Avian Influenza Clade 2.3.4.4b: Global Impact and Summary Analysis of Vaccine Trials
Abstract
:1. Introduction
2. General Characteristics of Avian Influenza
2.1. AI in Mammalian Species
2.2. Public Health Relevance
2.3. Transmission
3. Pathogenicity, Clinical Symptoms and Lesions in Poultry
4. Economic Significance of AI
5. Vaccination of Domestic Poultry Against AI
- Recombinant vectored vaccine using the herpesvirus of turkeys (HVT);
- Reverse-engineered vaccine of H5;
- RNA particle vaccine using alphavirus RPH5;
- H5 modified DNA/plasmid DNA vaccine.
Vaccine Type | Vaccine Status | Additional Information |
---|---|---|
Inactivated AIV | licensed vaccine | licensed in multiple countries for use in chickens, geese, turkeys, ducks, and other bird species |
rHVT live vectored | licensed vaccine | licensed in the USA and Egypt for use in chickens |
rNDV | licensed vaccine | licensed in Mexico and China for use in chickens |
rFPV | licensed vaccine | licensed in the USA, Mexico and China for use in chickens, geese and Muscovy ducks |
RNA | licensed vaccine | licensed for use in ducks and geese and was used in France |
Live AIV | unlicensed vaccine | live wild-type LPAI virus or attenuated LPAI |
Live vectored | unlicensed vaccine | Replication of defective adenovirus, avian leukemia virus, duck enteritis virus, infectious laryngotracheitis virus, attenuated salmonella typhimurium, vaccinia, replication-defective, Venezuelan equine encephalitis virus |
In vitro-produced hemagglutinin | unlicensed vaccine | Baculovirus in insect cell culture, eukaryotic systems, plant or cell culture |
DNA | unlicensed vaccine | Naked DNA |
6. Clade 2.3.4.4b
7. Evaluation of Published Data
7.1. Studies Used in Summarizing the Latest Research
Vaccine Type | Number of Trials Focused on Vaccine Type | Advantages | Disadvantages | References |
---|---|---|---|---|
Inactivated vaccine | 6 | Safe as the pathogen is killed, stable, strong humoral immunity | Adjuvants are required to enhance immune response, requires multiple doses or boosters for strong immunity, induces weaker cell-mediated immunity | [100,104,105,106] |
Inactivated reverse genetics vaccine | 4 | Allows precise modifications for improved safety and immunogenicity, strong humoral immunity | Requires specialized laboratory techniques and equipment, limited cellular immunity, expensive and complex to manufacture, may still require boosters to maintain immunity | [85,86,98,107] |
Recombinant vectored vaccine | 6 | Safe, can induce both humoral and cellular immunity, no interference with maternal antibodies, potential for multivalent protection against more avian diseases, potential for rapid adaptation to emerging H5N1 clade variations | Requires a suitable viral vector, which may cause pre-existing immunity issues, expensive and complex to manufacture, virus shedding is still possible, requires specific storage | [99,100,102,108] |
Recombinant subunit vaccine | 2 | Safe, low risk of adverse reaction, allows precise modifications | Requires adjuvants and multiple doses to achieve strong immunity, less likely to induce strong cellular immunity expensive and complex to manufacture, requires specific storage | [101,102] |
Virus-Like Particle vaccine | 1 | Safe, strong immune response, can induce both humoral and cellular immunity, allows precise modifications | Requires an adjuvant or booster for long-term immunity, expensive and complex to manufacture, long development time, requires specific storage conditions | [102] |
Vaccine Type and Strains | Challenge Virus and Dose | Antigenic Relativeness of Vaccine Strain to Challenge Virus | Species and Age of Vaccination and Method | Age at Challenge and Method | Reference |
---|---|---|---|---|---|
Trivalent inactivated (clade 2.2.1.1 and 2.2.1.2.) | 2.2.1, 2.2.1.1, 2.2.1.2, 2.3.4.4b H5N8, 106 EID50/0.1 mL | 89.9% | chicken, 2 weeks old, subcutaneous | 4 wpv, intranasal | [104] |
Comparison of inactivated bivalent H5 + ND7 (2.3.4.4b) to H5 plus NDVg7 (clade 2.2.1.2, 2.3.4.4b) | H5N8, 106 EID50/0.1 mL | not evaluated | chicken, 2 weeks old, subcutaneous | 3 weeks old, intranasal | [105] |
vHVT vaccine expressing COBRA of AI or vHVT-ND-AI or vHVT-IBD-AI | H5N2 2.3.4.4A, H5N8 2.3.4.4B, H5N1 2.2., 106 EID50/0.1 mL | not evaluated | chicken, one day old subcutaneous | 4 wpv Avian influenza: intra-choanal, IBDV: eye drop route, NDV: intramuscular route | [108] |
rHVT-H5 (clade 2.2) alone or with inactivated rgH5N1 (clade 2.2.1.1 and clade 2.2.1.2) | H5N8 2.3.4.4b, 106.3 EID50/0.1 mL | not evaluated | chicken, one day old, rHVT-H5: subcutaneous, inactivated rgH5N1: intramuscular | One group, 28 days old, others 35 days old, intranasal and eye drop | [100] |
Inactivated AI H5N8 strain vaccine vs bivalent inactivated AI vaccine with H5N1 | H5N1 clade 2.2.1.2, H5N8 clade 2.3.4.4b, 106 EID50/0.1 mL | 92.9–100% | chicken, 2 weeks old, subcutaneous | 3 wpv, intranasal | [106] |
Inactivated bivalent reverse genetics vaccine clade 2.3.2.1d and 2.3.4.4b | H5NX 2.3.4.4b, 106 EID50/0.1 mL | 2.5 antigenic units distance | chicken, 5 weeks old, unspecified | not specified, unspecified route | [86] |
Inactivated reverse genetic AI vaccines H5N6 clade 2.3.4.4b | H5N6 clade 2.3.4.4b, 106 EID50/0.1 mL | homologous | chicken, 6 weeks old, intramuscular | 9 weeks old (3 wpv), intranasal | [85] |
Reverse genetics inactivated avian influenza H5N1 vaccine clade 2.3.4.4 | H5N8 clade 2.3.4.4b, 106 EID50/0.1 mL | 96.1% | chicken, 21 days old for first vaccine and 45 days old at booster (prime-boost), subcutaneous | 25 days after the booster oculonasal route | [107] |
Comparison of three vaccines 1, clade 2.3.4.4b H5 virus-like particle (some received a booster), 2, Clade 2.3.2 H5 subunit vaccine, 3, clade 2.3.4.4b H5 RNA particle vaccine | H5N8 clade 2.3.4.4b, 4.6 × 105 EID50/0.1 mL | Not evaluated | mule duck, 3 weeks old (or 1 day old if from prime and booster group), subcutaneous | 6 weeks old (3 wpv), intraocular | [102] |
