Use of Stability Modeling to Support Accelerated Vaccine Development and Supply
Abstract
:1. Introduction
“Studies under accelerated conditions may provide useful support data for establishing the expiration date, provide product stability information for future product development (e.g., preliminary assessment of proposed manufacturing changes such as change in formulation, scale-up), assist in validation of analytical methods for the stability program, or generate information which may help elucidate the degradation profile of the drug substance or drug product. Studies under stress conditions may be useful in determining whether accidental exposures to conditions other than those proposed (e.g., during transportation) are deleterious to the product and also for evaluating which specific test parameters may be the best indicators of product stability.”
2. Materials and Methods
2.1. Modeling Approaches
2.2. Theoretical Background
2.3. Experimental Considerations
3. Results
3.1. First-Order Kinetic Model Enabled Long-Term Stability Predictions of a Glycoconjugate Vaccine at +5 °C
3.2. nth-Order Kinetic Model Enabled Accurate Long-Term Stability Predictions of a Protein-Based Vaccine at +5 °C and +25 °C
3.3. Using nth-Order Kinetic Models for Long-Term Stability Predictions at +5 °C of Multiple Batches of a Vaccine
3.4. Two-Step Kinetic Model Required for Accurate Long-Term Stability Predictions of an Inactivated Virus-Based Vaccine at +5 °C
3.5. Temperature Excursions’ Management and Real-Time Stability Monitoring of Vaccines
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Monitoring of Vaccine Wastage at Country Level; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Roduit, B.; Hartmann, M.; Folly, P.; Sarbach, A.; Baltensperger, R. Prediction of thermal stability of materials by modified kinetic and model selection approaches based on limited amount of experimental points. Thermochim. Acta 2014, 579, 31–39. [Google Scholar] [CrossRef]
- Clenet, D. Accurate prediction of vaccine stability under real storage conditions and during temperature excursions. Eur. J. Pharm. Biopharm. Off. J. Arb. Pharm. Verfahr. 2018, 125, 76–84. [Google Scholar] [CrossRef]
- Roque, C.; Ausar, S.F.; Raham, N.; Clénet, D. Stability Modeling in QbD: Accelerating Formulation Development and Predicting Shelf Life of Products. In Quality by Design—An Indispensable Approach to Accelerate Biopharmaceutical Product Development; PDA: Bethesda, MD, USA, 2021; pp. 169–199. [Google Scholar]
- Allison, L.M.C.; Mann, G.F.; Perkins, F.T.; Zuckerman, A.J. An accelerated stability test procedure for lyophilized measles vaccines. J. Biol. Stand. 1981, 9, 185–194. [Google Scholar] [CrossRef]
- Mariner, J.C.; House, J.A.; Sollod, A.E.; Stem, C.; Van den Ende, M.; Mebus, C.A. Comparison of the effect of various chemical stabilizers and lyophilization cycles on the thermostability of a vero cell-adapted rinderpest vaccine. Vet. Microbiol. 1990, 21, 195–209. [Google Scholar] [CrossRef]
- Precausta, P.M.; Simatos, D.; Pemp, M.l.; Devaux, B.; Kato, F. Influence of residual moisture and sealing atmosphere on viability of two freeze-dried viral vaccines. J. Clin. Microbiol. 1980, 12, 483–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clenet, D.; Hourquet, V.; Woinet, B.; Ponceblanc, H.; Vangelisti, M. A spray freeze dried micropellet based formulation proof-of-concept for a yellow fever vaccine candidate. Eur. J. Pharm. Biopharm. Off. J. Arb. Pharm. Verfahr. 2019, 142, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Clenet, D.; Imbert, F.; Probeck, P.; Rahman, N.; Ausar, S.F. Advanced kinetic analysis as a tool for formulation development and prediction of vaccine stability. J. Pharm. Sci. 2014, 103, 3055–3064. [Google Scholar] [CrossRef] [PubMed]
- Clénet, D. Accelerated Predictive Stability for Vaccines. STP Pharma Prat. 2020, 4, 12–14. [Google Scholar]
- Moriconi, A.; Onnis, V.; Aggravi, M.; Parlati, C.; Bufali, S.; Cianetti, S.; Egan, W.; Khan, A.; Fragapane, E.; Meppen, M.; et al. A new strategy for preparing a tailored meningococcal ACWY conjugate vaccine for clinical testing. Vaccine 2020, 38, 3930–3933. [Google Scholar] [CrossRef] [PubMed]
- Crommelin, D.J.A.; Volkin, D.B.; Hoogendoorn, K.H.; Lubiniecki, A.S.; Jiskoot, W. The Science is There: Key Considerations for Stabilizing Viral Vector-Based Covid-19 Vaccines. J. Pharm. Sci. 2021, 110, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Kartoglu, U.H.; Moore, K.L.; Lloyd, J.S. Logistical challenges for potential SARS-CoV-2 vaccine and a call to research institutions, developers and manufacturers. Vaccine 2020, 38, 5393–5395. [Google Scholar] [CrossRef] [PubMed]
- Desai, K.G.; Colandene, J.D.; Adams, M. Comprehensive Temperature Excursion Management Program for the Commercial Distribution of Biopharmaceutical Drug Products. J. Pharm. Sci. 2020, 109, 2131–2144. [Google Scholar] [CrossRef]
- EMA. Reflection Paper on the Regulatory Requirements for Vaccines Intended to Provide Protection against Variant Strain(s) of SARS-CoV-2. 2021. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-regulatory-requirements-vaccines-intended-provide-protection-against-variant_en.pdf (accessed on 28 September 2021).
