Q Fever Vaccines: Unveiling the Historical Journey and Contemporary Innovations in Vaccine Development
Abstract
:1. Introduction
2. Biology of Coxiella burnetii
3. Host Immune Response to C. burnetii Infection
4. Pathogenesis of Q Fever
5. Modern Innovations in Q Fever Vaccine Development
6. Types of Q Fever Vaccines
6.1. Whole-Cell Vaccines
6.2. Subunit Vaccines
6.3. DNA- and RNA-Based Vaccines
6.4. Multi-Epitope Vaccines
6.5. Novel Delivery Systems and Adjuvant Formulations
7. Human Vaccines: Q-VAX and Its Impact
Veterinary Vaccines: Reducing Transmission at the Source
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Eldin, C.; Mélenotte, C.; Mediannikov, O.; Ghigo, E.; Million, M.; Edouard, S.; Mege, J.-L.; Maurin, M.; Raoult, D. From Q Fever to Coxiella burnetii Infection: A Paradigm Change. Clin. Microbiol. Rev. 2017, 30, 115–190. [Google Scholar] [CrossRef] [PubMed]
- Million, M.; Raoult, D. Recent advances in the study of Q fever epidemiology, diagnosis and management. J. Infect. 2015, 71, S2–S9. [Google Scholar] [CrossRef] [PubMed]
- Funkhouser, A.W.; Fries, L.F. Coxiella burnetii and Q Fever. In Pulmonary Infections and Immunity; Chmel, H., Bendinelli, M., Friedman, H., Eds.; Springer: Boston, MA, USA, 1994; pp. 159–182. [Google Scholar]
- Burnet, F.M.; Freeman, M. The Rickettsia of “Q” Fever: Further Experimental Studies. Med. J. Aust. 1938, 1, 296–298. [Google Scholar] [CrossRef]
- Borriello, G.; Galiero, G. Coxiella burnetii. In Zoonosis; Lorenzo-Morales, J., Ed.; InTech: Berlin, Germany, 2012; Available online: http://www.intechopen.com/books/zoonosis/coxiella-burnetii (accessed on 22 November 2024).
- Körner, S.; Makert, G.R.; Ulbert, S.; Pfeffer, M.; Mertens-Scholz, K. The Prevalence of Coxiella burnetii in Hard Ticks in Europe and Their Role in Q Fever Transmission Revisited—A Systematic Review. Front. Vet. Sci. 2021, 8, 655715. [Google Scholar] [CrossRef]
- Wood, J.C.; Williams, E.A.; Barley, V.L.; Cowdell, R.H. Lysosomes and menstruation. BMJ 1969, 1, 443. [Google Scholar] [CrossRef] [PubMed]
- Bauer, B.U.; Knittler, M.R.; Andrack, J.; Berens, C.; Campe, A.; Christiansen, B.; Fasemore, A.M.; Fischer, S.F.; Ganter, M.; Körner, S.; et al. Interdisciplinary studies on Coxiella burnetii: From molecular to cellular, to host, to one health research. Int. J. Med. Microbiol. 2023, 313, 151590. [Google Scholar] [CrossRef]
- Kazar, J. Coxiella burnetii Infection. Ann. NY Acad. Sci. 2005, 1063, 105–114. [Google Scholar] [CrossRef]
- Jones, R.M.; Nicas, M.; Hubbard, A.E.; Reingold, A.L. The Infectious Dose of Coxiella burnetii (Q Fever). Appl. Biosaf. 2006, 11, 32–41. [Google Scholar] [CrossRef]
- Woldeyohannes, S.M.; Perkins, N.R.; Baker, P.; Gilks, C.F.; Knibbs, L.D.; Reid, S.A. Q fever vaccine efficacy and occupational exposure risk in Queensland, Australia: A retrospective cohort study. Vaccine 2020, 38, 6578–6584. [Google Scholar] [CrossRef]
- Fenga, C.; Gangemi, S.; De Luca, A.; Calimeri, S.; Lo Giudice, D.; Pugliese, M.; Licitra, F.; Alibrandi, A.; Costa, C. Seroprevalence and occupational risk survey for Coxiella burnetii among exposed workers in Sicily, Southern Italy. Int. J. Occup. Med. Environ. Health 2015, 28, 901–907. [Google Scholar] [CrossRef]
- Ghigo, E.; Capo, C.; Tung, C.H.; Raoult, D.; Gorvel, J.P.; Mege, J.L. Coxiella burnetii Survival in THP-1 Monocytes Involves the Impairment of Phagosome Maturation: IFN-γ Mediates its Restoration and Bacterial Killing. J. Immunol. 2002, 169, 4488–4495. [Google Scholar] [CrossRef] [PubMed]
- Voth, D.E.; Howe, D.; Heinzen, R.A. Coxiella burnetii Inhibits Apoptosis in Human THP-1 Cells and Monkey Primary Alveolar Macrophages. Infect. Immun. 2007, 75, 4263–4271. [Google Scholar] [CrossRef] [PubMed]