rHVT-H5 (clade 2.2) | H5N8 clade 2.3.4.4b, 106 EID50/0.2 mL | 92% | chicken, 1 day old, subcutaneous | 5 weeks old, oronasal route | [99] |
Clade 2.3.2 H5-recombinant baculovirus vaccine | H5N8 clade 2.3.4.4b, 106 EID50/0.1 mL | Not evaluated | Muscovy/Pekin duck, 10 days old (and on 28 days old if booster), subcutaneous | 31 days old (if single dose) 49 days old (if double dose), intranasal route | [101] |
Trivalent inactivated H5N6, H5N8 clade 2.3.4.4b, H7N9 | H5N1, H5N6, H5N8 clade 2.3.4.4b, 106 EID50 or 100 DLD50 | similar | chicken, Shaoxing Shelduck, Shitou goose, chicken: 3 weeks old, duck and goose: 2 weeks old, intramuscular | 3 wpv, intramuscular | [103] |
H5/H7 trivalent reverse genetics inactive vaccine strains H5N6 clade 2.3.4.4b (with H5N1 clade 2.3.2.1d and H7N9) | H5N1, H5N6, H5N8 clade 2.3.4.4b, 105 EID50 | Not stated | chicken, 3 weeks old, intramuscular | 3 wpv, intramuscular | [98] |
Vaccine Type and Strain Used | HI Titer (log2) | Mortality | Clinical Signs | Shedding | Reference |
---|---|---|---|---|---|
Trivalent inactivated (clade 2.2.1.1 and 2.2.1.2.) | >6 (at 2 weeks) | 0% | 93.3% protected | shedding in 20% of vaccinated birds at 3 dpc, decreased to ~7% at 6 dpc, 1.7–2.1 log10 EID50 | [104] |
Comparison of inactivated bivalent H5 + ND7 (2.3.4.4b) to H5 plus NDVg7: clade 2.2.1.2, 2.3.4.4b | <3 | ValleyVac H5plus NDVg7: 80% protection, H5 + ND7: 20% protection | ValleyVac H5plus NDVg7: 80%, H5 + ND7: 20% protection | decreased virus shedding, H5Plus NDVg7: 1.31–2.70 log10 EID50, H5 + ND7: 3.84–6.52 log10 EID50 | [105] |
vHVT vaccine expressing COBRA of AI or vHVT-ND-AI or vHVT-IBD-AI | >6 | all survived except 1 euthanized and one vHVT-ND-AI vaccinated; Egypt/14 challenged died | all protected except one vHVT-ND-AI vaccinated, Tk/Hungary/16 challenged birds | decreased significantly, 2–6 log10 EID50 | [108] |
rHVT-H5 (clade 2.2) alone or with inactivated rgH5N1(clade 2.2.1.1 and clade 2.2.1.2) | >6 in both vaccinated groups | 50–60% if challenged at 28 days old, if challenged at 35 days old, prime-boost: 0% and rHVT-H5 alone: 20% | milder than non-vaccinated groups but not fully protected | decreased significantly, 0.35–4.95 log10, but lasted 5 days | [100] |
Inactivated AI H5N8 strain vaccine vs bivalent inactivated AI vaccine with H5N1 | >6 in week 2 in both groups | 0% | 0% in vaccinated groups | decreased significantly, 2.63–3.43 log10 no viral shedding after 7 dpc | [106] |
Inactivated bivalent reverse genetics vaccine clade 2.3.2.1d and 2.3.4.4b | >8 at full dose | all birds with full dose survived, 5 died at 1/100th dose | 0% in the group challenged with 2.3.4.4b | no viral shedding at full dose | [86] |
Inactivated reverse genetic AI vaccine H5N6 clade 2.3.4.4b | >8 at full dose | 0% at full and 1/10th dose | 0% at full and 1/10th dose | no viral shedding at full or 1/10th dose | [85] |
Reverse genetics inactivated avian influenza H5N1 vaccine clade 2.3.4.4 | not evaluated in log form, GM: 1713, ±1GSD: 800–4003 | 0% | 0% | 20% shed at low levels first 3 dpc, 2.73–3.08 log10 EID50 | [107] |
Comparison of three vaccines 1, clade 2.3.4.4b H5 virus-like particle (some received a booster), 2, Clade 2.3.2 H5 subunit vaccine, 3, clade 2.3.4.4b H5 RNA particle vaccine | vaccine 1: 4, vaccine 1 + booster: 9, vaccine 2: not positive, vaccine 3: 3 | vaccine 1: 1 died, vaccine 3: 1 died | vaccine 1: 7 showed CS, vaccine 1 boosted: 3/9, vaccine 2: 4/10, vaccine 3: 3/10 | vaccine 1: 3 shed up to 3 dpc, vaccine 1 boosted: 10% to day 3, vaccine 2: all shedding up to 15 days, vaccine 3: 3 ducks up to day 7, 1–6 log10 | [102] |
rHVT-H5 (clade 2.2) | range of 2.5–7 | 0% | 0–10% showed CS | 7/20 birds in direct challenge shed 2–4 log10 EID50, no shed in the contact group | [99] |
Clade 2.3.2 H5-recombinant baculovirus vaccine | >4 in Muscovy, >4 in Pekin | 10% Muscovy duck (single dose), 0% Muscovy in double dose, 0% Pekin in both single and double dose | 100% Muscovy: depression (single dose), 0% Pekin | Muscovy: no shedding day 7, Pekin: 0% | [101] |
Trivalent inactivated H5N6, H5N8 clade 2.3.4.4b, H7N9 | >8 in chicken, >6 in duck, >4 in goose | 100% protection | 100% protection | 0% | [103] |
H5/H7 trivalent reverse genetics inactive vaccine strains H5N6 clade 2.3.4.4b (with H5N1 clade 2.3.2.1d and H7N9) | 2.4 in bivalent, 7.6 in trivalent | bivalent: 40–50% died except in H7N9 challenged group, trivalent: complete protection | bivalent: not stated, trivalent: complete protection | bivalent: shed 2–5log10 EID50 titers of viruses through both the oropharynx and cloaca, trivalent: no shedding | [98] |
7.2. Clinical Signs
7.3. Mortality
7.4. HI Titer and Virus Shedding
7.5. Maternally Derived Antibodies (ABs)
7.6. Antigenically Distant Field Viruses and Vaccine Strains
7.6.1. Single Dose vs. Multiple Dose
7.6.2. Monovalent vs. Multivalent
7.6.3. Vaccine Type
7.7. Poultry Species Considerations
7.8. Farm Conditions vs. Lab Conditions
7.9. Method of Vaccination
7.9.1. Differentiating Infected from Vaccinated Animals (DIVA)
Reasons to Vaccinate | Reasons for Not Vaccinating |
---|---|
Has been effective in eradicating HPAI outbreaks | Other methods have been successful in eradication |
Decrease in morbidity | Risk of silent infections and shedders |
Decrease in mortality | Difficult to distinguish infected from non-infected (without DIVA protocol) |
Decrease in viral shedding | Vaccine costs |
If the flock is at high risk (emergency) | Trade restrictions |
- | Encourages leniency in biosecurity |
7.9.2. Incentives for Farmers
7.9.3. Additional Methods of Prevention
- Maintaining a closed flock or implementing quarantine for new flock members;
- Reducing stocking density;
- Preventing the presence of other animals on the farm;
- Implementing proper waste disposal practices;
- Limiting farm visitors and ensuring they do not introduce potential hazards into poultry houses, such as phones, jewelry, or paper handkerchiefs;
- Providing farmers and staff with accessible education and training on AI prevention.
