Are Vaccines the Solution for Methane Emissions from Ruminants? A Systematic Review
Abstract
:1. Introduction
2. The Rumen Microbiota
3. Antimethanogen Vaccines to Reduce CH4 in Ruminants
4. Immunoglobulin Production, Saliva Secretion, and Activity in Rumen
5. Vaccines and Rumen Populations/CH4 Emission
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kurniawan, T.; Budhi, Y.W.; Bindar, Y. Reverse flow reactor for catalytic oxidation of lean methane. World Chem. Eng. J. 2018, 2, 21–26. [Google Scholar]
- Tapio, I.; Snelling, T.J.; Strozzi, F.; Wallace, R.J. The ruminal microbiome associated with methane emissions from ruminant livestock. J. Anim. Sci. Biotechnol. 2017, 8, 1–11. [Google Scholar] [CrossRef]
- Leahy, S.C.; Kelly, W.J.; Ronimus, R.S.; Wedlock, N.; Altermann, E.; Attwood, G.T. Genome sequencing of rumen bacteria and archaea and its application to methane mitigation strategies. Animal 2013, 7 (Suppl. 2), 235–243. [Google Scholar] [CrossRef] [Green Version]
- Opio, C.; Gerber, P.; Mottet, A.; Falcucci, A.; Tempio, G.; MacLeod, M.; Vellinga, T.; Henderson, B.; Steinfeld, H. Animal Production and Health Division: A Global Life Cycle Assessment Greenhouse Gas Emissions from Ruminant Supply Chains; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; ISBN 9789251079454. [Google Scholar]
- Rotz, C.A. Modeling greenhouse gas emissions from dairy farms. J. Dairy Sci. 2018, 101, 6675–6690. [Google Scholar] [CrossRef] [PubMed]
- Knapp, J.; Laur, G.; Vadas, P.; Weiss, W.; Tricarico, J. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Elekwachi, C.O.; Jiao, J.; Wang, M.; Tang, S.; Zhou, C.; Tan, Z.; Forster, R.J. Investigation and manipulation of metabolically active methanogen community composition during rumen development in black goats OPEN. Sci. Rep. 2017, 7, 422. [Google Scholar] [CrossRef] [PubMed]
- Gerber, P.; Vellinga, T.; Opio, C.; Steinfeld, H. Productivity gains and greenhouse gas emissions intensity in dairy systems. Livest. Sci. 2011, 139, 100–108. [Google Scholar] [CrossRef]
- FAO. Livestock in the Balance: The State of Food and Agriculture; FAO, Ed.; Communication Division, FAO: Rome, Italy, 2009; ISBN 978-92-5-106215-9. [Google Scholar]
- Puchala, R.; LeShure, S.; Gipson, T.A.; Tesfai, K.; Flythe, M.D.; Goetsch, A.L. Effects of different levels of lespedeza and supplementation with monensin, coconut oil, or soybean oil on ruminal methane emission by mature Boer goat wethers after different lengths of feeding. J. Appl. Anim. Res. 2018, 46, 1127–1136. [Google Scholar] [CrossRef] [Green Version]
- Suha Uslu, O.; Kurt, O.; Kaya, E.; Kamalak, A. Effect of species on chemical composition, metabolizable energy, organic matter digestibility and methane production of some legume plants grown in Turkey. J. Appl. Anim. Res. 2018, 46, 1158–1161. [Google Scholar] [CrossRef]
- Lourenco, J.M.; Maia, F.J.; Bittar, J.H.J.; Segers, J.R.; Tucker, J.J.; Campbell, B.T.; Stewart, R.L. Utilization of exogenous enzymes in beef cattle creep feeds. J. Appl. Anim. Res. 2020, 48, 70–77. [Google Scholar] [CrossRef]
- Goetsch, A.L. Recent research of feeding practices and the nutrition of lactating dairy goats. J. Appl. Anim. Res. 2019, 47, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Heldens, J.G.M.; Patel, J.R.; Chanter, N.; Ten Thij, G.J.; Gravendijck, M.; Schijns, V.E.J.C.; Langen, A.; Schetters, T.P.M. Veterinary vaccine development from an industrial perspective. Vet. J. 2008, 178, 7–20. [Google Scholar] [CrossRef]
- Thomas, L.F.; Bellet, C.; Rushton, J. Using economic and social data to improve veterinary vaccine development: Learning lessons from human vaccinology. Vaccine 2019, 37, 3974–3980. [Google Scholar] [CrossRef] [PubMed]
- Medjekal, S.; Ghadbane, M.; Bodas, R.; Bousseboua, H.; López, S. Volatile fatty acids and methane production from browse species of Algerian arid and semi-arid areas. J. Appl. Anim. Res. 2018, 46, 44–49. [Google Scholar] [CrossRef]
- Hungate, R.E. The Rumen and Its Microbes, 1st ed.; Academic Press Inc.: New York, NY, USA, 1966; ISBN 978-1-4832-3308-6. [Google Scholar]
- Sharp, R.; Ziemer, C.J.; Stern, M.D.; Stahl, D.A. Taxon-specific associations between protozoal and methanogen populations in the rumen and a model rumen system. FEMS Microbiol. Ecol. 1998, 26, 71–78. [Google Scholar] [CrossRef]
- Koike, S.; Kobayashi, Y. Fibrolytic rumen bacteria: Their ecology and functions. Asian-Australas. J. Anim. Sci. 2009, 22, 131–138. [Google Scholar] [CrossRef]
- Belanche, A.; de la Fuente, G.; Newbold, C.J. Study of methanogen communities associated with different rumen protozoal populations. FEMS Microbiol. Ecol. 2014, 90, 663–677. [Google Scholar] [CrossRef] [Green Version]