- Coiffard, B.; Soubeyran, P.; Ghigo, E. Editorial: Manipulation of the cellular microbicidal response and endocytic dynamic by pathogens membrane factors. Front. Cell Infect. Microbiol. 2015, 5, 42. Available online: http://www.frontiersin.org/Cellular_and_Infection_Microbiology/10.3389/fcimb.2015.00042/full (accessed on 20 November 2024). [CrossRef] [PubMed]
- Seshadri, R.; Samuel, J.E. Characterization of a Stress-Induced Alternate Sigma Factor, RpoS, of Coxiella burnetii and Its Expression during the Development Cycle. Infect. Immun. 2001, 69, 4874–4883. [Google Scholar] [CrossRef] [PubMed]
- Samuel, J.E.; Kiss, K.; Varghees, S. Molecular Pathogenesis of Coxiella burnetii in a Genomics Era. Ann. NY Acad. Sci. 2003, 990, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Vigil, A.; Chen, C.; Jain, A.; Nakajima-Sasaki, R.; Jasinskas, A.; Pablo, J.; Hendrix, L.R.; Samuel, J.E.; Felgner, P.L. Profiling the Humoral Immune Response of Acute and Chronic Q Fever by Protein Microarray. Mol. Cell Proteom. 2011, 10, M110.006304. [Google Scholar] [CrossRef]
- Xiong, X.; Wang, X.; Wen, B.; Graves, S.; Stenos, J. Potential serodiagnostic markers for Q fever identified in Coxiella burnetiid by immunoproteomic and protein microarray approaches. BMC Microbiol. 2012, 12, 35. [Google Scholar] [CrossRef] [PubMed]
- Hendrix, L.R.; Chen, C. Antigenic Analysis for Vaccines and Diagnostics. In Coxiella burnetii: Recent Advances and New Perspectives in Research of the Q Fever Bacterium; Toman, R., Heinzen, R.A., Samuel, J.E., Mege, J.L., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 299–328. [Google Scholar] [CrossRef]
- Beare, P.A.; Heinzen, R.A. Gene Inactivation in Coxiella burnetii. In Host-Bacteria Interactions; Vergunst, A.C., O’Callaghan, D., Eds.; Springer: New York, NY, USA, 2014; pp. 329–345. [Google Scholar] [CrossRef]
- Omsland, A.; Beare, P.A.; Hill, J.; Cockrell, D.C.; Howe, D.; Hansen, B.; Samuel, J.E.; Heinzen, R.A. Isolation from Animal Tissue and Genetic Transformation of Coxiella burnetii Are Facilitated by an Improved Axenic Growth Medium. Appl. Environ. Microbiol. 2011, 77, 3720–3725. [Google Scholar] [CrossRef]
- Dijkstra, F.; Van Der Hoek, W.; Wijers, N.; Schimmer, B.; Rietveld, A.; Wijkmans, C.J.; Vellema, P.; Schneeberger, P.M. The 2007–2010 Q fever epidemic in the Netherlands: Characteristics of notified acute Q fever patients and the association with dairy goat farming. FEMS Immunol. Med. Microbiol. 2012, 64, 3–12. [Google Scholar] [CrossRef]
- Roest, H.J.; Van Gelderen, B.; Dinkla, A.; Frangoulidis, D.; Van Zijderveld, F.; Rebel, J.; van Keulen, L. Q Fever in Pregnant Goats: Pathogenesis and Excretion of Coxiella burnetii. PLoS ONE 2012, 7, e48949. [Google Scholar] [CrossRef] [PubMed]
- Kampschreur, L.M.; Hagenaars, J.C.J.P.; Wielders, C.C.H.; Elsman, P.; Lestrade, P.J.; Koning, O.H.J.; Oosterheert, J.J.; Renders, N.H.M.; Wever, P.C. Screening for Coxiella burnetii seroprevalence in chronic Q fever high-risk groups reveals the magnitude of the Dutch Q fever outbreak. Epidemiol. Infect. 2013, 141, 847–851. [Google Scholar] [CrossRef] [PubMed]
- Shannon, J.G.; Heinzen, R.A. Adaptive immunity to the obligate intracellular pathogen Coxiella burnetii. Immunol. Res. 2009, 43, 138–148. [Google Scholar] [CrossRef]
- Marmion, B. Q fever: The long journey to control by vaccination. Med. J. Aust. 2007, 186, 164–166. [Google Scholar] [CrossRef]
- Chen, C.; Bouman, T.J.; Beare, P.A.; Mertens, K.; Zhang, G.Q.; Russell-Lodrigue, K.E.; Hogaboam, J.; Peters, B.; Felgner, P.; Brown, W.; et al. A systematic approach to evaluate humoral and cellular immune responses to Coxiella burnetii immunoreactive antigens. Clin. Microbiol. Infect. 2009, 15, 156–157. [Google Scholar] [CrossRef]
