Thyroid Eye Disease Following SARS-CoV-2 Vaccination: Experience of a Case Series
Abstract
1. Introduction
2. Case Presentation
2.1. Case 1
2.1.1. Evaluation and Diagnosis
2.1.2. Therapeutic Intervention
2.1.3. Follow-Up
2.2. Case 2
2.2.1. Evaluation and Diagnosis
2.2.2. Therapeutic Intervention
2.2.3. Follow-Up
2.3. Case 3
2.3.1. Evaluation and Diagnosis
2.3.2. Therapeutic Intervention
2.3.3. Follow-Up
2.4. Case 4
2.4.1. Evaluation and Diagnosis
2.4.2. Therapeutic Intervention
2.4.3. Follow-Up
2.5. Case 5
2.5.1. Evaluation and Diagnosis
2.5.2. Therapeutic Intervention
2.5.3. Follow-Up
2.5.4. CAS (Clinical Activity Score)
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ACT | Computed Axial Tomography |
| Anti-Tg | Anti-thyroglobulin antibodies |
| Anti-TPO | Anti-thyroid peroxidase antibodies |
| AT | Arterial Tension |
| BMI | Body Mass Index |
| CF | Cardiac Frequency |
| CRP | C-Reactive Protein |
| ESR | Erythrocyte Sedimentation Rate |
| IM | Intramuscular |
| LE | Left Eye |
| RE | Right Eye |
| Tc-99 | Technetium 99 |
| TRAb | Thyroid-Stimulating Hormone Receptor Antibodies |
| TSH | Thyroid-Stimulating Hormone |
References
- Tau, N.; Yahav, D.; Shepshelovich, D. Vaccine safety-is the SARS-CoV-2 vaccine any different? Hum. Vaccin Immunother. 2021, 17, 1322–1325. [Google Scholar] [CrossRef]
- Zheng, C.; Shao, W.; Chen, X.; Zhang, B.; Wang, G.; Zhang, W. Real-world effectiveness of COVID-19 vaccines: A literature review and meta-analysis. Int. J. Infect. Dis. 2022, 114, 252–260. [Google Scholar] [CrossRef]
- Caironi, V.; Pitoia, F.; Trimboli, P. Thyroid Inconveniences With Vaccination Against SARS-CoV-2: The Size of the Matter. A Systematic Review. Front. Endocrinol. 2022, 13, 900964. [Google Scholar] [CrossRef] [PubMed]
- Mungmunpuntipantip, R.; Wiwanitkit, V. Thyrotoxicosis after COVID-19 vaccination. Endocrine 2022, 75, 22. [Google Scholar] [CrossRef]
- Gupta, T.; Gupta, S.K. Potential adjuvants for the development of a SARS-CoV-2 vaccine based on experimental results from similar coronaviruses. Int. Immunopharmacol. 2020, 86, 106717. [Google Scholar] [CrossRef]
- İremli, B.G.; Şendur, S.N.; Ünlütürk, U. Three Cases of Subacute Thyroiditis Following SARS-CoV-2 Vaccine: Postvaccination ASIA Syndrome. J. Clin. Endocrinol. Metab. 2021, 106, 2600–2605. [Google Scholar] [CrossRef]
- Neag, E.J.; Smith, T.J. 2021 Update on Thyroid-Associated Ophthalmopathy. J. Endocrinol. Investig. 2022, 45, 235–259. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo-Condoy, J.S.; Fernandez-Naranjo, R.; Vasconez-González, E.; Cordovez, S.; Tello-De-la-Torre, A.; Paz, C.; Delgado-Moreira, K.; Carrington, S.; Viscor, G.; Ortiz-Prado, E. Long COVID at Different Altitudes: A Countrywide Epidemiological Analysis. Int. J. Environ. Res. Public Health 2022, 19, 14673. [Google Scholar] [CrossRef] [PubMed]