- Palackal, N.; Lyon, C.S.; Zaidi, S.; Luginbühl, P.; Dupree, P.; Goubet, F.; Macomber, J.L.; Short, J.M.; Hazlewood, G.P.; Robertson, D.E.; et al. A multifunctional hybrid glycosyl hydrolase discovered in an uncultured microbial consortium from ruminant gut. Appl. Microbiol. Biotechnol. 2007, 74, 113–124. [Google Scholar] [CrossRef]
- Krause, D.O.; Denman, S.E.; Mackie, R.I.; Morrison, M.; Rae, A.L.; Attwood, G.T.; McSweeney, C.S. Opportunities to improve fiber degradation in the rumen: Microbiology, ecology, and genomics. FEMS Microbiol. Rev. 2003, 27, 663–693. [Google Scholar] [CrossRef] [Green Version]
- Ungerfeld, E.M.; Kohn, R.A. The role of thermodynamics in the control of ruminal fermentation. In Ruminant Physiology; Sejrsen, K., Hvelplund, T., Nielsen, M.O., Eds.; Academic Publishers: Wageningen, The Netherlands, 2009; pp. 55–86. ISBN 978-90-76998-64-0. [Google Scholar]
- Singh, B.; Gautam, S.K.; Verma, V.; Kumar, M.; Singh, B. Metagenomics in animal gastrointestinal ecosystem: Potential biotechnological prospects. Anaerobe 2008, 14, 138–144. [Google Scholar] [CrossRef]
- Romagnoli, E.M.; Kmit, M.C.P.; Chiaramonte, J.B.; Rossmann, M.; Mendes, R. Ecological aspects on rumen microbiome. In Diversity and Benefits of Microorganisms from the Tropics; Springer: Cham, Switzerland, 2017; pp. 367–389. ISBN 978-3-319-55804-2. [Google Scholar]
- Beauchemin, K.A.; Ungerfeld, E.M.; Eckard, R.J.; Wang, M. Review: Fifty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation. Animal 2020, 14, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Patra, A.K. Enteric methane mitigation technologies for ruminant livestock: A synthesis of current research and future directions. Environ. Monit. Assess. 2012, 184, 1929–1952. [Google Scholar] [CrossRef]
- Kittelmann, S.; Seedorf, H.; Walters, W.A.; Clemente, J.C.; Knight, R.; Gordon, J.I.; Janssen, P.H. Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic M microorganisms in rumen microbial communities. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Hook, S.E.; Wright, A.D.G.; McBride, B.W. Methanogens: Methane producers of the rumen and mitigation strategies. Archaea 2010, 2010, 50–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashr, Y. Abatement of methane production from ruminants: Trends in the manipulation of rumen fermentation. Asian-Australas. J. Anim. Sci. 2010, 23, 410–416. [Google Scholar] [CrossRef]
- Hill, J.; McSweeney, C.; Wright, A.D.G.; Bishop-Hurley, G.; Kalantar-zadeh, K. Measuring Methane Production from Ruminants. Trends Biotechnol. 2016, 34, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Van Lingen, H.J.; Edwards, J.E.; Vaidya, J.D.; Van Gastelen, S.; Saccenti, E.; van den Bogert, B.; Bannink, A.; Smidt, H.; Plugge, C.M.; Dijkstra, J. Diurnal dynamics of gaseous and dissolved metabolites and microbiota composition in the bovine rumen. Front. Microbiol. 2017, 8, 425. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Fernandez, G.; Denman, S.E.; Yang, C.; Cheung, J.; Mitsumori, M.; McSweeney, C.S. Methane inhibition alters the microbial community, hydrogen flow, and fermentation response in the rumen of cattle. Front. Microbiol. 2016, 7, 1122. [Google Scholar] [CrossRef]
- Singh, K.M.; Tripathi, A.K.; Pandya, P.R.; Parnerkar, S.; Rank, D.N.; Kothari, R.K.; Joshi, C.G. Methanogen diversity in the rumen of Indian Surti buffalo (Bubalus bubalis), assessed by 16S rDNA analysis. Res. Vet. Sci. 2012, 92, 451–455. [Google Scholar] [CrossRef]
- Janssen, P.H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 2010, 160, 1–22. [Google Scholar] [CrossRef]
- Chaucheyras-Durand, F.; Ossa, F. The rumen microbiome: Composition, abundance, diversity, and new investigative tools. Prof. Anim. Sci. 2014, 30, 1–12. [Google Scholar] [CrossRef]
- Tapio, I.; Fischer, D.; Blasco, L.; Tapio, M.; Wallace, R.J.; Bayat, A.R.; Ventto, L.; Kahala, M.; Negussie, E.; Shingfield, K.J.; et al. Taxon abundance, diversity, co-occurrence and network analysis of the ruminal microbiota in response to dietary changes in dairy cows. PLoS ONE 2017, 12, e180260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonty, G.; Gouet, P.; Jouany, J.P.; Senaud, J. Establishment of the microflora and anaerobic fungi in the rumen of lambs. J. Gen. Microbiol. 1987, 133, 1835–1843. [Google Scholar] [CrossRef] [Green Version]