- Zhang, G.; Russell-Lodrigue, K.E.; Andoh, M.; Zhang, Y.; Hendrix, L.R.; Samuel, J.E. Mechanisms of Vaccine-Induced Protective Immunity against Coxiella burnetii Infection in BALB/c Mice. J. Immunol. 2007, 179, 8372–8380. [Google Scholar] [CrossRef] [PubMed]
- Bond, K.A.; Franklin, L.J.; Sutton, B.; Firestone, S.M. Q-Vax Q fever vaccine failures, Victoria, Australia 1994–2013. Vaccine 2017, 35, 7084–7087. [Google Scholar] [CrossRef] [PubMed]
- Gefenaite, G.; Munster, J.M.; van Houdt, R.; Hak, E. Effectiveness of the Q fever vaccine: A meta-analysis. Vaccine 2011, 29, 395–398. [Google Scholar] [CrossRef]
- Schoffelen, T.; Joosten, L.A.B.; Herremans, T.; de Haan, A.F.J.; Ammerdorffer, A.; Rümke, H.C.; Wijkmans, C.J.; Roest, H.I.J.; Netea, M.G.; van der Meer, J.W.M.; et al. Specific interferon γ detection for the diagnosis of previous Q fever. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2013, 56, 1742–1751. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Dow, C.; Wang, P.; Sidney, J.; Read, A.; Harmsen, A.; Samuel, J.E.; Peters, B. Identification of CD4+ T Cell Epitopes in C. burnetii Antigens Targeted by Antibody Responses. PLoS ONE 2011, 6, e17712. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Qi, Y.; Jiao, J.; Gong, W.; Duan, C.; Wen, B. Exploratory Study on Th1 Epitope-Induced Protective Immunity against Coxiella burnetii Infection. PLoS ONE 2014, 9, e87206. [Google Scholar] [CrossRef]
- Li, Q.; Niu, D.; Wen, B.; Chen, M.; Qiu, L.; Zhang, J. Protective Immunity against Q Fever Induced with a Recombinant P1 Antigen Fused with HspB of Coxiella burnetii. Ann. NY Acad. Sci. 2005, 1063, 130–142. [Google Scholar] [CrossRef]
- Bach, E.; Fitzgerald, S.F.; Williams-MacDonald, S.E.; Mitchell, M.; Golde, W.T.; Longbottom, D.; Nisbet, A.J.; Dinkla, A.; Sullivan, E.; Pinapati, R.S.; et al. Genome-wide epitope mapping across multiple host species reveals significant diversity in antibody responses to Coxiella burnetii vaccination and infection. Front. Immunol. 2023, 14, 1257722. [Google Scholar] [CrossRef]
- Arricau-Bouvery, N.; Hauck, Y.; Bejaoui, A.; Frangoulidis, D.; Bodier, C.C.; Souriau, A.; Meyer, H.; Neubauer, H.; Rodolakis, A.; Vergnaud, G. Molecular characterization of Coxiella burnetii isolates by infrequent restriction site-PCR and MLVA typing. BMC Microbiol. 2006, 6, 38. [Google Scholar] [CrossRef]
- Porter, S.R.; Czaplicki, G.; Mainil, J.; Guattéo, R.; Saegerman, C. Q Fever: Current state of knowledge and perspectives of research of a neglected zoonosis. Int. J. Microbiol. 2011, 2011, 248418. [Google Scholar] [CrossRef]
- Duron, O.; Doublet, P.; Vavre, F.; Bouchon, D. The Importance of Revisiting Legionellales Diversity. Trends Parasitol. 2018, 34, 1027–1037. [Google Scholar] [CrossRef]
- Smith, C.B.; Evavold, C.; Kersh, G.J. The Effect of pH on Antibiotic Efficacy against Coxiella burnetii in Axenic Media. Sci. Rep. 2019, 9, 18132. [Google Scholar] [CrossRef]
- Vallejo Esquerra, E.; Yang, H.; Sanchez, S.E.; Omsland, A. Physicochemical and Nutritional Requirements for Axenic Replication Suggest Physiological Basis for Coxiella burnetii Niche Restriction. Front. Cell. Infect. Microbiol. 2017, 7, 190. [Google Scholar] [CrossRef]
- Lührmann, A.; Newton, H.J.; Bonazzi, M. Beginning to Understand the Role of the Type IV Secretion System Effector Proteins in Coxiella burnetii Pathogenesis. In Type IV Secretion in Gram-Negative and Gram-Positive Bacteria; Backert, S., Grohmann, E., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 413, pp. 243–268. [Google Scholar]
- Minnick, M.F.; Raghavan, R. Developmental Biology of Coxiella burnetii. In Coxiella burnetii: Recent Advances and New Perspectives in Research of the Q Fever Bacterium; Toman, R., Heinzen, R.A., Samuel, J.E., Mege, J.L., Eds.; Springer: Dordrecht, The Netherlands, 2012; Volume 984, pp. 231–248. [Google Scholar]
