Host–Pathogen Interaction Interface: Promising Candidate Targets for Vaccine-Induced Protective and Memory Immune Responses
Abstract
:1. Introduction
2. Host–Pathogen Interaction Interface
3. Microbial Components for the Development of Vaccines
4. Vaccine-Induced Immunological Memory
How Do Adjuvants Enhance and Broaden the Induction of Protective and Even Memory Immune Responses?
5. Conclusions and Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Plotkin, S.A. Vaccines: The fourth century. Clin. Vaccine Immunol. 2009, 16, 1709–1719. [Google Scholar] [CrossRef]
- Koff, W.C.; Gust, I.D.; Plotkin, S.A. Toward a human vaccine project. Nat. Immunol. 2014, 15, 589–592. [Google Scholar] [CrossRef] [PubMed]
- Pulendran, B.; Arunachalam, P.S.; O’Hagan, D.T. Emerging concepts in the science of vaccine adjuvants. Nat. Rev. Drug Discov. 2021, 20, 454–475. [Google Scholar] [CrossRef] [PubMed]
- Pulendran, B.; Ahmed, R. Immunological mechanisms of vaccination. Nat. Immunol. 2011, 12, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Jeyanathan, M.; Vaseghi-Shanjani, M.; Afkhami, S.; Grondin, J.A.; Kang, A.; D’Agostino, M.R.; Yao, Y.; Jain, S.; Zganiacz, A.; Kroezen, Z.; et al. Parenteral BCG vaccine induces lung-resident memory macrophages and trained immunity via the gut-lung axis. Nat. Immunol. 2022, 23, 1687–1702. [Google Scholar] [CrossRef]
- Rios, D.; Wood, M.B.; Li, J.; Chassaing, B.; Gewirtz, A.T.; Williams, I.R. Antigen sampling by intestinal M cells is the principal pathway initiating mucosal IgA production to commensal enteric bacteria. Mucosal Immunol. 2016, 9, 907–916. [Google Scholar] [CrossRef]
- Mohr, I.; Sonenberg, N. Host translation of the nexus of infection and immunity. Cell Host Microbe 2012, 12, 470–483. [Google Scholar] [CrossRef]
- Laval, T.; Chaumont, L.; Demangel, C. Not too fat to fight: The emerging role of macrophage fatty acid metabolism in immunity to Mycobacterium tuberculosis. Immunol. Rev. 2021, 301, 84–97. [Google Scholar] [CrossRef]
- Liang, J.; Zhu, F.; Cheng, K.; Ma, N.; Ma, X.; Feng, Q.; Xu, C.; Gao, X.; Wang, X.; Shi, J.; et al. Outer Membrane Vesicle-Based Nanohybrids Target Tumor-Associated Macrophages to Enhance Trained Immunity-Related Vaccine-Generated Antitumor Activity. Adv. Mater. 2023, 35, e2306158. [Google Scholar] [CrossRef]
- Cantaert, T.; Jouvenet, N.; Diehl, S.A. Balanced and Unbalanced immune response to Dengue virus in disease protection and pathogenesis. Front. Immunol. 2022, 13, 835731. [Google Scholar] [CrossRef]
- Berry, M.P.R.; Graham, C.M.; McNab, F.W.; Xu, Z.; Bloch, S.A.A.; Oni, T.; Wilkinson, K.A.; Banchereau, R.; Skinner, J.; Wilkinson, R.J.; et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 2010, 466, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Feodorova, V.A.; Lyapina, A.M.; Zaitsev, S.S.; Khizhnyakova, M.A.; Sayapina, L.V.; Ulianova, O.V.; Ulyanov, S.S.; Motin, V.L. New Promising Targets for Synthetic Omptin-Based Peptide Vaccine against Gram-Negative Pathogens. Vaccines 2019, 7, 36. [Google Scholar] [CrossRef]