8. Future Directions
8.1. Establishing National and Regional Vaccination Protocols
8.2. Investing in Field Trials
8.3. Development of Universal Avian Influenza Vaccines
8.4. Implementation of DIVA Strategies
8.5. Integration of Vaccination with Comprehensive Control Measures
8.6. Addressing Antigenic Drift and Shift
8.7. Enhancing Global Surveillance and Data Sharing
8.8. Enhancing Farmer Education and Subsidies
8.9. Establishing Emergency Vaccine Banks
8.10. Public Health Preparedness and Human Vaccination
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kilbourne, E.D. Influenza; Springer: Boston, MA, USA, 1987; ISBN 978-1-4684-5241-9. [Google Scholar]
- Swayne, D.E.; Suarez, D.L.; Sims, L.D. Influenza. In Diseases of Poultry, 14th ed.; Swayne, D.E., Boulianne, M., Logue, C.M., McDougald, L.R., Nair, V., Suarez, D.L., Wit, S., Grimes, T., Johnson, D., Kromm, M., et al., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; pp. 210–256. [Google Scholar]
- Lvov, D.K.; Zdanov, V.M.; Sazonov, A.A.; Braude, N.A.; Vladimirtceva, E.A.; Agafonova, L.V.; Skljanskaja, E.I.; Kaverin, N.V.; Reznik, V.I.; Pysina, T.V.; et al. Comparison of Influenza Viruses Isolated from Man and from Whales. Bull. World Health Organ. 1978, 56, 923–930. [Google Scholar] [PubMed]
- Englund, L.; Klingeborn, B.; Mejerland, T. Avian Influenza a Virus Causing an Outbreak of Contagious Interstitial Pneumonia in Mink. Acta Vet. Scand. 1986, 27, 497–504. [Google Scholar] [CrossRef]
- Webster, R.G.; Bean, W.J.; Gorman, O.T.; Chambers, T.M.; Kawaoka, Y. Evolution and Ecology of Influenza A Viruses. Microbiol. Rev. 1992, 56, 152–179. [Google Scholar] [CrossRef]
- Burrough, E.R.; Magstadt, D.R.; Petersen, B.; Timmermans, S.J.; Gauger, P.C.; Zhang, J.; Siepker, C.; Mainenti, M.; Li, G.; Thompson, A.C.; et al. Highly Pathogenic Avian Influenza A(H5N1) Clade 2.3.4.4b Virus Infection in Domestic Dairy Cattle and Cats, United States, 2024. Emerg. Infect. Dis. 2024, 30, 1335–1343. [Google Scholar] [CrossRef] [PubMed]
- Perez, D.R.; Carnaccini, S.; Cardenas-Garcia, S.; Ferreri, L.M.; Santos, J.; Rajao, D.S. Avian Influenza Virus. In Avian Virology: Current Research and Future Trends; Samal, S.K., Ed.; Caister Academic Press: Wymondham, UK, 2019; pp. 1–41. [Google Scholar]
- Swayne, D.E.; Halvorson, D.A. Influenza. In Diseases of Poultry, 12th ed.; Saif, Y.M., Ed.; Blackwell Publishing Ltd.: Ames, IA, USA, 2008; pp. 153–184. [Google Scholar]
- Pantin-Jackwood, M.J.; Swayne, D.E. Pathogenesis and Pathobiology of Avian Influenza Virus Infection in Birds. Rev. Sci. Tech. 2009, 28, 113–136. [Google Scholar] [CrossRef]
- Stoute, S.; Crossley, B.; Shivaprasad, H.L. Study of an Outbreak of Highly Pathogenic Avian Influenza H5N8 in Commercial Pekin Ducks (Anas Platyrhynchos Domesticus) in California. Avian Dis. 2018, 62, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Monne, I.; Fusaro, A.; Nelson, M.I.; Bonfanti, L.; Mulatti, P.; Hughes, J.; Murcia, P.R.; Schivo, A.; Valastro, V.; Moreno, A.; et al. Emergence of a Highly Pathogenic Avian Influenza Virus from a Low-Pathogenic Progenitor. J. Virol. 2014, 88, 4375–4388. [Google Scholar] [CrossRef]
- Lee, D.-H.; Criado, M.F.; Swayne, D.E. Pathobiological Origins and Evolutionary History of Highly Pathogenic Avian Influenza Viruses. Cold Spring Harb. Perspect. Med. 2021, 11, a038679. [Google Scholar] [CrossRef]
- Mittal, N.; Medhi, B. The Bird Flu: A New Emerging Pandemic Threat and Its Pharmacological Intervention. Int. J. Health Sci. 2007, 1, 277–283. [Google Scholar]
- Stallknecht, D.E.; Shane, S.M. Host Range of Avian Influenza Virus in Free-Living Birds. Vet. Res. Commun. 1988, 12, 125–141. [Google Scholar] [CrossRef]
- Koopmans, M.; Wilbrink, B.; Conyn, M.; Natrop, G.; van der Nat, H.; Vennema, H.; Meijer, A.; van Steenbergen, J.; Fouchier, R.; Osterhaus, A.; et al. Transmission of H7N7 Avian Influenza A Virus to Human Beings during a Large Outbreak in Commercial Poultry Farms in the Netherlands. Lancet 2004, 363, 587–593. [Google Scholar] [CrossRef]
- Klopfleisch, R.; Wolf, P.U.; Wolf, C.; Harder, T.; Starick, E.; Niebuhr, M.; Mettenleiter, T.C.; Teifke, J.P. Encephalitis in a Stone Marten (Martes Foina) after Natural Infection with Highly Pathogenic Avian Influenza Virus Subtype H5N1. J. Comp. Pathol. 2007, 137, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Cardona, C.J.; Xing, Z.; Sandrock, C.E.; Davis, C.E. Avian Influenza in Birds and Mammals. Comp. Immunol. Microbiol. Infect. Dis. 2009, 32, 255–273. [Google Scholar] [CrossRef] [PubMed]
- CDC. Cambodia: Two Fatal Human Influenza A/H5N1 (Bird Flu) Virus Infection. Available online: https://www.cdc.gov/bird-flu/spotlights/cambodia-two-fatal-h5n1.html (accessed on 27 May 2024).
- Plaza, P.I.; Gamarra-Toledo, V.; Euguí, J.R.; Lambertucci, S.A. Recent Changes in Patterns of Mammal Infection with Highly Pathogenic Avian Influenza A(H5N1) Virus Worldwide. Emerg. Infect. Dis. 2024, 30, 444–452. [Google Scholar] [CrossRef]
- Rimmelzwaan, G.F.; van Riel, D.; Baars, M.; Bestebroer, T.M.; van Amerongen, G.; Fouchier, R.A.M.; Osterhaus, A.D.M.E.; Kuiken, T. Influenza A Virus (H5N1) Infection in Cats Causes Systemic Disease with Potential Novel Routes of Virus Spread within and between Hosts. Am. J. Pathol. 2006, 168, 176–183. [Google Scholar] [CrossRef]
- Ly, H. Highly Pathogenic Avian Influenza H5N1 Virus Infections of Dairy Cattle and Livestock Handlers in the United States of America. Virulence 2024, 15, 2343931. [Google Scholar] [CrossRef] [PubMed]
- Brown, I.H. The Pig as an Intermediate Host for Influenza A Viruses between Birds and Humans. Int. Congr. Ser. 2001, 1219, 173–178. [Google Scholar] [CrossRef]
- Barbachano-Guerrero, A.; Perez, D.R.; Sawyer, S.L. How Avian Influenza Viruses Spill over to Mammals. eLife 2023, 12, e86051. [Google Scholar] [CrossRef]
- Graaf, A.; Piesche, R.; Sehl-Ewert, J.; Grund, C.; Pohlmann, A.; Beer, M.; Harder, T. Low Susceptibility of Pigs against Experimental Infection with HPAI Virus H5N1 Clade 2.3.4.4b. Emerg. Infect. Dis. 2023, 29, 1492–1495. [Google Scholar] [CrossRef]
- Hennig, C.; Graaf, A.; Petric, P.P.; Graf, L.; Schwemmle, M.; Beer, M.; Harder, T. Are Pigs Overestimated as a Source of Zoonotic Influenza Viruses? Porc. Health Manag. 2022, 8, 30. [Google Scholar] [CrossRef]
- Graziosi, G.; Lupini, C.; Catelli, E.; Carnaccini, S. Highly Pathogenic Avian Influenza (HPAI) H5 Clade 2.3.4.4b Virus Infection in Birds and Mammals. Animals 2024, 14, 1372. [Google Scholar] [CrossRef] [PubMed]
- Tomás, G.; Marandino, A.; Panzera, Y.; Rodríguez, S.; Wallau, G.L.; Dezordi, F.Z.; Pérez, R.; Bassetti, L.; Negro, R.; Williman, J.; et al. Highly Pathogenic Avian Influenza H5N1 Virus Infections in Pinnipeds and Seabirds in Uruguay: Implications for Bird–Mammal Transmission in South America. Virus Evol. 2024, 10, veae031. [Google Scholar] [CrossRef]
- Szablewski, C.M.; Iwamoto, C.; Olsen, S.J.; Greene, C.M.; Duca, L.M.; Davis, C.T.; Coggeshall, K.C.; Davis, W.W.; Emukule, G.O.; Gould, P.L.; et al. Reported Global Avian Influenza Detections among Humans and Animals during 2013-2022: Comprehensive Review and Analysis of Available Surveillance Data. JMIR Public Health Surveill. 2023, 9, e46383. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.; Wong, N.S.; Leung, C.C. Exposure to Avian Influenza H7N9 in Farms and Wet Markets. Lancet 2013, 381, 1815. [Google Scholar] [CrossRef]
- Yuan, J.; Tang, X.; Yang, Z.; Wang, M.; Zheng, B. Enhanced Disinfection and Regular Closure of Wet Markets Reduced the Risk of Avian Influenza A Virus Transmission. Clin. Infect. Dis. 2014, 58, 1037–1038. [Google Scholar] [CrossRef] [PubMed]
- Virlogeux, V.; Feng, L.; Tsang, T.K.; Jiang, H.; Fang, V.J.; Qin, Y.; Wu, P.; Wang, X.; Zheng, J.; Lau, E.H.Y.; et al. Evaluation of Animal-to-Human and Human-to-Human Transmission of Influenza A (H7N9) Virus in China, 2013–2015. Sci. Rep. 2018, 8, 552. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Factsheet on A(H5N1). Available online: https://www.ecdc.europa.eu/en/zoonotic-influenza/facts/factsheet-h5n1 (accessed on 30 May 2024).