- Newbold, C.J.; De la Fuente, G.; Belanche, A.; Ramos-Morales, E.; McEwan, N.R. The role of ciliate protozoa in the rumen. Front. Microbiol. 2015, 6, 1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yáñez-Ruiz, D.R.; Abecia, L.; Newbold, C.J. Manipulating rumen microbiome and fermentation through interventions during early life: A review. Front. Microbiol. 2015, 6, 1133. [Google Scholar] [CrossRef] [Green Version]
- Newbold, C.J.; Ramos-Morales, E. Review: Ruminal microbiome and microbial metabolome: Effects of diet and ruminant host. Animal 2020, 14, S78–S86. [Google Scholar] [CrossRef] [Green Version]
- Abecia, L.; Martín-García, A.I.; Martinez, G.; Newbold, C.J.; Yáñez-Ruiz, D.R. Nutritional intervention in early life to manipulate rumen microbial colonization and methane output by kid goats postweaning. J. Anim. Sci. 2013, 91, 4832–4840. [Google Scholar] [CrossRef] [Green Version]
- Weimer, P.J. Redundancy, resilience, and host specificity of the ruminal microbiota: Implications for engineering improved ruminal fermentations. Front. Microbiol. 2015, 6, 296. [Google Scholar] [CrossRef] [Green Version]
- Lyons, T.; Bielak, A.; Doyle, E.; Kuhla, B. Variations in methane yield and microbial community profiles in the rumen of dairy cows as they pass through stages of first lactation. J. Dairy Sci. 2018, 101, 5102–5114. [Google Scholar] [CrossRef] [Green Version]
- Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Janssen, P.H.; Abecia, L.; Angarita, E.; Aravena, P.; Arenas, G.N.; et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef]
- Lan, W.; Yang, C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci. Total Environ. 2019, 654, 1270–1283. [Google Scholar] [CrossRef] [PubMed]
- Kittelmann, S.; Pinares-Patiño, C.S.; Seedorf, H.; Kirk, M.R.; Ganesh, S.; McEwan, J.C.; Janssen, P.H. Two different bacterial community types are linked with the low-methane emission trait in sheep. PLoS ONE 2014, 9, e103171. [Google Scholar] [CrossRef] [PubMed]
- Yanagita, K.; Kamagata, Y.; Kawaharasaki, M.; Suzuki, T.; Nakamura, Y.; Minato, H. Phylogenetic analysis of methanogens in sheep rumen ecosystem and detection of methanomicrobium mobile by fluorescence in situ hybridization. Biosci. Biotechnol. Biochem. 2000, 64, 1737–1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeyanathan, J.; Kirs, M.; Ronimus, R.S.; Hoskin, S.O.; Janssen, P.H. Methanogen community structure in the rumens of farmed sheep, cattle and red deer fed different diets. FEMS Microbiol. Ecol. 2011, 76, 311–326. [Google Scholar] [CrossRef]
- Patra, A.; Park, T.; Kim, M.; Yu, Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 2017, 8, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Whitman, W.B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. N. Y. Acad. Sci. 2008, 1125, 171–189. [Google Scholar] [CrossRef]
- Attwood, G.T.; Altermann, E.; Kelly, W.J.; Leahy, S.C.; Zhang, L.; Morrison, M. Exploring rumen methanogen genomes to identify targets for methane mitigation strategies. Anim. Feed Sci. Technol. 2011, 166–167, 65–75. [Google Scholar] [CrossRef]
- Wedlock, D.N.; Janssen, P.H.; Leahy, S.C.; Shu, D.; Buddle, B.M. Progress in the development of vaccines against rumen methanogens. Animal 2013, 7 (Suppl. 2), 244–252. [Google Scholar] [CrossRef] [Green Version]
- Miller, T.L.; Wolin, M.J. Methanosphaera stadtmaniae gen. nov., sp. nov.: A species that forms methane by reducing methanol with hydrogen. Arch. Microbiol. 1985, 141, 116–122. [Google Scholar] [CrossRef]
- Poulsen, M.; Schwab, C.; Borg Jensen, B.; Engberg, R.M.; Spang, A.; Canibe, N.; Højberg, O.; Milinovich, G.; Fragner, L.; Schleper, C.; et al. Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat. Commun. 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Stumm, C.K.; Gijzen, H.J.; Vogels, G.D. Association of methanogenic bacteria with ovine rumen ciliates. Br. J. Nutr. 1982, 47, 95–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finlay, B.J.; Esteban, G.; Clarke, K.J.; Williams, A.G.; Embley, T.M.; Hirt, R.P. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol. Lett. 1994, 117, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Newbold, C.J.; Lassalas, B.; Jouany, J.P. The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Lett. Appl. Microbiol. 1995, 21, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Williams, Y.J.; Rea, S.M.; Popovski, S.; Pimm, C.L.; Williams, A.J.; Toovey, A.F.; Skillman, L.C.; Wright, A.D.G. Reponses of sheep to a vaccination of entodinial or mixed rumen protozoal antigens to reduce rumen protozoal numbers. Br. J. Nutr. 2008, 99, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Guyader, J.; Eugène, M.; Nozière, P.; Morgavi, D.P.; Doreau, M.; Martin, C. Influence of rumen protozoa on methane emission in ruminants: A meta-analysis approach. Animal 2014, 8, 1816–1825. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.E.; Forster, R.J.; Callaghan, T.M.; Dollhofer, V.; Dagar, S.S.; Cheng, Y.; Chang, J.; Kittelmann, S.; Fliegerova, K.; Puniya, A.K.; et al. PCR and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: Insights, challenges and opportunities. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Krause, D.O.; Nagaraja, T.G.; Wright, A.D.G.; Callaway, T.R. Rumen microbiology: Leading the way in microbial ecology. J. Anim. Sci. 2013, 91, 331–341. [Google Scholar] [CrossRef]