- Park, D.; Steiner, S.; Shao, M.; Roy, C.R.; Liu, J. Developmental Transitions Coordinate Assembly of the Coxiella burnetii Dot/Icm Type IV Secretion System. Infect. Immun. 2022, 90, e00410–e00422. [Google Scholar] [CrossRef]
- Broertjes, J.; Franz, E.; Friesema, I.H.M.; Jansen, H.J.; Reubsaet, F.A.G.; Rutjes, S.A.; Stijnis, C.; Voordouw, B.C.; de Vries, M.C.; Notermans, D.W.; et al. Epidemiology of Pathogens Listed as Potential Bioterrorism Agents, the Netherlands, 2009–2019. Emerg Infect Dis. 2023, 29, e221769. [Google Scholar] [CrossRef]
- Kersh, G.J.; Wolfe, T.M.; Fitzpatrick, K.A.; Candee, A.J.; Oliver, L.D.; Patterson, N.E.; Self, J.S.; Priestley, R.A.; Loftis, A.D.; Massung, R.F. Presence of Coxiella burnetii DNA in the Environment of the United States, 2006 to 2008. Appl. Environ. Microbiol. 2010, 76, 4469–4475. [Google Scholar] [CrossRef]
- Kaplan, M.M.; Bertagna, P. The geographical distribution of Q fever. Bull. World Health Organ. 1955, 13, 829–860. [Google Scholar]
- Coleman, S.A.; Fischer, E.R.; Howe, D.; Mead, D.J.; Heinzen, R.A. Temporal Analysis of Coxiella burnetii Morphological Differentiation. J. Bacteriol. 2004, 186, 7344–7352. [Google Scholar] [CrossRef]
- Sandoz, K.M.; Popham, D.L.; Beare, P.A.; Sturdevant, D.E.; Hansen, B.; Nair, V.; Heinzen, R.A. Transcriptional Profiling of Coxiella burnetii Reveals Extensive Cell Wall Remodeling in the Small Cell Variant Developmental Form. PLoS ONE 2016, 11, e0149957. [Google Scholar] [CrossRef]
- Lightfoot, N.F.; Lloyd, G. Coxiella burnetii. In Topley & Wilson’s Microbiology and Microbial Infections; John Wiley & Sons, Ltd.: West Sussex, UK, 2010; p. taw0081. [Google Scholar] [CrossRef]
- Amano, K.; Williams, J.C. Sensitivity of Coxiella burnetii peptidoglycan to lysozyme hydrolysis and correlation of sacculus rigidity with peptidoglycan-associated proteins. J. Bacteriol. 1984, 160, 989–993. [Google Scholar] [CrossRef]
- McCaul, T.F.; Williams, J.C. Developmental cycle of Coxiella burnetii: Structure and morphogenesis of vegetative and sporogenic differentiations. J. Bacteriol. 1981, 147, 1063–1076. [Google Scholar] [CrossRef]
- Gürtler, L.; Bauerfeind, U.; Blümel, J.; Burger, R.; Drosten, C.; Gröner, A.; Heiden, M.; Hildebrandt, M.; Jansen, B.; Offergeld, R.; et al. Coxiella burnetii—Pathogenic Agent of Q (Query) Fever. Transfus. Med. Hemotherapy 2014, 41, 60–72. [Google Scholar]
- Morigen, G.M.; Xie, J. Editorial: Bacterial Transcription Factors and the Cell Cycle. Front. Microbiol. 2021, 12, 821394. [Google Scholar] [CrossRef]
- Sturgill-Koszycki, S.; Swanson, M.S. Legionella pneumophila Replication Vacuoles Mature into Acidic, Endocytic Organelles. J. Exp. Med. 2000, 192, 1261–1272. [Google Scholar] [CrossRef]
- Hackstadt, T. The Role of Lipopolysaccharides in the Virulence of Coxiella burnetii. Ann. NY Acad. Sci. 1990, 590, 27–32. [Google Scholar] [CrossRef]
- Narasaki, C.T.; Toman, R. Lipopolysaccharide of Coxiella burnetii. In Coxiella burnetii: Recent Advances and New Perspectives in Research of the Q Fever Bacterium; Toman, R., Heinzen, R.A., Samuel, J.E., Mege, J.L., Eds.; Springer: Dordrecht, The Netherlands, 2012; Volume 984, pp. 65–90. [Google Scholar]
- Vishwanath, S.; Hackstadt, T. Lipopolysaccharide phase variation determines the complement-mediated serum susceptibility of Coxiella burnetii. Infect. Immun. 1988, 56, 40–44. [Google Scholar] [CrossRef]
- Zamboni, D.S.; Campos, M.A.; Torrecilhas, A.C.T.; Kiss, K.; Samuel, J.E.; Golenbock, D.T.; Lauw, F.N.; Roy, C.R.; Almeida, I.C.; Gazzinelli, R.T. Stimulation of Toll-like Receptor 2 by Coxiella burnetii Is Required for Macrophage Production of Pro-inflammatory Cytokines and Resistance to Infection. J. Biol. Chem. 2004, 279, 54405–54415. [Google Scholar] [CrossRef]