- European Centre for Disease Prevention and Control. Factsheet on A(H7N9). Available online: https://www.ecdc.europa.eu/en/zoonotic-influenza/facts/faq-H7N9 (accessed on 30 May 2024).
- Gibbs, M.J.; Gibbs, A.J. Was the 1918 Pandemic Caused by a Bird Flu? Nature 2006, 440, E8. [Google Scholar] [CrossRef]
- Sutton, T.C. The Pandemic Threat of Emerging H5 and H7 Avian Influenza Viruses. Viruses 2018, 10, 461. [Google Scholar] [CrossRef]
- Shi, J.; Deng, G.; Liu, P.; Zhou, J.; Guan, L.; Li, W.; Li, X.; Guo, J.; Wang, G.; Fan, J.; et al. Isolation and Characterization of H7N9 Viruses from Live Poultry Markets—Implication of the Source of Current H7N9 Infection in Humans. Chin. Sci. Bull. 2013, 58, 1857–1863. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, W.; Yang, S.; Wu, N.; Gao, H.; Sheng, J.; Yao, H.; Wo, J.; Fang, Q.; Cui, D.; et al. Human Infections with the Emerging Avian Influenza A H7N9 Virus from Wet Market Poultry: Clinical Analysis and Characterisation of Viral Genome. Lancet 2013, 381, 1916–1925. [Google Scholar] [CrossRef]
- Fan, M.; Huang, B.; Wang, A.; Deng, L.; Wu, D.; Lu, X.; Zhao, Q.; Xu, S.; Havers, F.; Wang, Y.; et al. Human Influenza A(H7N9) Virus Infection Associated with Poultry Farm, Northeastern China. Emerg. Infect. Dis. 2014, 20, 1902–1905. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Halloran, M.E.; Sugimoto, J.D.; Longini, I.M. Detecting Human-to-Human Transmission of Avian Influenza A (H5N1). Emerg. Infect. Dis. 2007, 13, 1348–1353. [Google Scholar] [CrossRef]
- Wang, H.; Feng, Z.; Shu, Y.; Yu, H.; Zhou, L.; Zu, R.; Huai, Y.; Dong, J.; Bao, C.; Wen, L.; et al. Probable Limited Person-to-Person Transmission of Highly Pathogenic Avian Influenza A (H5N1) Virus in China. Lancet 2008, 371, 1427–1434. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhu, Y.; Zhao, B.; Li, J.; Liu, L.; Gu, K.; Zhang, W.; Su, H.; Teng, Z.; Tang, S.; et al. Limited Human-to-Human Transmission of Avian Influenza A(H7N9) Virus, Shanghai, China, March to April 2013. Eurosurveillance 2014, 19, 20838. [Google Scholar] [CrossRef] [PubMed]
- Richard, M.; Fouchier, R.A.M. Influenza A Virus Transmission via Respiratory Aerosols or Droplets as It Relates to Pandemic Potential. FEMS Microbiol. Rev. 2016, 40, 68–85. [Google Scholar] [CrossRef]
- Herfst, S.; Schrauwen, E.J.A.; Linster, M.; Chutinimitkul, S.; de Wit, E.; Munster, V.J.; Sorrell, E.M.; Bestebroer, T.M.; Burke, D.F.; Smith, D.J.; et al. Airborne Transmission of Influenza A/H5N1 Virus between Ferrets. Science 2012, 336, 1534–1541. [Google Scholar] [CrossRef]
- Zhao, Y.; Richardson, B.; Takle, E.; Chai, L.; Schmitt, D.; Xin, H. Airborne Transmission May Have Played a Role in the Spread of 2015 Highly Pathogenic Avian Influenza Outbreaks in the United States. Sci. Rep. 2019, 9, 11755. [Google Scholar] [CrossRef]
- Spekreijse, D.; Bouma, A.; Koch, G.; Stegeman, J.A. Airborne Transmission of a Highly Pathogenic Avian Influenza Virus Strain H5N1 between Groups of Chickens Quantified in an Experimental Setting. Vet. Microbiol. 2011, 152, 88–95. [Google Scholar] [CrossRef]
- James, J.; Warren, C.J.; De Silva, D.; Lewis, T.; Grace, K.; Reid, S.M.; Falchieri, M.; Brown, I.H.; Banyard, A.C. The Role of Airborne Particles in the Epidemiology of Clade 2.3.4.4b H5N1 High Pathogenicity Avian Influenza Virus in Commercial Poultry Production Units. Viruses 2023, 15, 1002. [Google Scholar] [CrossRef]
- Tsukamoto, K.; Imada, T.; Tanimura, N.; Okamatsu, M.; Mase, M.; Mizuhara, T.; Swayne, D.; Yamaguchi, S. Impact of Different Husbandry Conditions on Contact and Airborne Transmission of H5N1 Highly Pathogenic Avian Influenza Virus to Chickens. Avian Dis. 2007, 51, 129–132. [Google Scholar] [CrossRef]
- Elbers, A.R.W.; Gonzales, J.L. Quantification of Visits of Wild Fauna to a Commercial Free-Range Layer Farm in the Netherlands Located in an Avian Influenza Hot-Spot Area Assessed by Video-Camera Monitoring. Transbound. Emerg. Dis. 2020, 67, 661–677. [Google Scholar] [CrossRef] [PubMed]
- Hill, N.J.; Bishop, M.A.; Trovão, N.S.; Ineson, K.M.; Schaefer, A.L.; Puryear, W.B.; Zhou, K.; Foss, A.D.; Clark, D.E.; MacKenzie, K.G.; et al. Ecological Divergence of Wild Birds Drives Avian Influenza Spillover and Global Spread. PLoS Pathog. 2022, 18, e1010062. [Google Scholar] [CrossRef] [PubMed]
- Swayne, D.E. (Ed.) Avian Influenza, 1st ed.; Blackwell Publishing: Ames, IA, USA, 2008; ISBN 9780813820477. [Google Scholar]
- Swayne, D.E. (Ed.) Animal Influenza, 2nd ed.; John Wiley & Sons, Inc.: Ames, IA, USA, 2016; ISBN 9781118907467. [Google Scholar]
- Kovács, L.; Klaucke, C.R.; Farkas, M.; Bakony, M.; Jurkovich, V.; Könyves, L. The Correlation between On-Farm Biosecurity and Animal Welfare Indices in Large-Scale Turkey Production. Poult. Sci. 2025, 104, 104598. [Google Scholar] [CrossRef]