- Mountfort, D.O. The rumen anaerobic fungi. FEMS Microbiol. Lett. 1987, 46, 401–408. [Google Scholar] [CrossRef]
- Cheng, Y.F.; Edwards, J.E.; Allison, G.G.; Zhu, W.Y.; Theodorou, M.K. Diversity and activity of enriched ruminal cultures of anaerobic fungi and methanogens grown together on lignocellulose in consecutive batch culture. Bioresour. Technol. 2009, 100, 4821–4828. [Google Scholar] [CrossRef] [Green Version]
- De Wit, J.; Oldenbroek, J.K.; van Keulen, H.; Zwart, D. Criteria for sustainable livestock production: A proposal for implementation. Agric. Ecosyst. Environ. 1995, 53, 219–229. [Google Scholar] [CrossRef]
- Subharat, S.; Shu, D.; Zheng, T.; Buddle, B.M.; Janssen, P.H.; Luo, D.; Wedlock, D.N. Vaccination of cattle with a methanogen protein produces specific antibodies in the saliva which are stable in the rumen. Vet. Immunol. Immunopathol. 2015, 164, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Patil, P.K.; Bayry, J.; Ramakrishna, C.; Hugar, B.; Misra, L.D.; Prabhudas, K.; Natarajan, C. Immune responses of sheep to quadrivalent double emulsion Foot-and-Mouth Disease vaccines: Rate of development of immunity and variations among other ruminants. J. Clin. Microbiol. 2002, 40, 4367–4371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobato, F.C.F.; Lima, C.G.R.D.; Assis, R.A.; Pires, P.S.; Silva, R.O.S.; Salvarani, F.M.; Carmo, A.O.; Contigli, C.; Kalapothakis, E. Potency against enterotoxemia of a recombinant Clostridium perfringens type D epsilon toxoid in ruminants. Vaccine 2010, 28, 6125–6127. [Google Scholar] [CrossRef] [PubMed]
- Moreira, G.M.S.G.; Salvarani, F.M.; Da Cunha, C.E.P.; Mendonça, M.; Moreira, Â.N.; Gonçalves, L.A.; Pires, P.S.; Lobato, F.C.F.; Conceição, F.R. Immunogenicity of a trivalent recombinant vaccine against Clostridium perfringens alpha, beta, and epsilon toxins in farm ruminants. Sci. Rep. 2016, 6, 22816. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.W.; Zhang, Q.; Yang, Y.; Li, L.; Zou, C.; Huang, C.; Lin, B.; Wasim Iqbal, M. Comparative study of rumen fermentation and microbial community differences between water buffalo and Jersey cows under similar feeding conditions. J. Appl. Anim. Res. 2018, 46, 740–748. [Google Scholar] [CrossRef]
- Watson, D.L.; Colditz, I.G.; Andrew, M.; Gill, H.S.; Altmann, K.G. Age-dependent immune response in Merino sheep. Res. Vet. Sci. 1994, 57, 152–158. [Google Scholar] [CrossRef]
- Nguyen, T.C. The immune response in sheep: Analysis of age, sex and genetic effects on the quantitative antibody response to chicken red blood cells. Vet. Immunol. Immunopathol. 1984, 5, 237–245. [Google Scholar] [CrossRef]
- Shu, Q.; Bird, S.; Gill, H.; Duan, E.; Xu, Y.; Hillard, M.; Rowe, J. Antibody response in sheep following immunization with Streptococcus bovis in different adjuvants. Vet. Res. Commun. 2001, 25, 43–54. [Google Scholar] [CrossRef]
- Gill, H.S.; Shu, Q.; Leng, R.A. Immunization with Streptococcus bovis protects against lactic acidosis in sheep. Vaccine 2000, 18, 2541–2548. [Google Scholar] [CrossRef]
- Shu, Q.; Hillard, M.A.; Bindon, B.M.; Duan, E.; Xu, Y.; Bird, S.H.; Rowe, J.B.; Oddy, V.H.; Gill, H.S. Effects of various adjuvants on efficacy of a vaccine against Streptococcus bovis and Lactobacillus spp. in cattle. Am. J. Vet. Res. 2000, 61, 839–843. [Google Scholar] [CrossRef]
- Yáñez-Ruiz, D.R.; Macías, B.; Pinloche, E.; Newbold, C.J. The persistence of bacterial and methanogenic archaeal communities residing in the rumen of young lambs. FEMS Microbiol. Ecol. 2010, 72, 272–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Barbieri, I.; Hegarty, R.S.; Silveira, C.; Gulino, L.M.; Oddy, V.H.; Gilbert, R.A.; Klieve, A.V.; Ouwerkerk, D. Programming rumen bacterial communities in newborn Merino lambs. Small Rumin. Res. 2015, 129, 48–59. [Google Scholar] [CrossRef]
- Baker, S.K.; Perth, W. Method for Improving Utilization of Nutrients by Ruminant or Ruminant-Like Animals. U.S. Patent 6,036,950, 14 March 2000. [Google Scholar]