- Wang, T.; Yu, Y.; Liang, X.; Luo, S.; He, Z.; Sun, Z.; Jiang, Y.; Omsland, A.; Zhou, P.; Song, L. Lipid A Has Significance for Optimal Growth of Coxiella burnetii in Macrophage-Like THP-1 Cells and to a Lesser Extent in Axenic Media and Non-phagocytic Cells. Front. Cell Infect. Microbiol. 2018, 8, 192. [Google Scholar] [CrossRef]
- Varghees, S.; Kiss, K.; Frans, G.; Braha, O.; Samuel, J.E. Cloning and Porin Activity of the Major Outer Membrane Protein P1 from Coxiella burnetii. Infect. Immun. 2002, 70, 6741–6750. [Google Scholar] [CrossRef]
- Sekeyová, Z.; Kowalczewska, M.; Vincentelli, R.; Decloquement, P.; Flores-Ramírez, G.; Škultéty, Ľ.; Raoult, D. Characterization of antigens for Q fever serodiagnostics. Acta Virol. 2010, 54, 173–180. [Google Scholar] [CrossRef]
- Carey, K.L.; Newton, H.J.; Lührmann, A.; Roy, C.R. The Coxiella burnetii Dot/Icm System Delivers a Unique Repertoire of Type IV Effectors into Host Cells and Is Required for Intracellular Replication. PLoS Pathog. 2011, 7, e1002056. [Google Scholar] [CrossRef]
- Zusman, T.; Yerushalmi, G.; Segal, G. Functional Similarities between the icm/dot Pathogenesis Systems of Coxiella burnetii and Legionella pneumophila. Infect. Immun. 2003, 71, 3714–3723. [Google Scholar] [CrossRef]
- Nagai, H.; Kubori, T. Type IVB Secretion Systems of Legionella and Other Gram-Negative Bacteria. Front. Microbiol. 2011, 2, 136. [Google Scholar] [CrossRef]
- Juhas, M.; Crook, D.W.; Hood, D.W. Type IV secretion systems: Tools of bacterial horizontal gene transfer and virulence. Cell Microbiol. 2008, 10, 2377–2386. [Google Scholar] [CrossRef]
- Chen, C.; Banga, S.; Mertens, K.; Weber, M.M.; Gorbaslieva, I.; Tan, Y.; Luo, Z.-Q.; Samuel, J.E. Large-scale identification and translocation of type IV secretion substrates by Coxiella burnetii. Proc. Natl. Acad. Sci. USA 2010, 107, 21755–21760. [Google Scholar] [CrossRef]
- Schäfer, W.; Eckart, R.A.; Schmid, B.; Cagköylü, H.; Hof, K.; Muller, Y.A.; Lührmann, A. Nuclear trafficking of the anti-apoptotic Coxiella burnetii effector protein AnkG requires binding to p32 and Importin-α1: AnkG trafficking into the nucleus. Cell Microbiol. 2017, 19, e12634. [Google Scholar] [CrossRef]
- Eckart, R.A.; Bisle, S.; Schulze-Luehrmann, J.; Wittmann, I.; Jantsch, J.; Schmid, B.; Berens, C.; Lührmann, A. Antiapoptotic Activity of Coxiella burnetii Effector Protein AnkG Is Controlled by p32-Dependent Trafficking. Infect. Immun. 2014, 82, 2763–2771. [Google Scholar] [CrossRef] [PubMed]
- Larson, C.L.; Beare, P.A.; Voth, D.E.; Howe, D.; Cockrell, D.C.; Bastidas, R.J.; Valdivia, R.H.; Heinzen, R.A. Coxiella burnetii Effector Proteins That Localize to the Parasitophorous Vacuole Membrane Promote Intracellular Replication. Infect. Immun. 2015, 83, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Martinez, E.; Allombert, J.; Cantet, F.; Lakhani, A.; Yandrapalli, N.; Neyret, A.; Norville, I.H.; Favard, C.; Muriaux, D.; Bonazzi, M. Coxiella burnetii effector CvpB modulates phosphoinositide metabolism for optimal vacuole development. Proc. Natl. Acad. Sci. USA 2016, 113, E3260–E3269. [Google Scholar] [CrossRef]
- Swart, A.L.; Gomez-Valero, L.; Buchrieser, C.; Hilbi, H. Evolution and function of bacterial RCC1 repeat effectors. Cell Microbiol. 2020, 22, e13246. [Google Scholar] [CrossRef] [PubMed]
- Burette, M.; Allombert, J.; Lambou, K.; Maarifi, G.; Nisole, S.; Di Russo Case, E.; Blanchet, F.P.; Hassen-Khodja, C.; Cabantous, S.; Samuel, J.; et al. Modulation of innate immune signaling by a Coxiella burnetii eukaryotic-like effector protein. Proc. Natl. Acad. Sci. USA 2020, 117, 13708–13718. [Google Scholar] [CrossRef] [PubMed]