- Huang, Y.-L.; Wu, C.-Y. Carbohydrate-based vaccines: Challenges and opportunities. Expert Rev. Vaccines 2010, 9, 1257–1274. [Google Scholar] [CrossRef]
- Mahmoud, A.; Toth, I.; Stephenson, R. Developing an Effective Glycan-Based Vaccine for Streptococcus pyogenes. Angew. Chem. Int. Ed. Engl. 2022, 61, e202115342. [Google Scholar] [CrossRef]
- Mettu, R.; Chen, C.Y.; Wu, C.Y. Synthetic carbohydrate-based vaccines: Challenges and opportunities. J. Biomed. Sci. 2020, 27, 9. [Google Scholar] [CrossRef] [PubMed]
- Akkoyunlu, M. State of pneumococcal vaccine immunity. Hum. Vaccines Immunother. 2024, 20, 2336358. [Google Scholar] [CrossRef]
- Pozsgay, V.; Kubler-Kielb, J.; Coxon, B.; Santacroce, P.; Robbins, J.B.; Schneerson, R. Synthetic oligosaccharides as tools to demonstrate cross-reactivity between polysaccharide antigens. J. Org. Chem. 2012, 77, 5922–5941. [Google Scholar] [CrossRef]
- Sender, R.; Fuchs, S.; Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 2016, 164, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Wosen, J.E.; Mukhopadhyay, D.; Macaubas, C.; Mellins, E.D. Epithelial MHC class II expression and its role in antigen presentation in the gastrointestinal and respiratory tracts. Front. Immunol. 2019, 9, 2144. [Google Scholar] [CrossRef]
- Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T.; et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504, 446–450. [Google Scholar] [CrossRef]
- Date, Y.; Ebisawa, M.; Fukuda, S.; Shima, H.; Obata, F.; Takahashi, D.; Kato, T.; Hanazato, M.; Nakato, G.; Williams, I.B.; et al. NALT M cells are important for immune induction for the common mucosal immune system. Int. Immunol. 2017, 29, 471–478. [Google Scholar] [CrossRef]
- Hardy, S.; Legagneuz, V.; Audic, Y.; Paillard, L. Reverse genetics in eukaryotes. Biol. Cell 2010, 102, 561–580. [Google Scholar] [CrossRef]
- Neumann, G. Influenza Reverse Genetics-Historical Perspective. Cold Spring Harb. Perspect. Med. 2021, 11, a038547. [Google Scholar] [CrossRef] [PubMed]
- Burton, T.D.; Eyre, N.S. Applications of Deep Mutational Scanning in Virology. Viruses 2021, 13, 1020. [Google Scholar] [CrossRef]
- Gurbatri, C.; Danino, T. Engineering Probiotic E. coli Nissle 1917 for Release of Therapeutic Nanobodies. Methods Mol. Biol. 2024, 2748, 289–305. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.A.; Parish, T.; Stoker, N.G.; Bancroft, G.J. Characterization of auxotrophic mutants of Mycobacterium tuberculosis and their potential as vaccine candidates. Infect. Immun. 2001, 69, 1142–11150. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lee, J.; Park, J.; Gho, Y.S. Gram-negative and Gram-positive bacterial extracellular vesicles. Semin. Cell Dev. Biol. 2015, 40, 97–104. [Google Scholar] [CrossRef]
- Brjaud, P.; Carroll, R.K. Extracellular Vesicle Biogenesis and Functions in Gram-Positive Bacteria. Infect. Immun. 2020, 88, e00433-20. [Google Scholar] [CrossRef]
- Guerrero, G.G.; Hernández-Pando, R. Routine Innate and Adaptive Immune Responses against M. tuberculosis and boosting Mycobacterium bovis BCG vaccine immunity through prime boost protocols. Trends Immunother. 2023, 7, 2451. [Google Scholar] [CrossRef]