- Wright, A. Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine 2004, 22, 3976–3985. [Google Scholar] [CrossRef] [PubMed]
- Clark, H.; Wright, A.-D.; Joblin, K.; Molano, G.; Cavanagh, A.; Peters, J. Field testing an Australian developed anti-methanogen vaccine in growing ewe lambs. In Proceedings of the Workshop on the Science of Atmospheric Trace Gases; Clarkson, T.S., Ed.; Science Communication, NIWA: Wellington, New Zealand, 2004; pp. 107–108. [Google Scholar]
- Williams, Y.J.; Popovski, S.; Rea, S.M.; Skillman, L.C.; Toovey, A.F.; Northwood, K.S.; Wright, A.D.G. A vaccine against rumen methanogens can alter the composition of archaeal populations. Appl. Environ. Microbiol. 2009, 75, 1860–1866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, S.R.; Maiti, P.K.; Chaves, A.V.; Benchaar, C.; Beauchemin, K.A.; McAllister, T.A. Avian (IgY) anti-methanogen antibodies for reducing ruminal methane production: In vitro assessment of their effects. Aust. J. Exp. Agric. 2008, 48, 260–264. [Google Scholar] [CrossRef]
- Wedlock, D.N.; Pedersen, G.; Denis, M.; Buddle, B.M.; Dey, D.; Janssen, P.H. Development of a vaccine to mitigate greenhouse gas emissions in agriculture: Vaccination of sheep with methanogen fractions induces antibodies that block methane production in vitro. N. Z. Vet. J. 2010, 58, 29–36. [Google Scholar] [CrossRef]
- Leahy, S.C.; Kelly, W.J.; Altermann, E.; Ronimus, R.S.; Yeoman, C.J.; Pacheco, D.M.; Li, D.; Kong, Z.; McTavish, S.; Sang, C.; et al. The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS ONE 2010, 5, e8926. [Google Scholar] [CrossRef] [Green Version]
- Subharat, S.; Shu, D.; Zheng, T.; Buddle, B.M.; Kaneko, K.; Hook, S.; Janssen, P.H.; Wedlock, D.N. Vaccination of sheep with a methanogen protein provides insight into levels of antibody in saliva needed to target ruminal methanogens. PLoS ONE 2016, 11, e0159861. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, X.; Xue, B.; Peng, Q.; Wang, Z.; Yan, T.; Wang, L. Immunization against rumen methanogenesis by vaccination with a new recombinant protein. PLoS ONE 2015, 10, e0140086. [Google Scholar] [CrossRef] [Green Version]
- Lawan, A.; Jesse, F.F.A.; Idris, U.H.; Odhah, M.N.; Arsalan, M.; Muhammad, N.A.; Bhutto, K.R.; Peter, I.D.; Abraham, G.A.; Wahid, A.H.; et al. Mucosal and systemic responses of immunogenic vaccines candidates against enteric Escherichia coli infections in ruminants: A review. Microb. Pathog. 2018, 117, 175–183. [Google Scholar] [CrossRef]
- Buddle, B.M.; Denis, M.; Attwood, G.T.; Altermann, E.; Janssen, P.H.; Ronimus, R.S.; Pinares-Patiño, C.S.; Muetzel, S.; Neil Wedlock, D. Strategies to reduce methane emissions from farmed ruminants grazing on pasture. Vet. J. 2011, 188, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Tsuruta, T.; Inoue, R.; Tsukahara, T.; Nakamoto, M.; Hara, H.; Ushida, K.; Yaima, T. Commensal bacteria coated by secretory immunoglobulin A and immunoglobulin G in the gastrointestinal tract of pigs and calves. Anim. Sci. J. 2012, 83, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Fouhse, J.M.; Smiegielski, L.; Tuplin, M.; Guan, L.L.; Willing, B.P. Host immune selection of rumen bacteria through salivary secretory IgA. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobson, M.J.; Brown, W.C.B.; Dobson, A.; Phillipson, A.T. A histological study of the organization of the rumen epithelium of sheep. Q. J. Exp. Physiol. Cogn. Med. Sci. 1956, 41, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Butler, J.E. Bovine immunoglobulins: An augmented review. Vet. Immunol. Immunopathol. 1983, 4, 43–152. [Google Scholar] [CrossRef]
- Gnanasampanthan, G. Immune Responses of Sheep to Rumen Ciliates and the Survival and Activity of Antibodies in the Rumen Fluid. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, 1993. [Google Scholar]
- Shu, Q.; Gill, H.S.; Hennessy, D.W.; Leng, R.A.; Bird, S.H.; Rowe, J.B. Immunisation against lactic acidosis in cattle. Res. Vet. Sci. 1999, 67, 65–71. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, J.; Zheng, N.; Bu, D.; Sun, P.; Yu, Z. Reducing microbial ureolytic activity in the rumen by immunization against urease therein. BMC Vet. Res. 2015, 11. [Google Scholar] [CrossRef] [Green Version]
- Storm, I.M.L.D.; Hellwing, A.L.F.; Nielsen, N.I.; Madsen, J. Methods for measuring and estimating methane emission from ruminants. Animals 2012, 2, 160–183. [Google Scholar] [CrossRef] [Green Version]
- Bhatta, R.; Enishi, O.; Takusari, N.; Higuchi, K.; Nonaka, I.; Kurihara, M. Diet effects on methane production by goats and a comparison between measurement methodologies. J. Agric. Sci. 2008, 146, 705–715. [Google Scholar] [CrossRef]