- Abou Abdallah, R.; Million, M.; Delerce, J.; Anani, H.; Diop, A.; Caputo, A.; Zgheib, R.; Rousset, E.; Boumedine, K.S.; Raoult, D.; et al. Pangenomic analysis of Coxiella burnetii unveils new traits in genome architecture. Front. Microbiol. 2022, 13, 1022356. [Google Scholar] [CrossRef]
- Beare, P.A.; Samuel, J.E.; Howe, D.; Virtaneva, K.; Porcella, S.F.; Heinzen, R.A. Genetic Diversity of the Q Fever Agent, Coxiella burnetii, Assessed by Microarray-Based Whole-Genome Comparisons. J. Bacteriol. 2006, 188, 2309–2324. [Google Scholar] [CrossRef] [PubMed]
- Long, C. Q Fever Vaccine Development: Current Strategies and Future Considerations. Pathogens 2021, 10, 1223. [Google Scholar] [CrossRef]
- Klingenbeck, L.; Eckart, R.A.; Berens, C.; Lührmann, A. The Coxiella burnetii type IV secretion system substrate CaeB inhibits intrinsic apoptosis at the mitochondrial level: Coxiella burnetii anti-apoptotic effector proteins. Cell Microbiol. 2013, 15, 675–687. [Google Scholar] [CrossRef]
- Zusman, T.; Aloni, G.; Halperin, E.; Kotzer, H.; Degtyar, E.; Feldman, M.; Segal, G. The response regulator PmrA is a major regulator of the icm / dot type IV secretion system in Legionella pneumophila and Coxiella burnetii. Mol. Microbiol. 2007, 63, 1508–1523. [Google Scholar] [CrossRef] [PubMed]
- Moses, A.S.; Millar, J.A.; Bonazzi, M.; Beare, P.A.; Raghavan, R. Horizontally Acquired Biosynthesis Genes Boost Coxiella burnetii’s Physiology. Front. Cell Infect. Microbiol. 2017, 7, 174. [Google Scholar] [CrossRef] [PubMed]
- Kuba, M.; Neha, N.; De Souza, D.P.; Dayalan, S.; Newson, J.P.M.; Tull, D.; McConville, M.J.; Sansom, F.M.; Newton, H.J. Coxiella burnetii utilizes both glutamate and glucose during infection with glucose uptake mediated by multiple transporters. Biochem. J. 2019, 476, 2851–2867. [Google Scholar] [CrossRef] [PubMed]
- Dragan, A.L.; Voth, D.E. Coxiella burnetii: International pathogen of mystery. Microbes Infect. 2020, 22, 100–110. [Google Scholar] [CrossRef]
- Samanta, D.; Clemente, T.M.; Schuler, B.E.; Gilk, S.D. Coxiella burnetii Type 4B Secretion System-dependent manipulation of endolysosomal maturation is required for bacterial growth. PLoS Pathog. 2019, 15, e1007855. [Google Scholar] [CrossRef] [PubMed]
- Romano, P.S.; Gutierrez, M.G.; Berón, W.; Rabinovitch, M.; Colombo, M.I. The autophagic pathway is actively modulated by phase II Coxiella burnetii to efficiently replicate in the host cell. Cell Microbiol. 2007, 9, 891–909. [Google Scholar] [CrossRef]
- Newton, H.J.; Kohler, L.J.; McDonough, J.A.; Temoche-Diaz, M.; Crabill, E.; Hartland, E.L.; Roy, C.R. A Screen of Coxiella burnetii Mutants Reveals Important Roles for Dot/Icm Effectors and Host Autophagy in Vacuole Biogenesis. PLoS Pathog. 2014, 10, e1004286. [Google Scholar] [CrossRef] [PubMed]
- Kohler, L.J.; Roy, C.R. Biogenesis of the lysosome-derived vacuole containing Coxiella burnetii. Microbes Infect. 2015, 17, 766–771. [Google Scholar] [CrossRef] [PubMed]
- Latomanski, E.A.; Newton, P.; Khoo, C.A.; Newton, H.J. The Effector Cig57 Hijacks FCHO-Mediated Vesicular Trafficking to Facilitate Intracellular Replication of Coxiella burnetii. PLoS Pathog. 2016, 12, e1006101. [Google Scholar] [CrossRef] [PubMed]
- Winchell, C.G.; Graham, J.G.; Kurten, R.C.; Voth, D.E. Coxiella burnetii Type IV Secretion-Dependent Recruitment of Macrophage Autophagosomes. Infect. Immun. 2014, 82, 2229–2238. [Google Scholar] [CrossRef] [PubMed]
- Hardiman, C.A.; McDonough, J.A.; Newton, H.J.; Roy, C.R. The role of Rab GTPases in the transport of vacuoles containing Legionella pneumophila and Coxiella burnetii. Biochem. Soc. Trans. 2012, 40, 1353–1359. [Google Scholar] [CrossRef] [PubMed]
- Berón, W.; Gutierrez, M.G.; Rabinovitch, M.; Colombo, M.I. Coxiella burnetii Localizes in a Rab7-Labeled Compartment with Autophagic Characteristics. Infect. Immun. 2002, 70, 5816–5821. [Google Scholar] [CrossRef] [PubMed]
