi-Antigenic Human Cytomegalovirus MRNA Vaccines That Elicit Potent Humoral and Cell-Mediated Immunity. Vaccine 2018, 36, 1689–1699. [Google Scholar] [CrossRef]
- Armbruster, N.; Jasny, E.; Petsch, B. Advances in RNA Vaccines for Preventive Indications: A Case Study of a Vaccine against Rabies. Vaccines 2019, 7, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldrich, C.; Leroux–Roels, I.; Huang, K.B.; Bica, M.A.; Loeliger, E.; Schoenborn-Kellenberger, O.; Walz, L.; Leroux-Roels, G.; von Sonnenburg, F.; Oostvogels, L. Proof-of-Concept of a Low-Dose Unmodified MRNA-Based Rabies Vaccine Formulated with Lipid Nanoparticles in Human Volunteers: A Phase 1 Trial. Vaccine 2021, 39, 1310–1318. [Google Scholar] [CrossRef] [PubMed]
- Huttner, A.; Siegrist, C.-A. Durability of Single-Dose RVSV-ZEBOV Vaccine Responses: What Do We Know? Expert Rev. Vaccines 2018, 17, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Chahal, J.S.; Khan, O.F.; Cooper, C.L.; McPartlan, J.S.; Tsosie, J.K.; Tilley, L.D.; Sidik, S.M.; Lourido, S.; Langer, R.; Bavari, S.; et al. Dendrimer-RNA Nanoparticles Generate Protective Immunity against Lethal Ebola, H1N1 Influenza, and Toxoplasma Gondii Challenges with a Single Dose. Proc. Natl. Acad. Sci. USA 2016, 113, E4133–E4142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, M.; Huang, E.; Yuzhakov, O.; Ramanathan, P.; Ciaramella, G.; Bukreyev, A. Modified MRNA-Based Vaccines Elicit Robust Immune Responses and Protect Guinea Pigs From Ebola Virus Disease. J. Infect. Dis. 2018, 217, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Teijaro, J.R.; Farber, D.L. COVID-19 Vaccines: Modes of Immune Activation and Future Challenges. Nat. Rev. Immunol. 2021, 21, 195–197. [Google Scholar] [CrossRef]
- B-Cell-Intrinsic Type 1 Interferon Signaling Is Crucial for Loss of Tolerance and the Development of Autoreactive B Cells: Cell Reports. Available online: https://www.cell.com/cell-reports/fulltext/S2211-124730956-2?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2211124718309562%3Fshowall%3Dtrue (accessed on 17 April 2021).
- Shimabukuro, T.T.; Kim, S.Y.; Myers, T.R.; Moro, P.L.; Oduyebo, T.; Panagiotakopoulos, L.; Marquez, P.L.; Olson, C.K.; Liu, R.; Chang, K.T.; et al. Preliminary Findings of MRNA Covid-19 Vaccine Safety in Pregnant Persons. N. Engl. J. Med. 2021, 384, 2273–2282. [Google Scholar] [CrossRef]
- Ou, M.T.; Boyarsky, B.J.; Motter, J.D.; Greenberg, R.S.; Teles, A.T.; Ruddy, J.A.; Krach, M.R.; Jain, V.S.; Werbel, W.A.; Avery, R.K.; et al. Safety and Reactogenicity of 2 Doses of SARS-CoV-2 Vaccination in Solid Organ Transplant Recipients. Transplantation 2021. [Google Scholar] [CrossRef]
- Boyarsky, B.J.; Werbel, W.A.; Avery, R.K.; Tobian, A.A.R.; Massie, A.B.; Segev, D.L.; Garonzik-Wang, J.M. Antibody Response to 2-Dose SARS-CoV-2 MRNA Vaccine Series in Solid Organ Transplant Recipients. JAMA 2021, 325, 2204. [Google Scholar] [CrossRef]
- Kamar, N.; Abravanel, F.; Marion, O.; Couat, C.; Izopet, J.; Bello, A.D. Three Doses of an MRNA Covid-19 Vaccine in Solid-Organ Transplant Recipients. N. Engl. J. Med. 2021, 385, 661–662. [Google Scholar] [CrossRef] [PubMed]
- Malinis, M.; Cohen, E.; Azar, M.M. Effectiveness of SARS-CoV-2 Vaccination in Fully-vaccinated Solid Organ Transplant Recipients. Am. J. Transplant. 2021, 21, 2916–2918. [Google Scholar] [CrossRef]
- Moderna Announces First Participants Dosed in Study Evaluating COVID-19 Booster Vaccine Candidates|Moderna, Inc. Available online: https://investors.modernatx.com/news-releases/news-release-details/moderna-announces-first-participants-dosed-study-evaluating/ (accessed on 17 April 2021).