- McAllister, T.A.; Okine, E.K.; Mathison, G.W.; Cheng, K.J. Dietary, environmental and microbiological aspects of methane production in ruminants. Can. J. Anim. Sci. 1996, 76, 231–243. [Google Scholar] [CrossRef]
- Henderson, C. The effects of fatty acids on pure cultures of rumen bacteria. J. Agric. Sci. 1973, 81, 107–112. [Google Scholar] [CrossRef]
- Patra, A.K. Recent advances in measurement and dietary mitigation of enteric methane emissions in ruminants. Front. Vet. Sci. 2016, 3, 39. [Google Scholar] [CrossRef] [Green Version]
- Sorg, D.; Difford, G.F.; Mühlbach, S.; Kuhla, B.; Swalve, H.H.; Lassen, J.; Strabel, T.; Pszczola, M. Comparison of a laser methane detector with the GreenFeed and two breath analysers for on-farm measurements of methane emissions from dairy cows. Comput. Electron. Agric. 2018, 153, 285–294. [Google Scholar] [CrossRef]
- Pinares-Patiño, C.S.; Lassey, K.R.; Martin, R.J.; Molano, G.; Fernandez, M.; MacLean, S.; Sandoval, E.; Luo, D.; Clark, H. Assessment of the sulphur hexafluoride (SF6) tracer technique using respiration chambers for estimation of methane emissions from sheep. Anim. Feed Sci. Technol. 2011, 166–167, 201–209. [Google Scholar] [CrossRef]
Animal Tested | Antigen | Adjuvant | Administration Via | Booster | References |
---|---|---|---|---|---|
Sheep Weaner wethers | Mix of 10 methanogens, formaldehyde-killed, whole cells | Complete Freund’s adjuvant | Intraperitoneal | 28 days after primary | [78] |
Sheep 5 years old | Mix of three methanogens, formaldehyde-killed, whole cells | Montanide ISA50 | Subcutaneous | 153 days after primary | [79] |
Mix of seven methanogens, formaldehyde-killed, whole cells | |||||
Sheep 9 months old | As Wright [79] Mix of three methanogens | Not specified | Not specified | 42 days after primary | [80] |
As Wright [79] Mix of three methanogens plus additional methanogenic material isolated from New Zealand sheep | |||||
Hen 24–25 weeks old | Mix of three methanogens, freeze-dried, whole cells | Primary with complete Freund’s adjuvant Booster with incomplete Freund’s adjuvant | Pectoral muscle | 21, 42, 84, and 133 days after primary | [82] |
Montanide ISA70 | 21 and 42 days after primary | ||||
Sheep 2 years old | Mix of five methanogens, formaldehyde-killed, whole cells | Not specified | Subcutaneous | 28 and 103 days after primary | [81] |
Sheep 9–11 months old | Whole cells of Methanobrevibacter ruminantium M1 | Primary with complete Freund’s adjuvant Booster with incomplete Freund’s adjuvant | Subcutaneous | 21 days after primary | [83] |
Cytoplasmic fraction of M. ruminantium M1 | |||||
Wall fraction of M. ruminantium M1 | |||||
Wall fraction of M. ruminantium M1 with trypsin | |||||
Wall-fraction-derived-protein M. ruminantium M1 | |||||
Sheep 1–3 years old | Nine peptides from M. ruminantium M1 extracellular regions of eight proteins | Primary and 14 days booster with complete Freund’s adjuvant Other boosters with incomplete Freund’s adjuvant | Intradermal 10–15 sites | 14, 28, 56, 70, 84, 98, and 112 days after primary | [84] |
Sheep Age not specified | Cytoplasm-derived proteins from M. ruminantium M1 | Saponin | Subcutaneous | No booster | [53] |
Wall-derived proteins from M. ruminantium M1 | |||||
Sheep Age not specified | Large extracellular domain of recombinant GT2 of M. ruminantium M1 | Saponin | Intramuscular | 21 days after primary | |
Seven synthetic peptides from extracellular domain of SecE from M. ruminantium M1 | |||||
Cattle 5 months old | Large extracellular domain of recombinant GT2 of M. ruminantium M1 | Montanide ISA61 | Subcutaneous | 21 days after primary | [66] |
Montanide ISA61 plus monophosphoryl lipid A | |||||
Goat 18 months old | Protein recombinant EhaF from M. ruminantium M1 | Primary with complete Freund’s adjuvant. Booster with incomplete Freund’s adjuvant | Intradermal Eight sites | 35 and 45 days after primary | [86] |
Sheep 6 months old | Large extracellular domain of recombinant GT2 from M. ruminantium M1 | Saponin | Intramuscular | 21 days after primary | [85] |
Lipid nanoparticles/cationic liposomes | Subcutaneous | ||||
Chitosan thermogel | |||||
Montanide ISA61 | 21 and 133 days after primary |
Immunoglobulin | Time to Peak after Primary | Higher Values | IgG–IgA Ratios 3 | References | ||
---|---|---|---|---|---|---|
Titer | Time | Conditions | ||||
Blood IgG | 27 days | 475,000 1 | 195 days after primary | Primary vaccination with three methanogen species, then revaccination 153 days later. | Blood–saliva IgG: 279 Blood–saliva IgA: 317 Blood IgG–IgA: 5.16 Saliva IgG–IgA: 5.86 | [79] |