- Yaamika, H.; Muralidas, D.; Elumalai, K. Review of adverse events associated with COVID-19 vaccines, highlighting their frequencies and reported cases. J. Taibah Univ. Med Sci. 2023, 18, 1646–1661. [Google Scholar] [CrossRef]
- Shih, S.-R.; Wang, C.-Y. SARS-CoV-2 vaccination related hyperthyroidism of Graves’ disease. J. Formos. Med. Assoc. 2022, 121, 1881–1882. [Google Scholar] [CrossRef]
- Abeillon-du Payrat, J.; Grunenwald, S.; Gall, E.; Ladsous, M.; Raingeard, I.; Caron, P. Graves’ orbitopathy post-SARS-CoV-2 vaccines: Report on six patients. J. Endocrinol. Investig. 2023, 46, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Patrizio, A.; Ferrari, S.M.; Antonelli, A.; Fallahi, P. Worsening of Graves’ ophthalmopathy after SARS-CoV-2 mRNA vaccination. Autoimmun. Rev. 2022, 21, 103096. [Google Scholar] [CrossRef] [PubMed]
- Vera-Lastra, O.; Ordinola Navarro, A.; Cruz Domiguez, M.P.; Medina, G.; Sánchez Valadez, T.I.; Jara, L.J. Two Cases of Graves’ Disease Following SARS-CoV-2 Vaccination: An Autoimmune/Inflammatory Syndrome Induced by Adjuvants. Thyroid 2021, 31, 1436–1439. [Google Scholar] [CrossRef]
- Rubinstein, T.J. Thyroid Eye Disease Following COVID-19 Vaccine in a Patient with a History Graves’ Disease: A Case Report. Ophthalmic Plast. Reconstr. Surg. 2021, 37, e221–e223. [Google Scholar] [CrossRef]
- Bartalena, L.; Piantanida, E.; Gallo, D.; Lai, A.; Tanda, M.L. Epidemiology, Natural History, Risk Factors, and Prevention of Graves’ Orbitopathy. Front. Endocrinol. 2020, 11, 615993. [Google Scholar] [CrossRef]
- Ruggeri, R.M.; Giovanellla, L.; Campennì, A. SARS-CoV-2 vaccine may trigger thyroid autoimmunity: Real-life experience and review of the literature. J. Endocrinol. Investig. 2022, 45, 2283–2289. [Google Scholar] [CrossRef]
- Jafarzadeh, A.; Nemati, M.; Jafarzadeh, S.; Nozari, P.; Mortazavi, S.M.J. Thyroid dysfunction following vaccination with COVID-19 vaccines: A basic review of the preliminary evidence. J. Endocrinol. Investig. 2022, 45, 1835–1863. [Google Scholar] [CrossRef] [PubMed]
- Kyriakidis, N.C.; López-Cortés, A.; González, E.V.; Grimaldos, A.B.; Prado, E.O. SARS-CoV-2 vaccines strategies: A comprehensive review of phase 3 candidates. npj Vaccines 2021, 6, 28. [Google Scholar] [CrossRef]
- Vaccinations and Autoimmune Diseases. Available online: https://www.mdpi.com/2076-393X/9/8/815 (accessed on 20 November 2025).