- Khader, S.A.; Divangahi, M.; Hanekom, W.; Hill, P.C.; Maeurer, M.; Makar, K.W.; Mayer-Barber, K.D.; Mhlanga, M.M.; Nemes, E.; Schlesinger, L.S.; et al. Targeting innate immunity for tuberculosis vaccination. J. Clin. Investig. 2020, 129, 3482–3491. [Google Scholar] [CrossRef]
- Nakada, T.K.; Nozaki, T. Trogotcytosis in unicellular eukaryotes. Cell 2021, 10, 2975–2984. [Google Scholar] [CrossRef] [PubMed]
- Saito, N.Y.; Wahyuni, R.; Nakada-Tsuki, K.; Tomil, K.; Nozaki, T. Rab7D small GTPase is involved in phago-, trogocytosis and cytoskeletal reorganization in the enteric protozoan Entamoeba histolytica. Cell Microbiol. 2021, 23, e13267. [Google Scholar] [CrossRef]
- Von Martels, J.Z.H.; Sadaghian, S.M.; Bourgonie, A.R.; Blokzill, T.; Diijkstra, G.; Nico, F.K.; Harmesen, H.J.M. The role of gut microbiota in health and disease: In vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut. Anaerobe 2017, 44, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen recognition and innate immunity. Cell 2006, 12, 783–801. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat. Immunol. 2010, 11, 373–384. [Google Scholar] [CrossRef]
- Takeuchi, O.; Akira, S. Pattern recognition receptors and inflammation. Cell 2010, 140, 805–820. [Google Scholar] [CrossRef] [PubMed]
- Chamaillard, M.; Hashimoto, M.; Horie, Y.; Masumoto, J.; Qiu, S.; Saab, L.; Ogura, Y.; Akiko, O.; Koichi, K.; Shoichi, F.; et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic aci. Nat. Immunol. 2003, 4, 702–707. [Google Scholar] [CrossRef]
- Chen, G.Y.; Nuñez, G. Sterile inflammation: Sensing and reacting to damage. Nat. Rev. Immunol. 2010, 10, 826–837. [Google Scholar] [CrossRef]
- Dinarello, C.A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 2009, 27, 519–550. [Google Scholar] [CrossRef]
- Lusher, B.; Verheirstraeten, M.; Krieg, S.; Korn, P. Intracellular mono-ADP-ribosyltransferases at the host-virus interphase. Cell Mol. Life Sci. 2022, 79, 288. [Google Scholar] [CrossRef]
- Deretic, V. Autophagy in inflammation, infection, and immunometabolism. Immunity 2021, 54, 437–453. [Google Scholar] [CrossRef] [PubMed]
- Bah, A.; Vergne, I. Macrophage autophagy and bacterial infections. Front. Immunol. 2017, 8, 1483. [Google Scholar] [CrossRef] [PubMed]
- Mayer-Barber, K.D.; Barber, D.L.; Shenderov, K.; White, S.D.; Wilson, M.S.; Cheever, A.; Kugler, D.; Hieny, S.; Caspar, P.; Nuñez, G.; et al. Cutting Edge: Caspase-1 independent IL-1β production is critical for host resistance to Mycobacterium tuberculosis and does not require TLR signaling in vivo. J. Immunol. 2010, 184, 3326–3330. [Google Scholar] [CrossRef]
- Furthmann, N.; Bader, V.; Angersbach, L.; Blusch, A.; Goel, S.; Sánchez-Vicente, A.; Krause, L.J.; Chaban, S.A.; Grover, P.; Trinkaus, V.A.; et al. NEMO reshapes the α-Synuclein aggregate interface and acts as an autophagy adapter by co-condensation with p62. Nat. Commun. 2023, 14, 8368. [Google Scholar] [CrossRef]