- Basuno, E.; Yusdja, Y.; Ilham, N. Socio-Economic Impacts of Avian Influenza Outbreaks on Small-Scale Producers in Indonesia. Transbound. Emerg. Dis. 2010, 57, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Pramuwidyatama, M.G.; Indrawan, D.; Boeters, M.; Poetri, O.N.; Saatkamp, H.W.; Hogeveen, H. Economic Impact of Highly Pathogenic Avian Influenza Outbreaks in Western Java Smallholder Broiler Farms. Prev. Vet. Med. 2023, 212, 105833. [Google Scholar] [CrossRef]
- Sartore, S.; Bonfanti, L.; Lorenzetto, M.; Cecchinato, M.; Marangon, S. The Effects of Control Measures on the Economic Burden Associated with Epidemics of Avian Influenza in Italy. Poult. Sci. 2010, 89, 1115–1121. [Google Scholar] [CrossRef]
- World Organisation for Animal Health. Chapter 3.3.4. Avian Influenza (Infection with Avian Influenza Viruses). In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals; World Organization for Animal Health: Paris, France, 2021. [Google Scholar]
- Channa, A.A.; Tariq, M.; Nizamani, Z.A.; Kalhoro, N.H. Prevalence of Avian Influenza H5, H7, and H9 Viruses in Commercial Layers in Karachi, Pakistan. Iran. J. Vet. Res. 2021, 22, 352–355. [Google Scholar] [CrossRef]
- Rehman, S.; Effendi, M.H.; Witaningruma, A.M.; Nnabuikeb, U.E.; Bilal, M.; Abbas, A.; Abbas, R.Z.; Hussain, K. Avian Influenza (H5N1) Virus, Epidemiology and Its Effects on Backyard Poultry in Indonesia: A Review. F1000Research 2023, 11, 1321. [Google Scholar] [CrossRef]
- Swayne, D.E. Impact of Vaccines and Vaccination on Global Control of Avian Influenza. Avian Dis. 2012, 56, 818–828. [Google Scholar] [CrossRef]
- Govindaraj, G.; Sridevi, R.; Nandakumar, S.N.; Vineet, R.; Rajeev, P.; Binu, M.K.; Balamurugan, V.; Rahman, H. Economic Impacts of Avian Influenza Outbreaks in Kerala, India. Transbound. Emerg. Dis. 2018, 65, e361–e372. [Google Scholar] [CrossRef]
- Kleyheeg, E.; Slaterus, R.; Bodewes, R.; Rijks, J.M.; Spierenburg, M.A.H.; Beerens, N.; Kelder, L.; Poen, M.J.; Stegeman, J.A.; Fouchier, R.A.M.; et al. Deaths among Wild Birds during Highly Pathogenic Avian Influenza A(H5N8) Virus Outbreak, the Netherlands. Emerg. Infect. Dis. 2017, 23, 2050–2054. [Google Scholar] [CrossRef] [PubMed]
- Lambert, S.; Durand, B.; Andraud, M.; Delacourt, R.; Scoizec, A.; Le Bouquin, S.; Rautureau, S.; Bauzile, B.; Guinat, C.; Fourtune, L.; et al. Two Major Epidemics of Highly Pathogenic Avian Influenza Virus H5N8 and H5N1 in Domestic Poultry in France, 2020–2022. Transbound. Emerg. Dis. 2022, 69, 3160–3166. [Google Scholar] [CrossRef]
- Nishiguchi, A.; Yamamoto, T.; Tsutsui, T.L.; Sugizaki, T.; Mase, M.; Tsukamoto, K.; Ito, T.; Terakado, N. Control of an Outbreak of Highly Pathogenic Avian Influenza, Caused by the Virus Sub-Type H5N1, in Japan in 2004. Rev. Sci. Tech. 2005, 24, 933–944. [Google Scholar] [PubMed]
- Kapczynski, D.R.; Pantin-Jackwood, M.; Guzman, S.G.; Ricardez, Y.; Spackman, E.; Bertran, K.; Suarez, D.L.; Swayne, D.E. Characterization of the 2012 Highly Pathogenic Avian Influenza H7N3 Virus Isolated from Poultry in an Outbreak in Mexico: Pathobiology and Vaccine Protection. J. Virol. 2013, 87, 9086–9096. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Berhane, Y.; Dubé, C.; Liang, B.; Pasick, J.; VanDomselaar, G.; Alexandersen, S. Epidemiological and Evolutionary Inference of the Transmission Network of the 2014 Highly Pathogenic Avian Influenza H5N2 Outbreak in British Columbia, Canada. Sci. Rep. 2016, 6, 30858. [Google Scholar] [CrossRef]
- Amen, O.; Vemula, S.V.; Zhao, J.; Ibrahim, R.; Hussein, A.; Hewlett, I.K.; Moussa, S.; Mittal, S.K. Identification and Characterization of a Highly Pathogenic H5N1 Avian Influenza A Virus during an Outbreak in Vaccinated Chickens in Egypt. Virus Res. 2015, 210, 337–343. [Google Scholar] [CrossRef]
- Elsobky, Y.; El Afandi, G.; Salama, A.; Byomi, A.; Omar, M.; Eltholth, M. Spatiotemporal Analysis of Highly Pathogenic Avian Influenza (H5N1) Outbreaks in Poultry in Egypt (2006 to 2017). BMC Vet. Res. 2022, 18, 174. [Google Scholar] [CrossRef]
- Bisset, A.T.; Hoyne, G.F. An Outbreak of Highly Pathogenic Avian Influenza (H7N7) in Australia and the Potential for Novel Influenza A Viruses to Emerge. Microorganisms 2021, 9, 1639. [Google Scholar] [CrossRef]
- Awada, L.; Tizzani, P.; Caceres, P.; Lambergeon, N.; Melens, P. Current Animal Health Situation Worldwide: Analysis of Events and Trends; World Organisation for Animal Health: Paris, France, 2022. [Google Scholar]
- Centers for Disease Control and Prevention. USDA Reported H5N1 Bird Flu Detections in Poultry. Available online: https://www.cdc.gov/bird-flu/situation-summary/data-map-commercial.html (accessed on 25 January 2025).
- European Commission; European Union. Reference Laboratory for Avian Influenza and Newcastle Disease. EURL Avian Flu Data Portal. Available online: https://eurlaidata.izsvenezie.it/epidemio.php (accessed on 25 January 2025).