- Campoy, E.M.; Zoppino, F.C.M.; Colombo, M.I. The Early Secretory Pathway Contributes to the Growth of the Coxiella -Replicative Niche. Infect. Immun. 2011, 79, 402–413. [Google Scholar] [CrossRef] [PubMed]
- Minnick, M.F.; Raghavan, R. Genetics of Coxiella burnetii: On the Path of Specialization. Future Microbiol. 2011, 6, 1297–1314. [Google Scholar] [CrossRef] [PubMed]
- Mertens, K.; Samuel, J.E. Defense Mechanisms Against Oxidative Stress in Coxiella burnetii: Adaptation to a Unique Intracellular Niche. In Coxiella burnetii: Recent Advances and New Perspectives in Research of the Q Fever Bacterium; Toman, R., Heinzen, R.A., Samuel, J.E., Mege, J.L., Eds.; Springer: Dordrecht, The Netherlands, 2012; Volume 984, pp. 39–63. [Google Scholar]
- Thomas, D.R.; Newton, P.; Lau, N.; Newton, H.J. Interfering with Autophagy: The Opposing Strategies Deployed by Legionella pneumophila and Coxiella burnetii Effector Proteins. Front. Cell Infect. Microbiol. 2020, 10, 599762. [Google Scholar] [CrossRef]
- Fu, M.; Zhang, J.; Zhao, M.; Zhang, S.; Dai, L.; Ouyang, X.; Yu, Y.; Wen, B.; Zhou, D.; Sun, Y.; et al. Coxiella burnetii Plasmid Effector B Promotes LC3-II Accumulation and Contributes To Bacterial Virulence in a SCID Mouse Model. Infect. Immun. 2022, 90, e00016–e00022. [Google Scholar] [CrossRef]
- Siadous, F.A.; Cantet, F.; Van Schaik, E.; Burette, M.; Allombert, J.; Lakhani, A.; Bonaventure, B.; Goujon, C.; Samuel, J.; Bonazzi, M.; et al. Coxiella effector protein CvpF subverts RAB26-dependent autophagy to promote vacuole biogenesis and virulence. Autophagy 2021, 17, 706–722. [Google Scholar] [CrossRef] [PubMed]
- Capo, C.; Mege, J.L. Role of Innate and Adaptive Immunity in the Control of Q Fever. In Coxiella burnetii: Recent Advances and New Perspectives in Research of the Q Fever Bacterium; Toman, R., Heinzen, R.A., Samuel, J.E., Mege, J.L., Eds.; Springer: Dordrecht, The Netherlands, 2012; Volume 984, pp. 273–286. [Google Scholar]
- Honstettre, A.; Ghigo, E.; Moynault, A.; Capo, C.; Toman, R.; Akira, S.; Takeuchi, O.; Lepidi, H.; Raoult, D.; Mege, J.-L. Lipopolysaccharide from Coxiella burnetii Is Involved in Bacterial Phagocytosis, Filamentous Actin Reorganization, and Inflammatory Responses through Toll-Like Receptor 4. J. Immunol. 2004, 172, 3695–3703. [Google Scholar] [CrossRef]
- Benoit, M.; Barbarat, B.; Bernard, A.; Olive, D.; Mege, J. Coxiella burnetii, the agent of Q fever, stimulates an atypical M2 activation program in human macrophages. Eur. J. Immunol. 2008, 38, 1065–1070. [Google Scholar] [CrossRef]
- Graham, J.G.; MacDonald, L.J.; Hussain, S.K.; Sharma, U.M.; Kurten, R.C.; Voth, D.E. Virulent Coxiella burnetii pathotypes productively infect primary human alveolar macrophages: Coxiella infection of alveolar macrophages. Cell Microbiol. 2013, 15, 1012–1025. [Google Scholar] [CrossRef]
- Meghari, S.; Bechah, Y.; Capo, C.; Lepidi, H.; Raoult, D.; Murray, P.J.; Mege, J.-L. Persistent Coxiella burnetii Infection in Mice Overexpressing IL-10: An Efficient Model for Chronic Q Fever Pathogenesis. PLoS Pathog 2008, 4, e23. [Google Scholar] [CrossRef] [PubMed]
- Ammerdorffer, A.; Schoffelen, T.; Gresnigt, M.S.; Oosting, M.; Den Brok, M.H.; Abdollahi-Roodsaz, S.; Kanneganti, T.-D.; de Jong, D.J.; van Deuren, M.; Roest, H.-J.; et al. Recognition of Coxiella burnetii by Toll-like Receptors and Nucleotide-Binding Oligomerization Domain-like Receptors. J. Infect. Dis. 2015, 211, 978–987. [Google Scholar] [CrossRef] [PubMed]
- Andoh, M.; Zhang, G.; Russell-Lodrigue, K.E.; Shive, H.R.; Weeks, B.R.; Samuel, J.E. T Cells Are Essential for Bacterial Clearance, and Gamma Interferon, Tumor Necrosis Factor Alpha, and B Cells Are Crucial for Disease Development in Coxiella burnetii Infection in Mice. Infect. Immun. 2007, 75, 3245–3255. [Google Scholar] [CrossRef] [PubMed]