- Guidolin, L.S.; Arce, G.V.; Ciocchin, A.E.; Comerci, D.J.; Gorvel, J.P. Cyclic β-glucans at the bacteria-host cells interphase: One sugar ring to rule them all. Cell Microbiol. 2018, 20, e12850. [Google Scholar] [CrossRef] [PubMed]
- Guidolin, L.S.; Guidolin, L.S.; Caillava, A.J.; Caillava, A.J.; Landoni, M.; Landoni, M.; Couto, A.S.; Couto, A.S.; Comerci, D.J.; Comerci, D.J.; et al. Development of a scalable recombinant system for cyclic beta-1,2-glucans production. Microb. Cell Fact. 2024, 23, 130. [Google Scholar] [CrossRef]
- Mutua, V.; Gershwin, L. A Review of Neutrophil Extracellular Traps (NETs) in Disease: Potential Anti-NETs Therapeutics. J. Clin. Rev. Allergy Immunol. 2021, 61, 194–211. [Google Scholar] [CrossRef]
- Aroca-Crevillén, A.; Vicanolo, T.; Ovadia, S.; Hidalgo, A. Neutrophils in Physiology and Pathology. Annu. Rev. Pathol. 2024, 19, 227–259. [Google Scholar] [CrossRef]
- Yari, S.; Afrough, P.; Yari, F.; Jajin, M.G.; Fateh, A.; Tasbiti, A.H. A potent subset of Mycobacterium tuberculosis glycoproteins as relevant candidates for vaccine and therapeutic target. Sci. Rep. 2023, 13, 22194. [Google Scholar] [CrossRef]
- Sun, X.; Li, W.; Zhao, L.; Fan, K.; Qin, F.; Shi, L.; Gao, F.; Zheng, C. Current landscape of exosomes in tuberculosis development, diagnosis, and treatment applications. Front. Immunol. 2024, 15, 1401867. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, H.; Shao, Z.; Sun, L.; Li, C.; Lu, Y.; You, X.; Yang, X. Deletion of the Mycobacterium tuberculosis cyp138 gene leads to changes in membrane-related lipid composition and antibiotic susceptibility. Front. Microbiol. 2024, 15, 1301204. [Google Scholar] [CrossRef]
- Schneewind, O.; Missiakas, D. Lipoteichoic acids, phosphate-containing polymers in the envelope of gram-positive bacteria. J. Bacteriol. 2014, 196, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Stubljar, D.; Jukic, T.; Ihan, A. How far are we from vaccination against Helicobacter pylori infection? Expert Rev. Vaccines 2018, 17, 935–945. [Google Scholar] [CrossRef]
- Liu, M.; Zhong, Y.; Chen, J.; Liu, Y.; Tang, C.; Wang, X.; Zhang, Y.; Wang, P.; Logan, S.M.; Chen, W.; et al. Oral immunization of mice with a multivalent therapeutic subunit vaccine protects against Helicobacter pylori infection. Vaccine 2020, 38, 3031–3041. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Y.; Wu, T.; Liu, J.; Wu, G. Advances in Helicobacter pylori vaccine research: From candidate antigens to adjuvants—A review. Helicobacter 2024, 29, e13034. [Google Scholar] [CrossRef]
- Clegg, J.; Soldaini, E.; McLoughlin, R.M.; Rittenhouse, S.; Bagnoli, F.; Phogat, S. Staphylococcus aureus Vaccine Research and Development: The Past, Present and Future, Including Novel Therapeutic Strategies. Front. Immunol. 2021, 12, 705360. [Google Scholar] [CrossRef]
- Tian, X.; Wang, J.; Chen, H.; Ding, M.; Jin, Q.; Zhang, J.R. In vivo functional immunoprotection correlates for vaccines against invasive bacteria. Vaccine 2024, 42, 853–863. [Google Scholar] [CrossRef]
- Vanaporn, M.; Titball, R.W. Trehalose and bacterial virulence. Virulence 2020, 11, 1192–1202. [Google Scholar] [CrossRef]