- Goel, R.R.; Apostolidis, S.A.; Painter, M.M.; Mathew, D.; Pattekar, A.; Kuthuru, O.; Gouma, S.; Hicks, P.; Meng, W.; Rosenfeld, A.M.; et al. Distinct Antibody and Memory B Cell Responses in SARS-CoV-2 Naïve and Recovered Individuals Following MRNA Vaccination. Sci. Immunol. 2021, 6, eabi6950. [Google Scholar] [CrossRef]
- Muik, A.; Wallisch, A.-K.; Sänger, B.; Swanson, K.A.; Mühl, J.; Chen, W.; Cai, H.; Maurus, D.; Sarkar, R.; Türeci, Ö.; et al. Neutralization of SARS-CoV-2 Lineage B.1.1.7 Pseudovirus by BNT162b2 Vaccine–Elicited Human Sera. Science 2021, 371, 1152–1153. [Google Scholar] [CrossRef]
- Sheikh, A.; McMenamin, J.; Taylor, B.; Robertson, C.; Public Health Scotland and the EAVE II Collaborators. SARS-CoV-2 Delta VOC in Scotland: Demographics, Risk of Hospital Admission, and Vaccine Effectiveness—The Lancet. Available online: https://www.thelancet.com/journals/lancet/article/PIIS0140-673601358-1/fulltext (accessed on 28 July 2021).
- Lopez Bernal, J.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.; Tessier, E.; Groves, N.; Dabrera, G.; et al. Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. N. Engl. J. Med. 2021, 385, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Crommelin, D.J.A.; Anchordoquy, T.J.; Volkin, D.B.; Jiskoot, W.; Mastrobattista, E. Addressing the Cold Reality of MRNA Vaccine Stability. J. Pharm. Sci. 2021, 110, 997–1001. [Google Scholar] [CrossRef] [PubMed]
- Holm, M.R.; Poland, G.A. Critical Aspects of Packaging, Storage, Preparation, and Administration of MRNA and Adenovirus-Vectored COVID-19 Vaccines for Optimal Efficacy. Vaccine 2021, 39, 457–459. [Google Scholar] [CrossRef] [PubMed]
- Rosa, S.S.; Prazeres, D.M.F.; Azevedo, A.M.; Marques, M.P.C. MRNA Vaccines Manufacturing: Challenges and Bottlenecks. Vaccine 2021, 39, 2190–2200. [Google Scholar] [CrossRef]
- Wadhwa, A.; Aljabbari, A.; Lokras, A.; Foged, C.; Thakur, A. Opportunities and Challenges in the Delivery of MRNA-Based Vaccines. Pharmaceutics 2020, 12, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FDA Office of Commissioner. Coronavirus (COVID-19) Update: FDA Allows More Flexible Storage, Transportation Conditions for Pfizer-BioNTech COVID-19 Vaccine. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-allows-more-flexible-storage-transportation-conditions-pfizer (accessed on 23 April 2021).