- Swayne, D.E.; Pavade, G.; Hamilton, K.; Vallat, B.; Miyagishima, K. Assessment of National Strategies for Control of High-Pathogenicity Avian Influenza and Low-Pathogenicity Notifiable Avian Influenza in Poultry, with Emphasis on Vaccines and Vaccination. Rev. Sci. Tech. 2011, 30, 839–870. [Google Scholar] [CrossRef]
- Pramuwidyatama, M.G.; Indrawan, D.; Saatkamp, H.W.; Hogeveen, H. Smallholder Broiler Farmers’ Characteristics to Uptake Measures against Highly Pathogenic Avian Influenza in Western Java. Front. Vet. Sci. 2022, 9, 727006. [Google Scholar] [CrossRef]
- Delgado, C.L.; Mckenzie, P.; de Haan, C.; Mcleod, A.; Rivieve-Cinnamond, A.; Narrod, C. Enhancing Control of Highly Pathogenic Avian Influenza in Developing Countries Through Compensation: Issues and Good Practice; World Bank: Washington, DC, USA, 2006. [Google Scholar]
- Farkas, M.; Könyves, L.; Csorba, S.; Farkas, Z.; Józwiák, Á.; Süth, M.; Kovács, L. Magyarország Nagylétszámú Baromfitelepeinek Járványvédelmi Helyzete a Nébih Országos Járványvédelmi Központ és a Baromfi Termék Tanács Járványvédelmi Auditáló Rendszer Adatai Alapján a 2021–2022-Es Időszakban. MÁL 2024, 146, 723–742. [Google Scholar] [CrossRef]
- Longworth, N.; Mourits, M.C.M.; Saatkamp, H.W. Economic Analysis of HPAI Control in the Netherlands I: Epidemiological Modelling to Support Economic Analysis. Transbound. Emerg. Dis. 2014, 61, 199–216. [Google Scholar] [CrossRef] [PubMed]
- Longworth, N.; Mourits, M.C.M.; Saatkamp, H.W. Economic Analysis of HPAI Control in the Netherlands II: Comparison of Control Strategies. Transbound. Emerg. Dis. 2014, 61, 217–232. [Google Scholar] [CrossRef] [PubMed]
- Humphries-Waa, K.; Drake, T.; Huszar, A.; Liverani, M.; Borin, K.; Touch, S.; Srey, T.; Coker, R. Human H5N1 Influenza Infections in Cambodia 2005–2011: Case Series and Cost-of-Illness. BMC Public Health 2013, 13, 549. [Google Scholar] [CrossRef] [PubMed]
- Swayne, D.E.; Spackman, E. Current Status and Future Needs in Diagnostics and Vaccines for High Pathogenicity Avian Influenza. Dev. Biol. 2013, 135, 79–94. [Google Scholar] [CrossRef]
- EFSA Panel on Animal Health and Animal Welfare (AHAW); European Union Reference Laboratory for Avian Influenza; Nielsen, S.S.; Alvarez, J.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Gortázar, C.; et al. Vaccination of Poultry against Highly Pathogenic Avian Influenza—Part 2. Surveillance and Mitigation Measures. EFSA J. 2024, 22, e8755. [Google Scholar] [CrossRef] [PubMed]
- Mosaad, Z.; Elhusseiny, M.H.; Zanaty, A.; Fathy, M.M.; Hagag, N.M.; Mady, W.H.; Said, D.; Elsayed, M.M.; Erfan, A.M.; Rabie, N.; et al. Emergence of Highly Pathogenic Avian Influenza A Virus (H5N1) of Clade 2.3.4.4b in Egypt, 2021–2022. Pathogens 2023, 12, 90. [Google Scholar] [CrossRef]
- Abdelwhab, E.M.; Hassan, M.K.; Abdel-Moneim, A.S.; Naguib, M.M.; Mostafa, A.; Hussein, I.T.M.; Arafa, A.; Erfan, A.M.; Kilany, W.H.; Agour, M.G.; et al. Introduction and Enzootic of A/H5N1 in Egypt: Virus Evolution, Pathogenicity and Vaccine Efficacy Ten Years on. Infect. Genet. Evol. 2016, 40, 80–90. [Google Scholar] [CrossRef]
- Kwon, J.-H.; Criado, M.F.; Killmaster, L.; Ali, M.Z.; Giasuddin, M.; Samad, M.A.; Karim, M.R.; Brum, E.; Hasan, M.Z.; Lee, D.-H.; et al. Efficacy of Two Vaccines against Recent Emergent Antigenic Variants of Clade 2.3.2.1a Highly Pathogenic Avian Influenza Viruses in Bangladesh. Vaccine 2021, 39, 2824–2832. [Google Scholar] [CrossRef]
- Rimi, N.A.; Hassan, M.Z.; Chowdhury, S.; Rahman, M.; Sultana, R.; Biswas, P.K.; Debnath, N.C.; Islam, S.S.; Ross, A.G. A Decade of Avian Influenza in Bangladesh: Where Are We Now? Trop. Med. Infect. Dis. 2019, 4, 119. [Google Scholar] [CrossRef]
- Kang, Y.M.; Cho, H.K.; Kim, H.M.; Lee, M.H.; To, T.L.; Kang, H.M. Protective Efficacy of Vaccines of the Korea National Antigen Bank against the Homologous H5Nx Clade 2.3.2.1 and Clade 2.3.4.4 Highly Pathogenic Avian Influenza Viruses. Vaccine 2020, 38, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Cho, H.K.; Kang, Y.M.; Sagong, M.; An, S.; Kim, S.; Lee, Y.J.; Kang, H.M. Protective Efficacy of a Bivalent H5 Influenza Vaccine Candidate against Both Clades 2.3.2.1 and 2.3.4.4 High Pathogenic Avian Influenza Viruses in SPF Chickens. Vaccine 2023, 41, 2816–2823. [Google Scholar] [CrossRef]
- Animal and Plant Health Inspection Service. Licensed Veterinary Biological Product Information. Available online: https://www.aphis.usda.gov/veterinary-biologics/licensed-products (accessed on 12 June 2024).
- Hautefeuille, C.; Azzouguen, B.; Mouchel, S.; Dauphin, G.; Peyre, M. Evaluation of Vaccination Strategies to Control an Avian Influenza Outbreak in French Poultry Production Networks Using EVACS Tool. Prev. Vet. Med. 2020, 184, 105129. [Google Scholar] [CrossRef] [PubMed]
- Pyankova, O.G.; Susloparov, I.M.; Moiseeva, A.A.; Kolosova, N.P.; Onkhonova, G.S.; Danilenko, A.V.; Vakalova, E.V.; Shendo, G.L.; Nekeshina, N.N.; Noskova, L.N.; et al. Isolation of Clade 2.3.4.4b A(H5N8), a Highly Pathogenic Avian Influenza Virus, from a Worker during an Outbreak on a Poultry Farm, Russia, December 2020. Eurosurveillance 2021, 26, 2100439. [Google Scholar] [CrossRef]
- Kwon, J.-H.; Bertran, K.; Lee, D.-H.; Criado, M.F.; Killmaster, L.; Pantin-Jackwood, M.J.; Swayne, D.E. Diverse Infectivity, Transmissibility, and Pathobiology of Clade 2.3.4.4 H5Nx Highly Pathogenic Avian Influenza Viruses in Chickens. Emerg. Microbes Infect. 2023, 12, 2218945. [Google Scholar] [CrossRef]
- Sagong, M.; Lee, Y.-N.; Song, S.; Cha, R.M.; Lee, E.-K.; Kang, Y.-M.; Cho, H.-K.; Kang, H.-M.; Lee, Y.-J.; Lee, K.-N. Emergence of Clade 2.3.4.4b Novel Reassortant H5N1 High Pathogenicity Avian Influenza Virus in South Korea during Late 2021. Transbound. Emerg. Dis. 2022, 69, e3255–e3260. [Google Scholar] [CrossRef]
- Cui, P.; Shi, J.; Wang, C.; Zhang, Y.; Xing, X.; Kong, H.; Yan, C.; Zeng, X.; Liu, L.; Tian, G.; et al. Global Dissemination of H5N1 Influenza Viruses Bearing the Clade 2.3.4.4b HA Gene and Biologic Analysis of the Ones Detected in China. Emerg. Microbes Infect. 2022, 11, 1693–1704. [Google Scholar] [CrossRef] [PubMed]
- World Organisation for Animal Health. World Animal Health Information System. Quantitative Data Dashboard. Available online: https://wahis.woah.org/#/dashboards/qd-dashboard (accessed on 25 January 2025).
- World Organisation for Animal Health. World Animal Health Information System. Animal Disease Events. Available online: https://wahis.woah.org/#/event-management (accessed on 25 January 2025).