- Singh, P.; Rameshwaram, N.R.; Ghosh, S.; Mukhopadhyay, S. Cell envelope lipids in the pathophysiology of Mycobacterium tuberculosis. Future Microbiol. 2018, 13, 689–710. [Google Scholar] [CrossRef]
- Chalut, C. MmpL transporter-mediated export of cell-wall associated lipids and siderophores in mycobacteria. Tuberculosis 2016, 100, 32–45. [Google Scholar] [CrossRef]
- Jiang, L.; Schinkel van Essen, M.; Schiffelers, M.R. Bacterial membrane vesicles as promising vaccine candidates. Eur. J. Pharm. Biopharm. 2019, 145, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Behrens, F.; Funk-Hilsdorf, T.C.; Kuebler, W.M.; Simmons, S. Bacterial Membrane Vesicles in Pneumonia: From Mediators of Virulence to Innovative Vaccine Candidates. Int. J. Mol. Sci. 2021, 22, 3858. [Google Scholar] [CrossRef] [PubMed]
- Gaurivaud, P.; Turdy, F. The Mycoplasma spp. ‘Releasome’: A New Concept for a Long-Known Phenomenon. Front. Microbiol. 2022, 13, 853440. [Google Scholar] [CrossRef] [PubMed]
- Arashkia, A.; Jalilvand, S.; Mohajel, N.; Afchangi, A.; Azadmanesh, K.; Salehi-Vaziri, M.; Fazlalipour, M.; Pouriavevali, M.H.; Jalali, T.; Mousavi, S.D.; et al. SARS CoV-2 Rapid Response Team of Pasteur Institute of Iran (PII). Severe acute respiratory syndrome-coronavirus-2 spike (S) protein-based vaccine candidates: State of the art and future prospects. Rev. Med. Virol. 2021, 31, e2183. [Google Scholar] [CrossRef]
- Zhang, J.; Han, Z.B.; Liang, Y.; Zhang, X.F.; Jin, Y.Q.; Du, L.F.; Shao, S.; Wang, H.; Hou, J.W.; Xu, K.; et al. A mosaic-type trimeric RBD-based COVID-19 vaccine candidate induces potent neutralization against Omicron and other SARS-CoV-2 variants. eLife 2022, 11, e78633. [Google Scholar] [CrossRef]
- Shin, H.; Iwasaki, A. Tissue-resident memory T cells. Immunol. Rev. 2013, 255, 165–181. [Google Scholar] [CrossRef]
- Carbone, F.R.; Mackay, L.K.; Heath, W.R.; Gebhardt, T. Distinct resident and recirculating memory T cell subsets in non-lymphoid tissues. Curr. Opin. Immunol. 2013, 25, 329–333. [Google Scholar] [CrossRef]
- Schenker, J.M.; Masopust, D. Tissue-resident memory T cells. Immunity 2014, 41, 886–897. [Google Scholar] [CrossRef]
- Masopust, D.; Schenkel, J.M. The integration of T cell migration, differentiation and function. Nat. Rev. Immunol. 2013, 13, 309–320. [Google Scholar] [CrossRef]
- Beura, L.K.; Fares-Frederickson, N.J.; Steinert, E.M.; Scott, M.C.; Thompson, E.A.; Fraser, K.A.; Schenkel, J.M.; Vezys, V.; Masopust, D. CD4+ resident memory T cells dominate immunosurveillance and orchestrate local recall responses. J. Exp. Med. 2019, 216, 1214–1229. [Google Scholar] [CrossRef]
- Yao, Y.; Jeyanathan, M.; Haddadi, S.; Barra, N.G.; Vaseghi-Shanjani, M.; Damjanovic, D.; Lai, R.; Afkhami, S.; Chen, Y.; Dvorkin-Gheva, A.; et al. Induction of Autonomous Memory Alveolar Macrophages Requires T Cell Help and Is Critical to Trained Immunity. Cell 2018, 175, 1634–1650.e17. [Google Scholar] [CrossRef] [PubMed]