Traditional Liposomes | Used as drug carriers, biodegradable, which enhances efficacy and minimizes toxicity |
Lipoplexes | Excluded from clinical trials due to poor encapsulation and tolerability |
Cationic nano-emulsions (CNE) | Bind to self-amplifying mRNA, strong immune response with high levels of neutralizing antibodies and induction of T cell |
Nanostructured lipid carriers (NLC) | Used for mRNA vaccine. Provides enhanced stability depending on amount of solid lipid used |
Ionizable Cationic Lipids | Strong Encapsulation. Environment pH Affects Its Charge Which in Turn Affects Fusion and Release of Nucleic Acid into Cytosol | |
Helper lipids (PEG, cholesterol, and phosphatidylcholines) | Aids with the stability of NP, promoting uptake and delivery of the nucleic acid | |
PEG Lipids | Cholesterol | Phosphatidylcholines |
Controlling its amount is crucial since it affects the binding of LNP, thus affecting its accumulation or elimination in the blood. | Presence helps with stability, integrity in structure and LNP fusion | Helps in development and disruption of lipid bilayer aiding in the escape of endosome |
Target | Vaccine Name | Developers | Trial Characteristics | Immunogenicity | Trial No. |
---|---|---|---|---|---|
SARS-CoV-2 | mRNA-1273 | ModernaTX, Inc. + National Institute of Allergy and Infectious Diseases (NIAID) | 2 doses (0, 28 d) (100 μg) IM 18–55, 56+ years | Nab and CD4+ T-cell responses were observed in all participants with persistence lasting up to 3 months. | NCT04283461 (I) NCT04405076 (II) NCT04470427 (III) NCT04760132 (IV) |
mRNA-1273.351 | ModernaTX, Inc. + NIAID | 2 doses (0, 28 d) (25 μg, 50 μg, 100 μg) IM 18–99 years | N/A | NCT04785144 | |
BNT162b2 | Pfizer/BioNTech + Fosun Pharma | 2 doses (0, 21 d) (30 μg) IM 18–85 years | Increased RBD-binding IgG, NAb titers, CD4+ and CD8+ T-cell responses after a second dose. Immunogenicity persisted over a median of 2 months. | NCT04760132 (I) NCT04380701 (I/II) NCT04368728 (II/III) NCT04760132 (IV) | |
CVnCoV | CureVac AG | 2 doses (0, 28 d) (12 μg) IM 18+ years | Neutralizing antibody titers in participants after two injections were comparable to those of convalescent human sera. | NCT04449276 (I) NCT04515147 (II) NCT04652102 (II/III) NCT04674189(III) | |
ARCT-021 | Arcturus Therapeutics | 2 doses (0, 28 d) (2 μg) IM 21–80 years | Favorable immunogenicity results for both single-dose and prime-boost regimens. | NCT04480957 (I/II) NCT04668339 (II) | |
LNP-nCoVsaRNA | Imperial College London | (0.1 µg, 0.3 µg and 1 µg) IM 18–45 years | N/A | ISRCTN17072692 | |
ARCoV | Academy of Military Science (AMS), Walvax Biotechnology and Suzhou Abogen Biosciences | 2 doses (0, 14 d/ 0, 28 d) (5 µg, 10 µg, 15 µg) IM 18–59 years | N/A | ChiCTR2000034112 (I) ChiCTR2100041855 (II) | |
ChulaCov19 | Chulalongkorn University | 2 doses (0, 21 d) (10 µg, 25 µg, 50 µg, 100 µg) IM 18–55, 65–75 years | N/A | NCT04566276 | |
PTX-COVID19-B | Providence Therapeutics | 2 doses (0, 28 d) (16 μg, 40 μg, 100 μg) IM 18–64 years | N/A | NCT04765436 | |
GlaxoSmithKline | 2 doses (0, 1 month) (1 µg, 3 µg, 10 µg, 30 µg) IM 18–50 years | N/A | NCT04758962 | ||