- Briand, F.-X.; Souchaud, F.; Pierre, I.; Beven, V.; Hirchaud, E.; Hérault, F.; Planel, R.; Rigaudeau, A.; Bernard-Stoecklin, S.; Van der Werf, S.; et al. Highly Pathogenic Avian Influenza A(H5N1) Clade 2.3.4.4b Virus in Domestic Cat, France, 2022. Emerg. Infect. Dis. 2023, 29, 1696–1698. [Google Scholar] [CrossRef]
- Cronk, B.D.; Caserta, L.C.; Laverack, M.; Gerdes, R.S.; Hynes, K.; Hopf, C.R.; Fadden, M.A.; Nakagun, S.; Schuler, K.L.; Buckles, E.L.; et al. Infection and Tissue Distribution of Highly Pathogenic Avian Influenza A Type H5N1 (Clade 2.3.4.4b) in Red Fox Kits (Vulpes Vulpes). Emerg. Microbes Infect. 2023, 12, 2249554. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Zeng, X.; Chen, X.; Ma, S.; Wu, J.; Bao, H.; Pan, S.; Liu, Y.; Deng, G.; Shi, J.; Chen, P.; et al. Protective Efficacy of an H5/H7 Trivalent Inactivated Vaccine Produced from Re-11, Re-12, and H7-Re2 Strains against Challenge with Different H5 and H7 Viruses in Chickens. J. Integr. Agric. 2020, 19, 2294–2300. [Google Scholar] [CrossRef]
- Palya, V.; Tatár-Kis, T.; Walkóné Kovács, E.; Kiss, I.; Homonnay, Z.; Gardin, Y.; Kertész, K.; Dán, Á. Efficacy of a Recombinant Turkey Herpesvirus AI (H5) Vaccine in Preventing Transmission of Heterologous Highly Pathogenic H5N8 Clade 2.3.4.4b Challenge Virus in Commercial Broilers and Layer Pullets. J. Immunol. Res. 2018, 2018, 3143189. [Google Scholar] [CrossRef]
- El-Shall, N.A.; Awad, A.M.; Sedeik, M.E. Examination of the Protective Efficacy of Two Avian Influenza H5 Vaccines against Clade 2.3.4.4b H5N8 Highly Pathogenic Avian Influenza Virus in Commercial Broilers. Res. Vet. Sci. 2021, 140, 125–133. [Google Scholar] [CrossRef]
- Sultan, H.A.; Arafa, A.-E.; Talaat, S.; Gaballa, A.A.; Kilany, W.H.; Elfeil, W.K.; Shehata, A.A.; Amarin, N. Efficacy of Clade 2.3.2 H5-Recombinant Baculovirus Vaccine in Protecting Muscovy and Pekin Ducks from Clade 2.3.4.4 H5N8 Highly Pathogenic Avian Influenza Infection. Avian Dis. 2019, 63, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Niqueux, É.; Flodrops, M.; Allée, C.; Lebras, M.-O.; Pierre, I.; Louboutin, K.; Guillemoto, C.; Le Prioux, A.; Le Bouquin-Leneveu, S.; Keïta, A.; et al. Evaluation of Three Hemagglutinin-Based Vaccines for the Experimental Control of a Panzootic Clade 2.3.4.4b A(H5N8) High Pathogenicity Avian Influenza Virus in Mule Ducks. Vaccine 2023, 41, 145–158. [Google Scholar] [CrossRef]
- Zeng, X.; He, X.; Meng, F.; Ma, Q.; Wang, Y.; Bao, H.; Liu, Y.; Deng, G.; Shi, J.; Li, Y.; et al. Protective Efficacy of an H5/H7 Trivalent Inactivated Vaccine (H5-Re13, H5-Re14, and H7-Re4 Strains) in Chickens, Ducks, and Geese against Newly Detected H5N1, H5N6, H5N8, and H7N9 Viruses. J. Integr. Agric. 2022, 21, 2086–2094. [Google Scholar] [CrossRef]
- Ali, A.; Safwat, M.; Kilany, W.H.; Nagy, A.; Shehata, A.A.; El-Abideen, M.A.Z.; Dahshan, A.-H.M.; Arafa, A.-S.A. Combined H5ND Inactivated Vaccine Protects Chickens against Challenge by Different Clades of Highly Pathogenic Avian Influenza Viruses Subtype H5 and Virulent Newcastle Disease Virus. Vet. World 2019, 12, 97–105. [Google Scholar] [CrossRef]
- Azab, A.A.; Yehia, N.; Makhareta, M.; Samir, M.; Shoukry, A.; Elhalem Mohamed, A.A.; Alhag, S.K.; Alwabli, A.S.; El-Saadony, M.T.; El-Tarabily, K.A.; et al. Evaluation of Inactivated Avian Influenza Virus and Newcastle Disease Virus Bivalent Vaccination Program against Newly Circulated H5N8 and NDV Strains. Poult. Sci. 2023, 102, 102952. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Zakaria, S.; Bazid, A.-H.I.; Kilany, W.H.; Zain El-Abideen, M.A.; Ali, A. A Single Dose of Inactivated Oil-Emulsion Bivalent H5N8/H5N1 Vaccine Protects Chickens against the Lethal Challenge of Both Highly Pathogenic Avian Influenza Viruses. Comp. Immunol. Microbiol. Infect. Dis. 2021, 74, 101601. [Google Scholar] [CrossRef]
- Maartens, L.H.; Frizzo da Silva, L.; Dawson, S.; Love, N.; Erasmus, B.J. The Efficacy of an Inactivated Avian Influenza H5N1 Vaccine against an African Strain of HPAI H5N8 (Clade 2.3.4.4 B). Avian Pathol. 2023, 52, 176–184. [Google Scholar] [CrossRef]
- Criado, M.F.; Kassa, A.; Bertran, K.; Kwon, J.-H.; Sá E Silva, M.; Killmaster, L.; Ross, T.M.; Mebatsion, T.; Swayne, D.E. Efficacy of Multivalent Recombinant Herpesvirus of Turkey Vaccines against High Pathogenicity Avian Influenza, Infectious Bursal Disease, and Newcastle Disease Viruses. Vaccine 2023, 41, 2893–2904. [Google Scholar] [CrossRef] [PubMed]
- Travieso, T.; Li, J.; Mahesh, S.; Mello, J.D.F.R.E.; Blasi, M. The Use of Viral Vectors in Vaccine Development. NPJ Vaccines 2022, 7, 75. [Google Scholar] [CrossRef] [PubMed]
- Mo, J.; Spackman, E.; Swayne, D.E. Prediction of Highly Pathogenic Avian Influenza Vaccine Efficacy in Chickens by Comparison of in Vitro and in Vivo Data: A Meta-Analysis and Systematic Review. Vaccine 2023, 41, 5507–5517. [Google Scholar] [CrossRef]
- Huber, V.C.; Thomas, P.G.; McCullers, J.A. A Multi-Valent Vaccine Approach That Elicits Broad Immunity within an Influenza Subtype. Vaccine 2009, 27, 1192–1200. [Google Scholar] [CrossRef]
- Subbarao, K.; Chen, H.; Swayne, D.; Mingay, L.; Fodor, E.; Brownlee, G.; Xu, X.; Lu, X.; Katz, J.; Cox, N.; et al. Evaluation of a Genetically Modified Reassortant H5N1 Influenza A Virus Vaccine Candidate Generated by Plasmid-Based Reverse Genetics. Virology 2003, 305, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Brown, I. Technical Item II High Pathogenicity Avian Influenza and Vaccination: Application in Europe Region. Available online: https://rr-europe.woah.org/app/uploads/2022/09/technical-item-ii_high-pathogenicity-avian-influenza-and-vaccination.pdf (accessed on 20 May 2024).