Blood IgA | 92,000 1 | |||||
Saliva IgG | 1700 1 | 174 days after primary | ||||
Saliva IgA | 290 1 | |||||
Rumen IgG | Not specified | Detected | 119 days after revaccination | |||
Blood IgG | 55 days | 540,000 (unit/mL) 1 | 123 days after primary | Primary vaccination with booster at 28 days and revaccination 103 days later. | Blood–saliva IgG: 617 Blood–rumen IgG: 2,348 Saliva–rumen IgG: 3.88 | [81] |
Saliva IgG | 875 (unit/mL) 1 | |||||
Rumen IgG | 230 (unit/mL) 1 | |||||
Blood IgG | Only one measurement after vaccination | 44,800 | 35 days after primary | Primary vaccination with booster at 21 days after primary. Group vaccinated with cell-wall-derived proteins | Blood–saliva IgG: 800 | [83] |
Saliva IgG | 56 | |||||
Blood IgA | Not specified | Not specified | Not specified | |||
Saliva IgA | Not specified | Not specified | Not specified | |||
Blood IgG | mtrE peptide 42 days after primary | 102,400 | 84 days after primary | Primary vaccination with booster at 14, 28, 56, and 70 days after primary. Group vaccinated with mtrD peptide | [84] | |
mtrC peptide 84 days after primary | ||||||
mtrD peptide 84 days after primary | ||||||
Blood IgG | Not specified | 1000-fold more that prevaccinated sample | Not specified | Primary vaccination: one group with cytoplasmatic fraction of M. ruminantium M1 and second group with cell-wall-derived proteins from the same microorganisms | [53] | |
Saliva IgG | Not specified | Not specified | Not specified | |||
Blood IgG | Only one measure after vaccination | Not specified | 77 days after primary | Primary vaccination and booster at 21 days after: one group with extracellular domain of GT2 from M. ruminantium M1 and second group with extracellular domain of SecE from the same microorganisms | ||
Saliva IgG | ||||||
Rumen IgG | ||||||
Blood IgG | 21 days after primary | 6.5 (log10 units/mL) 1 | 21 days after primary | Primary vaccination with booster at 21 days after primary. One group vaccinated Montanide ISA61 and other group with the same adjuvant plus MPL2 | Blood–saliva total IgG: 581 Blood–rumen total IgG: 4465 Saliva–rumen total IgG: 7.69 Blood–saliva total IgA: 0.35 Blood–rumen total IgA: 9.36 Saliva–rumen total IgA: 26.1 Blood total IgG–IgA: 97.8 Saliva total IgG–IgA: 0.06 (16.5 IgA–IgG) Rumen total IgG–IgA: 0.21 (4.87 IgA–IgG) | [66] |
Blood IgA | 42 days after primary | 3.3 (log10 units/mL) 1 | 56 days after primary | |||
Saliva IgG | 21 days after primary | 3.2 (log10 units/mL) 1 | 21 days after primary | |||
Saliva IgA | 21 days after primary for Montanide ISA61 plus MPL2 42 days after primary for Montanide ISA61 | 2.9 (log10 units/mL) 3.0 (log10 units/mL) 1 | 21 days after primary for Montanide ISA61 plus MPL2 42 days after primary for Montanide ISA61 | |||
Rumen IgG | 21 days after primary | 1.5 (log10 units/mL) 1 | 56 days after primary | |||
Rumen IgA | 42 days after primary only for Montanide ISA61 | 2.9 (log10 units/mL) 1 | 42 days after primary for Montanide ISA61 plus MPL 2 | |||
Blood IgG | Only one measure after vaccination | 320,000.00 | 63 days after primary | Primary vaccination with booster at 35 and 45 days after primary with the protein rEhaF from M. ruminantium M1 | Blood–saliva IgG: 714 Blood–rumen IgG: 60,038 Saliva–rumen IgG: 84 | [86] |
Saliva IgG | 448.00 | |||||
Rumen IgG | 5.33 | |||||
Blood IgG | 21 days after primary | 35% of total IgG 1 | 42 days after primary | Primary vaccination with booster at 21 days after primary, and Montanide ISA61 as adjuvant | Blood–saliva total IgG: 478 Blood–rumen total IgG: 99,655 Saliva–rumen total IgG: 209 Blood–saliva total IgA: 0.55 Blood–rumen total IgA: 65 Saliva–rumen total IgA: 117 Blood total IgG–IgA: 131 Saliva total IgG–IgA: 0.15 (6.57 IgA–IgG) Rumen total IgG–IgA: 0.09 (11.7 IgA–IgG) | [85] |
Saliva IgG | 42% of total IgG 1 |
Methane Production | Compared Groups | Conditions | References |
---|---|---|---|
12.8/14.8% 1 methane reduction in vitro | Sheep vaccinated with methanogen mix vs. prevaccinated/vaccinated with adjuvant or PBS | Primary vaccination with booster 28 days after primary Methane production from rumen liquor incubated for 24 h | [78] |
26.26% 1 methane reduction in vitro | Sheep vaccinated with methanogens mix vs. adjuvant and PBS | Primary vaccination with booster 28 days after primary Methane production from rumen liquor incubated for 24 h, corrected for dry-matter intake | |