MRT5500 | Sanofi Pasteur and Translate Bio | 1 dose/2 doses (0, 21 d) (15 µg, 45 µg or 135 µg) IM 18–49, 50+ years | N/A | NCT04798027 | |
DS-5670a | Daiichi Sankyo Co., Ltd. | 2 doses (10 µg, 30 µg, 60 µg, 100 µg) IM 20–72 years | N/A | NCT04821674 | |
TAK-919 | Takeda | 2 doses (0, 28 d) (0.5 mL) IM 20+ years | N/A | NCT04677660 | |
Influenza H7N9 virus | VAL-339851 | ModernaTX, Inc. | 2 doses (0, 6 months) (10 µg, 25 µg, 50 µg) IM 18–49 years | Induced humoral immune responses and high seroconversion rates. | NCT03345043 |
Influenza H10N8 virus | VAL-506440 | ModernaTX, Inc. | 2 doses (0, 21 d) IM (25 µg, 50 µg, 75 µg, 100 µg, 400 µg) ID (25 µg, 50 µg) 18–64 years | Induced robust humoral immune responses and high seroconversion rates. | NCT03076385 |
Zika | mRNA-1325 | ModernaTX, Inc. and Biomedical Advanced Research and Development Authority | 2 doses (0, 6 months) (10 µg, 25 µg, 100 µg) IM 18–49 years | N/A | NCT03014089 |
Rabies | CV7202 | CureVac AG | 2 doses (0, 28 d) (1μg, 2μg) 1 dose (5 μg) IM 18–40 years | Induction of NAb responses. No cell-mediated immune responses detected after two shots of 1 and 2 μg dosages. | NCT03713086 |
Cytomegalovirus | mRNA-1647 | ModernaTX, Inc. | 3 doses (0, 2, 6-month) IM 18–40 years | N/A | NCT04232280 |
HIV-1 | AGS-004 | Argos Therapeutics+ McGill University Health Centre+ Université de Montréal | 4 doses (4-weeks apart) ID 18–65 years | AGS-004 dendritic cell administration increased multifunctional HIV-specific CD28+/CD45RA − CD8+ memory T-cell responses in all participants. | NCT00381212 (I) NCT01069809 (II) |
iHIVARNA-01 | Erasmus Medical Center | 3 doses (2-weeks apart) Intranodal 18+ years | Interim analysis did not show sufficient immunogenicity of patients compared to placebo. | NCT02413645 (I) NCT02888756 (II) | |
Massachusetts General Hospital | 4 doses (weeks 0, 2, 6, and 10) ID 18–65 years | Study participants developed de novo CD4 and CD8 proliferative responses to KLH and CD4 proliferative responses to Nef that were short-lived. | NCT00833781 | ||
Chikungunya | mRNA-1388 | ModernaTX, Inc. | 2 doses (0,28 d) (25 μg, 50 μg, 100 μg) IM 18–49 years | NAb titers increased significantly and boosted after the second vaccination. | NCT03325075 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelzaher, H.M.; Gabr, A.S.; Saleh, B.M.; Abdel Gawad, R.M.; Nour, A.A.; Abdelanser, A. RNA Vaccines against Infectious Diseases: Vital Progress with Room for Improvement. Vaccines 2021, 9, 1211. https://doi.org/10.3390/vaccines9111211
Abdelzaher HM, Gabr AS, Saleh BM, Abdel Gawad RM, Nour AA, Abdelanser A. RNA Vaccines against Infectious Diseases: Vital Progress with Room for Improvement. Vaccines. 2021; 9(11):1211. https://doi.org/10.3390/vaccines9111211
Chicago/Turabian StyleAbdelzaher, Hana M., Asmaa S. Gabr, Basma M. Saleh, Rana M. Abdel Gawad, Ahmed A. Nour, and Anwar Abdelanser. 2021. "RNA Vaccines against Infectious Diseases: Vital Progress with Room for Improvement" Vaccines 9, no. 11: 1211. https://doi.org/10.3390/vaccines9111211
APA StyleAbdelzaher, H. M., Gabr, A. S., Saleh, B. M., Abdel Gawad, R. M., Nour, A. A., & Abdelanser, A. (2021). RNA Vaccines against Infectious Diseases: Vital Progress with Room for Improvement. Vaccines, 9(11), 1211. https://doi.org/10.3390/vaccines9111211