- Haddadi, S.; Vaseghi-Shanjani, M.; Yao, Y.; Afkhami, S.; D’Agostino, M.R.; Zganiacz, A.; Jeyanathan, M.; Xing, Z. Mucosal-Pull Induction of Lung-Resident Memory CD8 T Cells in Parenteral TB Vaccine-Primed Hosts Requires Cognate Antigens and CD4 T. Cells.Front Immunol. 2019, 10, 2075. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, L.; Peugnet-González, I.; Parada-Venegas, D.; Dijkstra, G.; Faber, K.N. cGAS-STING signaling pathway in intestinal homeostasis and diseases. Front. Immunol. 2023, 14, 1239142. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Xu, P. Cellular functions of cGAS-STING signaling. Trends Cell Biol. 2023, 33, 630–648. [Google Scholar] [CrossRef]
- Bosteels, C.; Fierens, K.; De Prijck, S.; Van Moorleghem, J.; Vanheerswynghels, M.; De Wolf, C.; Chalon, A.; Collignon, C.; Hammad, H.; Didierlaurent, A.M.; et al. CCR2-and Flt3-Dependent Inflammatory Conventional Type 2 Dendritic Cells are necessary for the induction of adaptive immunity by the Human Vaccine Adjuvant System AS01. Front. Immunol. 2021, 11, 606805. [Google Scholar] [CrossRef]
- Baysoy, A.; Bai, Z.; Satija, R.; Fan, R. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 2023, 24, 695–713. [Google Scholar] [CrossRef]
- Del Giudice, G.; Covacci, A.; Telford, J.L.; Montecucco, C.; Rappuoli, R. The design of vaccines against Helicobacter pylori and their development. Annu. Rev. Immunol. 2001, 19, 523–563. [Google Scholar] [CrossRef]
- Yang, J.; Dai, L.-X.; Pan, X.; Wang, H.; Li, B.; Zhu, J.; Li, M.-Y.; Shi, X.-L.; Wang, B.-N. Protection against Helicobacter pylori infection in BALB/c mice by oral administration of multi-epitope vaccine of CTB-UreI-UreB. Pathog. Dis. 2015, 73, ftv026. [Google Scholar] [CrossRef]
- Huang, T.-T.; Cao, Y.-X.; Cao, L. Novel therapeutic regimens against Helicobacter pylori: An updated systematic review. Front. Microbiol. 2024, 15, 1418129. [Google Scholar] [CrossRef]
- Koch, M.R.; Gong, R.; Friedrich, V.; Engelsberger, V.; Kretschmer, L.; Wanisch, A.; Jarosch, S.; Ralser, A.; Lugen, B.; Quante, M.; et al. CagA-specific Gastric CD8(+) Tissue-Resident T Cells Control Helicobacter pylori During the Early Infection Phase. Gastroenterology 2023, 164, 550–566. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, F.; Wang, S.H.; Li, R.; Zhang, L.; Zhang, Z.; Yin, R.; Liu, H.; Liu, K. Oral Immunization With a M Cell-Targeting Recombinant L. lactis Vaccine LL-plSAM-FVpE Stimulate Protective Immunity Against H. pylori in Mice. Front. Immunol. 2022, 13, 918160. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Yang, Y.; Zhu, K.; Rao, Y.; Li, G.; Rao, X.; Li, M.; Zhou, R. The Q225P Mutation in SigB Promotes Membrane Vesicle Formation in Staphylococcus aureus. Curr. Microbiol. 2022, 79, 81. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Rao, Y.; Zhu, K.; Rao, X.; Zhou, R. Engineered Remolding and Application of Bacterial Membrane Vesicles. Front. Microbiol. 2021, 12, 729369. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Maruvama Sato, A.; Niidome, T. Bacterial membrane vesicles combined with nanoparticles for bacterial vaccines and cancer immunotherapy. Colloids Surf. B Biointerfaces 2024, 243, 114125. [Google Scholar] [CrossRef]