Unsuccessful in vivo | Sheep vaccinated with mixes of three or seven methanogens vs. adjuvant and PBS | Primary vaccination Methane production on day 56 or 70 after primary | [79] |
12.8% methane reduction in vivo 7.7% methane reduction in vivo, corrected for dry-matter intake | Sheep vaccinated with mix of three methanogens vs. adjuvant and PBS | Primary vaccination with revaccination 153 days after primary Methane production 180–195 days after primary | |
Unsuccessful in vivo | Sheep vaccinated with mix of seven methanogens vs. adjuvant and PBS | ||
Unsuccessful in vivo | Sheep vaccinated with three methanogens vs. adjuvant | Primary vaccination with booster 42 days after primary Methane production 28 days after vaccination | [80] |
Sheep vaccinated with three methanogens plus additional methanogens vs. adjuvant | |||
Unsuccessful in vitro | Three semipurified IgY from hens vaccinated with three methanogens vs. semipurified IgY from prevaccinated hens | Primary vaccination with booster on Days 21, 42, 84, and 133 Methane production from rumen liquor incubated for 24 h | [82] |
20% methane increase with anti-Methanobrevibacter ruminantium IgY 15% methane increase with anti-M. smithii IgY corrected for dry-matter disappearance | Three freeze-dried egg powders from hens vaccinated with three methanogens vs. freeze-dried egg powder from prevaccinated hens | Primary vaccination with booster on Days 21 and 42 Methane production from rumen liquor incubated for 3 h | |
34% methane reduction with anti-M. smithii IgY 52% methane reduction with anti- Methanosphaera stadtmanae IgY 66% methane reduction with their combination, corrected for dry-matter disappearance | Primary vaccination with booster on Days 21 and 42 Methane production from rumen liquor incubated for 12 h | ||
Unsuccessful | Primary vaccination with booster on Days 21 and 42 Methane production from rumen liquor incubated for 24 h | ||
49–69% reduction, corrected for dry-matter disappearance | Freeze-dried egg powder from pre-vaccinated hens vs. without egg powder addition | Primary vaccination with booster on Days 21 and 42 Methane production from rumen liquor incubated for 3, 12, and 24 h | |
Unsuccessful in vivo | Sheep vaccinated with five methanogens vs. adjuvant and PBS | Primary vaccination with booster on Day 28 and revaccination at Day 103 Methane production between 34 and 42 days after first booster and between 24 and 33 days after revaccination | [81] |
29% 1 methane reduction in vitro | Sera from sheep vaccinated with M. ruminantium M1 whole cells vs. prevaccinated sheep sera | Primary vaccination with booster on Day 21 Methane production from methanogen culture incubated for 22 h with sera | [83] |
40% 1 methane reduction in vitro | Sera from sheep vaccinated with M. ruminantium M1 cytoplasmic fraction vs. pre-vaccinated sheep sera | ||
Unsuccessful in vitro | Sera from sheep vaccinated with M. ruminantium M1 wall fraction vs. prevaccinated sheep sera | ||
Unsuccessful in vitro | Sera from sheep vaccinated with M. ruminantium M1 wall fraction with trypsin vs. prevaccinated sheep sera | ||
40%1 methane reduction in vitro | Sera from sheep vaccinated with derived-protein M. ruminantium M1 wall fraction vs. prevaccinated sheep sera | ||
Unsuccessful in vivo | Goat vaccinated with protein rEhaF from M. ruminantium M1 vs. animal vaccinated with elution buffer plus adjuvant | Primary vaccination with boosters on Day 35 and 45 after primary. Methane measured 60–62 days after primary | [86] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baca-González, V.; Asensio-Calavia, P.; González-Acosta, S.; Pérez de la Lastra, J.M.; Morales de la Nuez, A. Are Vaccines the Solution for Methane Emissions from Ruminants? A Systematic Review. Vaccines 2020, 8, 460. https://doi.org/10.3390/vaccines8030460
Baca-González V, Asensio-Calavia P, González-Acosta S, Pérez de la Lastra JM, Morales de la Nuez A. Are Vaccines the Solution for Methane Emissions from Ruminants? A Systematic Review. Vaccines. 2020; 8(3):460. https://doi.org/10.3390/vaccines8030460
Chicago/Turabian StyleBaca-González, Victoria, Patricia Asensio-Calavia, Sergio González-Acosta, Jose Manuel Pérez de la Lastra, and Antonio Morales de la Nuez. 2020. "Are Vaccines the Solution for Methane Emissions from Ruminants? A Systematic Review" Vaccines 8, no. 3: 460. https://doi.org/10.3390/vaccines8030460
APA StyleBaca-González, V., Asensio-Calavia, P., González-Acosta, S., Pérez de la Lastra, J. M., & Morales de la Nuez, A. (2020). Are Vaccines the Solution for Methane Emissions from Ruminants? A Systematic Review. Vaccines, 8(3), 460. https://doi.org/10.3390/vaccines8030460