- Toolbox Guidance on Scientific Elements and Regulatory Tools to Support Quality Data Packages for PRIME Marketing Authorisation Applications. 2021. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/draft-toolbox-guidance-scientific-elements-regulatory-tools-support-quality-data-packages-prime_en.pdf (accessed on 28 September 2021).
- Lennard, A.; Doymaz, F.; Angell, N.; Wypych, J. Using Prior Knowledge for Stability Modeling of Biological Therapeutic Agents to Assign Self-Life. In Quality by Design—An Indispensable Approach to Accelerate Biopharmaceutical Product Development; PDA: Bethesda, MD, USA, 2021; pp. 133–168. [Google Scholar]
- Evans, R.K.; Nawrocki, D.K.; Isopi, L.A.; Williams, D.M.; Casimiro, D.R.; Chin, S.; Chen, M.; Zhu, D.-M.; Shiver, J.W.; Volkin, D.B. Development of stable liquid formulations for adenovirus-based vaccines. J. Pharm. Sci. 2004, 93, 2458–2475. [Google Scholar] [CrossRef] [PubMed]
- Pelliccia, M.; Andreozzi, P.; Paulose, J.; D’Alicarnasso, M.; Cagno, V.; Donalisio, M.; Civra, A.; Broeckel, R.M.; Haese, N.; Jacob Silva, P.; et al. Additives for vaccine storage to improve thermal stability of adenoviruses from hours to months. Nat. Commun. 2016, 7, 13520. [Google Scholar] [CrossRef] [PubMed]
- McMahon, M.E.; Abbott, A.; Babayan, Y.; Carhart, J.; Chen, C.-W.; Debie, E.; Fu, M.; Hoaglund-Hyzer, C.; Lennard, A.; Li, H.; et al. Considerations for Updates to ICH Q1 and Q5C Stability Guidelines: Embracing Current Technology and Risk Assessment Strategies. AAPS J. 2021, 23, 107. [Google Scholar] [CrossRef] [PubMed]
- WHO. Vaccine Vial Monitor-WHO/PQS/E06/IN05.2; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Kartoglu, U.; Milstien, J. Tools and approaches to ensure quality of vaccines throughout the cold chain. Expert Rev. Vaccines 2014, 13, 843–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Guidelines on the Stability Evaluation of Vaccines for Use under Extended Controlled Temperature Conditions, Annex 5, TRS No 999; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Roduit, B.; Luyet, C.A.; Hartmann, M.; Folly, P.; Sarbach, A.; Dejeaifve, A.; Dobson, R.; Schroeter, N.; Vorlet, O.; Dabros, M.; et al. Continuous Monitoring of Shelf Lives of Materials by Application of Data Loggers with Implemented Kinetic Parameters. Molecules 2019, 24, 2217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mean Kinetic Temperature in GxP Environments. 2017. Available online: https://nordiclifescience.org/vaisala/2017/11/01/mean-kinetic-temperature-gxp-environments/ (accessed on 28 September 2021).
- COVAX. Available online: https://epi.tghn.org/covax-overview/ (accessed on 28 September 2021).
- Best Practices for Determining and Updating Storage Temperature and Shelf-Life Workshop. 2020. Available online: https://media.tghn.org/medialibrary/2020/12/20201209_COVAX_Storage_temperature_and_shelf_life_workshop_presentation.pdf (accessed on 28 September 2021).
- Considerations for Evaluation of COVID19 Vaccines-Points to Consider for Manufacturers of COVID19 Vaccines. 2020. Available online: https://cdn.who.int/media/docs/default-source/in-vitro-diagnostics/covid19/considerations-who-evaluation-of-covid-vaccine_v25_11_2020.pdf?sfvrsn=f14bc2b1_3 (accessed on 28 September 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campa, C.; Pronce, T.; Paludi, M.; Weusten, J.; Conway, L.; Savery, J.; Richards, C.; Clénet, D. Use of Stability Modeling to Support Accelerated Vaccine Development and Supply. Vaccines 2021, 9, 1114. https://doi.org/10.3390/vaccines9101114
Campa C, Pronce T, Paludi M, Weusten J, Conway L, Savery J, Richards C, Clénet D. Use of Stability Modeling to Support Accelerated Vaccine Development and Supply. Vaccines. 2021; 9(10):1114. https://doi.org/10.3390/vaccines9101114
Chicago/Turabian StyleCampa, Cristiana, Thierry Pronce, Marilena Paludi, Jos Weusten, Laura Conway, James Savery, Christine Richards, and Didier Clénet. 2021. "Use of Stability Modeling to Support Accelerated Vaccine Development and Supply" Vaccines 9, no. 10: 1114. https://doi.org/10.3390/vaccines9101114
APA StyleCampa, C., Pronce, T., Paludi, M., Weusten, J., Conway, L., Savery, J., Richards, C., & Clénet, D. (2021). Use of Stability Modeling to Support Accelerated Vaccine Development and Supply. Vaccines, 9(10), 1114. https://doi.org/10.3390/vaccines9101114