- Laughlin, C.R.; Mickum, M.; Rowin, K.; Adams, L.G.; Alaniz, R.C. Altered host immune responses to membrane vesicles from Salmonella and Gram-negative pathogens. Vaccine 2015, 33, 5012–5019. [Google Scholar] [CrossRef]
- Van der Ley, P.A.; Zariri, A.; van Riet, E.; Oosterhoff, D.; Krujswijk, P. An Intranasal OMV-Based Vaccine Induces High Mucosal and Systemic Protecting Immunity Against a SARS-CoV-2 Infection. Front. Immunol. 2021, 12, 781280. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, Q.; Li, M.; Mai, Q.; Ma, L.; Zhang, H.; Zhong, H.; Mai, K.; Cheng, N.; Feng, P.; et al. A decavalent composite mRNA vaccine against both influenza and COVID-19. mBio 2024, 15, e0066824. [Google Scholar] [CrossRef]
- Chaudhary, J.K.; Yadav, R.; Chaudhary, P.K.; Maurya, A.; Kant, N.; Al Rugaie, O.; Haokip, H.R.; Yadav, D.; Roshan, R.; Prasad, R.; et al. Insights into COVID-19 Vaccine Development Based on Immunogenic Structural Proteins of SARS-CoV-2, Host Immune Responses, and Herd Immunity. Cells 2021, 10, 2949. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Lee, A.; Grigoryan, L.; Arunachalam, P.S.; Scott, M.K.D.; Trisal, M.; Wimmers, F.; Sanyal, M.; Weidenbacher, P.A.; Feng, Y.; et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat. Immunol. 2022, 23, 543–555. [Google Scholar] [CrossRef]
- Arunachalam, P.S.; Scott, M.K.D.; Hagan, T.; Li, C.; Feng, Y.; Wimmers, F.; Grigoryan, L.; Trisal, M.; Edara, V.V.; Lai, L.; et al. Systems vaccinology of the BNT162b2 mRNA vaccine in humans. Nature 2021, 596, 410–416. [Google Scholar] [CrossRef]
- Du, J.; Su, Y.; Wang, B.; Dong, E.; Can, Y.; Zhao, W.; Gong, W. Research progress on specific and non-specific immune effects of BCG and the possibility of BCG protection against COVID-19. Front. Immunol. 2023, 14, 1118378. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Jiao, L.; Chen, Q.; Bulstra, C.A.; Geldsetzer, P.; de Oliveira, T.; Yang, J.; Wang, C.; Bärnighausen, T.; Chen, S. COVID-19 antibody responses in individuals with natural immunity and with vaccination-induced immunity: A systematic review and meta-analysis. Syst. Rev. 2024, 13, 189. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz Çolak, Ç. Bacterial Membrane Vesicles as a Novel Vaccine Platform against SARS-CoV-2. Curr. Microbiol. 2024, 81, 317. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Ribeiro, A.M.; Perez Betancourt, Y. Cationic Nanostructures for Vaccines Design. Biomimetics 2020, 5, 32. [Google Scholar] [CrossRef]
- Pegtel, D.M.; Gould, S.J. EXOSOMES. Annu. Rev. Biochem. 2019, 88, 487–514. [Google Scholar] [CrossRef]
- Krylova, S.V.; Feng, D. The Machinery of Exosomes: Biogenesis, Release, and Uptake. Int. J. Mol. Sci. 2023, 24, 1337. [Google Scholar] [CrossRef]
- Rajput, A.; Varshney, A.; Bajaj, R.; Pokharkar, V. Exosomes as New Generation Vehicles for Drug Delivery: Biomedical Applications and Future Perspectives. Molecules 2022, 27, 7289. [Google Scholar] [CrossRef]
- Lusta, K.A.; Poznyak, A.V.; Litvinova, L.; Poggio, P.; Orekhov, A.N.; Melnichenko, A.A. Involvement of Bacterial Extracellular Membrane Nanovesicles in Infectious Diseases and Their Application in Medicine. Pharmaceutics 2022, 14, 2597. [Google Scholar] [CrossRef]