- Ishay, A.; Oleinikov, K.; Chertok Shacham, E. SARS-CoV-2-Vaccine-Related Endocrine Disorders: An Updated Narrative Review. Vaccines 2024, 12, 750. [Google Scholar] [CrossRef]
- Murugan, A.K.; Alzahrani, A.S. COVID-19 vaccine-induced autoimmune hyperthyroidism: Graves’ disease. Front. Immunol. 2025, 16, 1699210. [Google Scholar] [CrossRef]
- Muller, I.; Consonni, D.; Crivicich, E.; Di Marco, F.; Currò, N.; Salvi, M. Increased Risk of Thyroid Eye Disease Following COVID-19 Vaccination. J. Clin. Endocrinol. Metab. 2024, 109, 516–526. [Google Scholar] [CrossRef]
- Bartalena, L.; Kahaly, G.J.; Baldeschi, L.; Dayan, C.M.; Eckstein, A.; Marcocci, C.; Marinò, M.; Vaidya, B.; Wiersinga, W.M.; EUGOGO. The 2021 European Group on Graves’ orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves’ orbitopathy. Eur. J. Endocrinol. 2021, 185, G43–G67. [Google Scholar] [CrossRef]
- Mourits, M.P.; Prummel, M.F.; Wiersinga, W.M.; Koornneef, L. Clinical activity score as a guide in the management of patients with Graves’ ophthalmopathy. Clin. Endocrinol. 1997, 47, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Ciarmatori, N.; Quaranta Leoni, F.; Quaranta Leoni, F.M. Redefining Treatment Paradigms in Thyroid Eye Disease: Current and Future Therapeutic Strategies. J. Clin. Med. 2025, 14, 5528. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Ophthalmology. COVID-19 Vaccination and Asymmetric Thyroid Eye Disease. 2024. Available online: https://www.aao.org/eyenet/article/covid-19-vaccination-asymmetric-ted (accessed on 17 December 2025).
- Im Teoh, J.H.; Mustafa, N.; Wahab, N. New-onset Thyroid Eye Disease after COVID-19 Vaccination in a Radioactive Iodine-Treated Graves’ Disease Patient: A Case Report and Literature Review. J. ASEAN Fed. Endocr. Soc. 2023, 38, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Wang, Z. Vaccine-Associated Autoimmunity: From Clinical Signals to Immune Pathways. Vaccines 2025, 13, 1112. [Google Scholar] [CrossRef]
- Lavelle, E.C.; McEntee, C.P. Vaccine adjuvants: Tailoring innate recognition to send the right message. Immunity 2024, 57, 772–789. [Google Scholar] [CrossRef]
- Fröhlich, E.; Wahl, R. Thyroid Autoimmunity: Role of Anti-thyroid Antibodies in Thyroid and Extra-Thyroidal Diseases. Front. Immunol. 2017, 8, 521. [Google Scholar] [CrossRef]
- Fernández-Hermida, R.V.; Pinar, S.; Muruzábal, N. Manifestaciones clínicas de la oftalmopatía tiroidea. An. Sist. Sanit. Navar 2008, 31, 45–56. [Google Scholar] [CrossRef]
- Ortiz-Prado, E.; Izquierdo-Condoy, J.S.; Fernandez-Naranjo, R.; Simbaña-Rivera, K.; Vásconez-González, J.; Naranjo, E.P.L.; Cordovez, S.; Coronel, B.; Delgado-Moreira, K.; Jimbo-Sotomayor, R. A Comparative Analysis of a Self-Reported Adverse Events Analysis after Receiving One of the Available SARS-CoV-2 Vaccine Schemes in Ecuador. Vaccines 2022, 10, 1047. [Google Scholar] [CrossRef]
- Izquierdo-Condoy, J.S.; Vásconez-Gonzáles, J.; Morales-Lapo, E.; Tello-De-la-Torre, A.; Naranjo-Lara, P.; Fernández, R.; Hidalgo, M.R.; Escobar, A.; Yépez, V.H.; Díaz, A.M.; et al. Beyond the acute phase: A comprehensive literature review of long-term sequelae resulting from infectious diseases. Front. Cell. Infect. Microbiol. 2024, 14, 1293782. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Prado, E.; Ullauri Solorzano, V.; Moreira-Vera, D.; Vasconez-Gonzalez, J.; Izquierdo-Condoy, J.S. SARS-CoV-2 infection, not vaccination, the true association between COVID-19 and myocardial infarction mortality: A nationwide study in Ecuador. Int. J. Cardiol. Cardiovasc. Risk Prev. 2025, 27, 200496. [Google Scholar] [CrossRef] [PubMed]

| Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Reference Values/Units | |
|---|---|---|---|---|---|---|
| Demographics and vaccination | ||||||
| Age | 63 | 29 | 47 | 27 | 69 | years |
| Sex | Female | Female | Female | Female | Female | – |
| Total COVID-19 vaccine doses before symptom onset | 3 | 3 | 1 | 2 | 3 | doses |
| Vaccine regimen | ChAdOx1 nCoV-19 × 2; mRNA-1273 (3rd dose) | ChAdOx1 nCoV-19 × 2; BNT162b2 (3rd dose) | Ad26.COV2.S (single dose) | BNT162b2 × 2 | BNT162b2 × 3 | – |
| Days from last vaccine dose to symptom onset | 3 | 5 | 20 | 18 | 19 | days |
| Clinical presentation and past medical history | ||||||
| Main presenting symptoms | Right retro-orbital pain; ipsilateral hemicranial headache | Bilateral eye pain; frontal headache; goiter; tremor | Mild bilateral exophthalmos | Fatigue; drowsiness; low mood | Anterior neck pain; odynophagia; headache; fever (39 °C) | – |
| Exophthalmos at presentation | Bilateral, right-sided predominance | Bilateral | Unilateral (left eye, mild) | Unilateral (right eye, mild) | Bilateral (mild) | – |
| Past medical history | Primary hypothyroidism; hypertension; dyslipidemia; type 2 diabetes mellitus; nephrolithiasis; cholelithiasis | None | Hypertension | Primary hypothyroidism, well controlled for 10 years | Previous multinodular goiter (negative Anti-TPO and Anti-Tg in 2019); obesity grade I | – |
| Chronic medication | Levothyroxine 50 µg/day; losartan | None | Telmisartan 80 mg/day | Levothyroxine 88 µg/day | None | – |
| Anthropometrics and vital signs | ||||||
| Weight | 82 | 67 | 62 | 69 | 83 | kg |
| Height | 1.56 | 1.65 | 1.54 | 1.70 | 1.62 | m |
| BMI | 33.7 | 24.6 | 26.1 | 23.9 | 31.6 | kg/m2 |
| Blood pressure | 140/80 | 112/76 | 130/71 | 130/70 | 126/82 | ≈120/80 mmHg |
| Heart rate | 86 | 68 | 86 | 98 | 96 | 60–80 bpm |
| Thyroid function tests | ||||||
| TSH | 1.71 | 0.12 | 0.80 | 0.20 | 0.10 | 0.54–4.07 µIU/mL |
| Free T4 | 1.38 | 1.50 | 1.16 | 1.71 | 2.10 | 0.92–1.53 ng/dL |
| Free T3 | 2.10 | – | – | – | – | 2.0–4.4 pg/mL |
| Total T3 | – | – | 80 | – | – | (laboratory-specific range, ng/dL) |
| Thyroid autoantibodies and inflammatory markers | ||||||
| Anti-TPO | 64.0 | 1.8 | 276 | 12.0 | 576 | <35 IU/mL |
| Anti-Tg | 18.0 | 14.0 | 67 | 4.0 | 6.0 | <40 IU/mL |
| TRAb | 6.8 | 6.0 | 0.3 | 0.4 | 8.0 | <1.75 U/L |
| ESR | 10 | 69 | 82 | 70 | 136 | 0–20 mm/h |
| CRP | 18 | 14 | 26 | 14 | 18 | <5 mg/dL |
| Imaging | ||||||
| Orbital CT | Bilateral exophthalmos with right-sided predominance | Bilateral exophthalmos with increased volume of the medial rectus muscles | Left-sided exophthalmos with hypertrophy of left oblique and rectus muscles | Orbitopathy with enlargement of rectus muscles; oblique muscles unchanged | Bilateral thyroid orbitopathy with enlargement of rectus muscles in both orbits | – |