- Koutsakos, M.; Kedzierska, K.; Subbarao, K. Immune Responses to Avian Influenza Viruses. J. Immunol. 2019, 202, 382–391. [Google Scholar] [CrossRef]
- Blaurock, C.; Pfaff, F.; Scheibner, D.; Hoffmann, B.; Fusaro, A.; Monne, I.; Mettenleiter, T.C.; Breithaupt, A.; Abdelwhab, E.M. Evidence for Different Virulence Determinants and Host Response after Infection of Turkeys and Chickens with Highly Pathogenic H7N1 Avian Influenza Virus. J. Virol. 2022, 96, e0099422. [Google Scholar] [CrossRef]
- Abdul-Cader, M.S.; Palomino-Tapia, V.; Amarasinghe, A.; Ahmed-Hassan, H.; De Silva Senapathi, U.; Abdul-Careem, M.F. Hatchery Vaccination against Poultry Viral Diseases: Potential Mechanisms and Limitations. Viral Immunol. 2018, 31, 23–33. [Google Scholar] [CrossRef]
- Suarez, D.L. DIVA Vaccination Strategies for Avian Influenza Virus. Avian Dis. 2012, 56, 836–844. [Google Scholar] [CrossRef]
- Tasiame, W.; Johnson, S.; Burimuah, V.; Akyereko, E.; El-Duah, P.; Amemor, E.; Emikpe, B.O.; Owiredu, E.W. Outbreak of Highly Pathogenic Avian Influenza in Ghana, 2015: Degree of Losses and Outcomes of Time-Course Outbreak Management. Epidemiol. Infect. 2020, 148, e45. [Google Scholar] [CrossRef]
- Ssematimba, A.; Hagenaars, T.J.; de Wit, J.J.; Ruiterkamp, F.; Fabri, T.H.; Stegeman, J.A.; de Jong, M.C.M. Avian Influenza Transmission Risks: Analysis of Biosecurity Measures and Contact Structure in Dutch Poultry Farming. Prev. Vet. Med. 2013, 109, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.-T.; Choi, Y.-K. Targeting Antigens for Universal Influenza Vaccine Development. Viruses 2021, 13, 973. [Google Scholar] [CrossRef] [PubMed]
- Peyre, M.; Fusheng, G.; Desvaux, S.; Roger, F. Avian Influenza Vaccines: A Practical Review in Relation to Their Application in the Field with a Focus on the Asian Experience. Epidemiol. Infect. 2009, 137, 1–21. [Google Scholar] [CrossRef]
- Nunes, C.; McKee, M.; Howard, N. The Role of Global Health Partnerships in Vaccine Equity: A Scoping Review. PLoS Glob. Public Health 2024, 4, e0002834. [Google Scholar] [CrossRef]
- Manirambona, E.; Okesanya, O.J.; Olaleke, N.O.; Oso, T.A.; Lucero-Prisno, D.E. Evolution and Implications of SARS-CoV-2 Variants in the Post-Pandemic Era. Discov. Public Health 2024, 21, 16. [Google Scholar] [CrossRef]
- Tosta, S.; Moreno, K.; Schuab, G.; Fonseca, V.; Segovia, F.M.C.; Kashima, S.; Elias, M.C.; Sampaio, S.C.; Ciccozzi, M.; Alcantara, L.C.J.; et al. Global SARS-CoV-2 Genomic Surveillance: What We Have Learned (so Far). Infect. Genet. Evol. 2023, 108, 105405. [Google Scholar] [CrossRef]
- Zheng, Y.; Guo, Y.; Li, Y.; Liang, B.; Sun, X.; Li, S.; Xia, H.; Ping, J. The Molecular Determinants of Antigenic Drift in a Novel Avian Influenza A (H9N2) Variant Virus. Virol. J. 2022, 19, 26. [Google Scholar] [CrossRef]
- World Health Organization. Global Influenza Surveillance and Response System (GISRS). Available online: https://www.who.int/initiatives/global-influenza-surveillance-and-response-system (accessed on 7 December 2024).
- European Centre for Disease Prevention and Control. Global Influenza Surveillance and Virus Sharing. Available online: https://www.ecdc.europa.eu/en/seasonal-influenza/surveillance-and-disease-data/facts-global-surveillance (accessed on 7 December 2024).
- Freunde von GISAID. GISAID. Available online: https://www.re3data.org/repository/r3d100010126 (accessed on 7 December 2024).
- Hutchison, J.; Mackenzie, C.; Madin, B.; Happold, J.; Leslie, E.; Zalcman, E.; Meyer, A.; Cameron, A. New Approaches to Aquatic and Terrestrial Animal Surveillance: The Potential for People and Technology to Transform Epidemiology. Prev. Vet. Med. 2019, 167, 169–173. [Google Scholar] [CrossRef]
- Dewulf, J.; Van Immerseel, F. (Eds.) Biosecurity in Animal Production and Veterinary Medicine: From Principles to Practice; CABI: Wallingford, UK, 2019; ISBN 978-1-78924-568-4. [Google Scholar]
- Huang, P.; Sun, L.; Li, J.; Wu, Q.; Rezaei, N.; Jiang, S.; Pan, C. Potential Cross-Species Transmission of Highly Pathogenic Avian Influenza H5 Subtype (HPAI H5) Viruses to Humans Calls for the Development of H5-Specific and Universal Influenza Vaccines. Cell Discov. 2023, 9, 58. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. HHS Provides $176 Million to Develop Pandemic Influenza mRNA-Based Vaccine. Available online: https://www.hhs.gov/about/news/2024/07/02/hhs-provides-176-million-develop-pandemic-influenza-mrna-based-vaccine.html (accessed on 7 December 2024).
LPAI | HPAI | ||
---|---|---|---|
Clinical signs | General | decreased feed and water consumption, lethargy, slight weight loss, diarrhea (occasionally) | found dead without prior clinical signs (in peracute disease), lethargy, recumbency, comatose state, decreased feed and water consumption |
Respiratory | sneezing, coughing, ocular and nasal discharge | less common than in LPAI | |
Egg production | transient decrease in | cessation | |
Neurological | - | varied symptoms (in acute to subacute cases) | |
Mortality | low | high | |
Gross lesions | Respiratory | rhinitis, sinusitis, congested and edematous tracheal mucosa with occasional hemorrhages and luminal exudates. With secondary bacterial pathogens: fibrinopurulent bronchopneumonia, air sacculitis, and coelomitis | in peracute disease: no gross lesions, in acute disease: swelling (oedema) in the head, legs, and feet, subcutaneous hemorrhages, hemorrhages on serosal or mucosal surfaces, necrotic foci within multiple visceral organs, atrophic primary lymphoid organs, enlarged spleen with pale necrotic foci |
Egg production | ovaries regress, mature ova rupture, egg yolk peritonitis, swollen oviduct with luminal exudates, misshapen and thin-shelled eggs, eggs lack pigment | ||
Urinary | swollen kidneys, visceral urate deposition (in hens) | ||
Digestive | mild enteritis, pale, mottled pancreas with random hemorrhages (mainly in turkeys, rare) | ||
Histological lesions | Respiratory | heterophilic-to-lymphocytic rhinitis, sinusitis, tracheitis and bronchitis, interstitial pneumonia | more common than gross lesions, necrosis and/or inflammation with hemorrhages in multiple organs (especially within the skin, brain, heart, pancreas, lungs, adrenal glands, and lymphoid organs) due to viraemia and vascular damage |
Urinary | tubule necrosis, interstitial nephritis | ||
Lymphoid | depletion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovács, L.; Farkas, M.; Dobra, P.F.; Lennon, G.; Könyves, L.P.; Rusvai, M. Avian Influenza Clade 2.3.4.4b: Global Impact and Summary Analysis of Vaccine Trials. Vaccines 2025, 13, 453. https://doi.org/10.3390/vaccines13050453
Kovács L, Farkas M, Dobra PF, Lennon G, Könyves LP, Rusvai M. Avian Influenza Clade 2.3.4.4b: Global Impact and Summary Analysis of Vaccine Trials. Vaccines. 2025; 13(5):453. https://doi.org/10.3390/vaccines13050453
Chicago/Turabian StyleKovács, László, Máté Farkas, Péter Ferenc Dobra, Georgia Lennon, László Péter Könyves, and Miklós Rusvai. 2025. "Avian Influenza Clade 2.3.4.4b: Global Impact and Summary Analysis of Vaccine Trials" Vaccines 13, no. 5: 453. https://doi.org/10.3390/vaccines13050453
APA StyleKovács, L., Farkas, M., Dobra, P. F., Lennon, G., Könyves, L. P., & Rusvai, M. (2025). Avian Influenza Clade 2.3.4.4b: Global Impact and Summary Analysis of Vaccine Trials. Vaccines, 13(5), 453. https://doi.org/10.3390/vaccines13050453