- Guerrero, G.G.; Tuero, I. Adjuvants compounds, a friendly strategy in vaccine formulations against infectious diseases. Hum. Vaccines Immunother. 2021, 17, 3539–3550. [Google Scholar] [CrossRef]
- Owen, A.M.; Luan, L.; Burelbach, K.R.; McBride, M.A.; Stothers, C.L.; Boykin, O.A.; Sivanesam, K.; Schaedel, J.F.; Patil, T.K.; Wang, J.; et al. MyD88-dependent signaling drives toll-like receptor induced trained immunity in macrophages. Front. Immunol. 2022, 13, 1044662. [Google Scholar] [CrossRef]
- Van Braeckel, E.; Bourguignon, P.; Koutsoukos, M.; Clement, F.; Janssens, M.; Carletti, I.; Collard, A.; Demoitié, M.-A.; Voss, G.; Leroux-Roels, G.; et al. An Adjuvanted Polyprotein HIV-1 Vaccine Induces Polyfunctional Cross Reactive CD4+ T cell Responses in Seronegative Volunteers. Clin. Infect. Dis. 2011, 52, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Kimiz-Gebologlu, I.; Oncel, S.S. Exosomes: Large-scale production, isolation, drug loading efficiency, and biodistribution and uptake. J. Control. Release. 2022, 347, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Leroux-Roels, I.; Forgus, S.; De Boever, F.; Clement, F.; Demoitie, M.-A.; Mettens, P.; Moris, P.; Ledent, E.; Leroux-Roels, G.; Ofori-Anyinam, O.; et al. Improved CD4+ T cell responses to Mycobacterium tuberculosis in PPD-negative adults by M72/AS01 as compared to the M72/AS02 and Mtb72F/AS02 tuberculosis candidate vaccine formulations: A randomized trial. Vaccine 2013, 31, 2196–2206. [Google Scholar] [CrossRef] [PubMed]
- Bhat, Z.S.; Rather, M.A.; Maqbool, M.; Lah, H.U.; Yousuf, S.K.; Ahmad, Z. Cell wall: A versatile fountain of drug targets in Mycobacterium tuberculosis. Biomed. Pharmacother. 2017, 95, 1520–1534. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero, G.G.; Madrid-Marina, V.; Martínez-Romero, A.; Torres-Poveda, K.; Favela-Hernández, J.M. Host–Pathogen Interaction Interface: Promising Candidate Targets for Vaccine-Induced Protective and Memory Immune Responses. Vaccines 2025, 13, 418. https://doi.org/10.3390/vaccines13040418
Guerrero GG, Madrid-Marina V, Martínez-Romero A, Torres-Poveda K, Favela-Hernández JM. Host–Pathogen Interaction Interface: Promising Candidate Targets for Vaccine-Induced Protective and Memory Immune Responses. Vaccines. 2025; 13(4):418. https://doi.org/10.3390/vaccines13040418
Chicago/Turabian StyleGuerrero, Gloria G., Vicente Madrid-Marina, Aurora Martínez-Romero, Kirvis Torres-Poveda, and Juan Manuel Favela-Hernández. 2025. "Host–Pathogen Interaction Interface: Promising Candidate Targets for Vaccine-Induced Protective and Memory Immune Responses" Vaccines 13, no. 4: 418. https://doi.org/10.3390/vaccines13040418
APA StyleGuerrero, G. G., Madrid-Marina, V., Martínez-Romero, A., Torres-Poveda, K., & Favela-Hernández, J. M. (2025). Host–Pathogen Interaction Interface: Promising Candidate Targets for Vaccine-Induced Protective and Memory Immune Responses. Vaccines, 13(4), 418. https://doi.org/10.3390/vaccines13040418