| Thyroid ultrasound | Diffuse hypoechoic goiter | Diffusely vascularized goiter on Doppler; heterogeneous echogenicity (right lobe 5 cm, left lobe 4.9 cm, isthmus 3 cm) | Normal-sized gland with features of thyroiditis | Findings consistent with chronic thyroiditis | Multinodular goiter (TI-RADS 2) | – |
| Thyroid scintigraphy (Tc-99) | – | – | – | – | Goiter with 1% uptake on Tc-99, consistent with hypofunctioning goiter and subacute thyroiditis | – |
| Ophthalmologic assessment, treatment, and outcome | ||||||
| Ophthalmologic assessment | Moderate Graves’ orbitopathy with soft-tissue involvement; right-dominant exophthalmos < 23 mm; 2 mm eyelid retraction; no diplopia | Severe TED with grade 4 exophthalmos | Mild TED | Mild TED, right eye | Mild bilateral TED | – |
| Treatment | Intravenous methylprednisolone 500 mg weekly × 6, then 250 mg weekly × 6 | Intravenous methylprednisolone 500 mg weekly × 6, then 250 mg weekly × 6 | Selenium 200 µg/day | Selenium 200 µg/day; levothyroxine dose reduced after 2 months | Betamethasone (Diprofos) 7 mg IM | – |
| Short-term outcome | Improved; asymptomatic at 4 months; thyroid function and inflammatory markers normalized; tapering of oral prednisone to 5 mg/day | Improved; 4 mm reduction in exophthalmos; TED improved from severe to moderate | Thyroid function normalized at 3 months; Anti-TPO remained elevated but decreasing; exophthalmos persisted; continued selenium | Improved; thyroid function and inflammatory markers normal; mild exophthalmos persisted; continued selenium and levothyroxine | Partial improvement at 4 months with persistent mild bilateral exophthalmos and elevated Anti-TPO; at 1-year follow-up asymptomatic with normal thyroid function and antibodies; ultrasound showed small nodular goiter with chronic thyroiditis | – |
| Estimated CAS (0–7) | Patients | CAS | Treatment | Outcome |
|---|---|---|---|---|
| CAS ≥ 3 | 1, 2, 5 | Active | Corticosteroids | Partial to significant improvement |
| CAS ≤ 2 | 3, 4 | Low activity | Selenium | Persistent mild disease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Abreu Lomba, A.; Tello-Cajiao, M.E.; Morales, M.; Martínez, A.; Salazar Moreno, M.A.; Vernaza Trujillo, D.A.; Gaibor-Pazmiño, A.; Izquierdo-Condoy, J.S. Thyroid Eye Disease Following SARS-CoV-2 Vaccination: Experience of a Case Series. Vaccines 2026, 14, 37. https://doi.org/10.3390/vaccines14010037
Abreu Lomba A, Tello-Cajiao ME, Morales M, Martínez A, Salazar Moreno MA, Vernaza Trujillo DA, Gaibor-Pazmiño A, Izquierdo-Condoy JS. Thyroid Eye Disease Following SARS-CoV-2 Vaccination: Experience of a Case Series. Vaccines. 2026; 14(1):37. https://doi.org/10.3390/vaccines14010037
Chicago/Turabian StyleAbreu Lomba, Alin, María Elena Tello-Cajiao, Mónica Morales, Alexander Martínez, Mauricio Andrés Salazar Moreno, David Alexander Vernaza Trujillo, Alice Gaibor-Pazmiño, and Juan S. Izquierdo-Condoy. 2026. "Thyroid Eye Disease Following SARS-CoV-2 Vaccination: Experience of a Case Series" Vaccines 14, no. 1: 37. https://doi.org/10.3390/vaccines14010037
APA StyleAbreu Lomba, A., Tello-Cajiao, M. E., Morales, M., Martínez, A., Salazar Moreno, M. A., Vernaza Trujillo, D. A., Gaibor-Pazmiño, A., & Izquierdo-Condoy, J. S. (2026). Thyroid Eye Disease Following SARS-CoV-2 Vaccination: Experience of a Case Series. Vaccines, 14(1), 37. https://doi.org/10.3390/vaccines14010037