- Gilk, S.D.; Cockrell, D.C.; Luterbach, C.; Hansen, B.; Knodler, L.A.; Ibarra, J.A.; Steele-Mortimer, O.; Heinzen, R.A. Bacterial Colonization of Host Cells in the Absence of Cholesterol. PLoS Pathog. 2013, 9, e1003107. [Google Scholar] [CrossRef]
- Limonard, G.J.M.; Thijsen, S.F.; Bossink, A.W.; Asscheman, A.; Bouwman, J.J.M. Developing a new clinical tool for diagnosing chronic Q fever: The Coxiella ELISPOT: Table 1. FEMS Immunol. Med. Microbiol. 2012, 64, 57–60. [Google Scholar] [CrossRef]
- Brennan, R.E.; Samuel, J.E. Evaluation of Coxiella burnetii Antibiotic Susceptibilities by Real-Time PCR Assay. J. Clin. Microbiol. 2003, 41, 1869–1874. [Google Scholar] [CrossRef] [PubMed]
- Read, A.J.; Erickson, S.; Harmsen, A.G. Role of CD4+ and CD8+ T Cells in Clearance of Primary Pulmonary Infection with Coxiella burnetii. Infect. Immun. 2010, 78, 3019–3026. [Google Scholar] [CrossRef] [PubMed]
- Wiebe, M.E.; Burton, P.R.; Shankel, D.M. Isolation and Characterization of Two Cell Types of Coxiella burneti Phase I. J. Bacteriol. 1972, 110, 368–377. [Google Scholar] [CrossRef]
- Schramek, S.; Mayer, H. Different sugar compositions of lipopolysaccharides isolated from phase I and pure phase II cells of Coxiella burnetii. Infect. Immun. 1982, 38, 53–57. [Google Scholar] [CrossRef]
- Peacock, M.G.; Philip, R.N.; Williams, J.C.; Faulkner, R.S. Serological evaluation of O fever in humans: Enhanced phase I titers of immunoglobulins G and A are diagnostic for Q fever endocarditis. Infect. Immun. 1983, 41, 1089–1098. [Google Scholar] [CrossRef]
- Dupont, H.T.; Thirion, X.; Raoult, D. Q fever serology: Cutoff determination for microimmunofluorescence. Clin. Diagn. Lab. Immunol. 1994, 1, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Fournier, P.E.; Marrie, T.J.; Raoult, D. Diagnosis of Q Fever. J. Clin. Microbiol. 1998, 36, 1823–1834. [Google Scholar] [CrossRef] [PubMed]
- Izzo, A.A.; Marmion, B.P. Variation in interferon-gamma responses to Coxiella burnetii antigens with lymphocytes from vaccinated or naturally infected subjects. Clin. Exp. Immunol. 2008, 94, 507–515. [Google Scholar] [CrossRef]
- Amanna, I.J.; Slifka, M.K. Contributions of humoral and cellular immunity to vaccine-induced protection in humans. Virology 2011, 411, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Sireci, G.; Badami, G.D.; Di Liberto, D.; Blanda, V.; Grippi, F.; Di Paola, L.; Guercio, A.; de la Fuente, J.; Torina, A. Recent Advances on the Innate Immune Response to Coxiella burnetii. Front. Cell Infect. Microbiol. 2021, 11, 754455. [Google Scholar] [CrossRef]
- Schoffelen, T.; Textoris, J.; Bleeker-Rovers, C.P.; Ben Amara, A.; Van Der Meer, J.W.M.; Netea, M.G.; Mege, J.-L.; van Deuren, M.; van de Vosse, E. Intact interferon-γ response against Coxiella burnetii by peripheral blood mononuclear cells in chronic Q fever. Clin. Microbiol. Infect. 2017, 23, 209.e9–209.e15. [Google Scholar] [CrossRef] [PubMed]
- Maurin, M.; Raoult, D. Q fever. Clin. Microbiol. Rev. 1999, 12, 518–553. [Google Scholar] [CrossRef]
- Brooke, R.J.; Kretzschmar, M.E.; Mutters, N.T.; Teunis, P.F. Human dose response relation for airborne exposure to Coxiella burnetii. BMC Infect. Dis. 2013, 13, 488. [Google Scholar] [CrossRef]
- Sobotta, K.; Hillarius, K.; Mager, M.; Kerner, K.; Heydel, C.; Menge, C. Coxiella burnetii Infects Primary Bovine Macrophages and Limits Their Host Cell Response. Infect. Immun. 2016, 84, 1722–1734. [Google Scholar] [CrossRef] [PubMed]
- Raoult, D.; Marrie, T.; Mege, J. Natural history and pathophysiology of Q fever. Lancet Infect. Dis. 2005, 5, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Westlake, P.; Price, L.M.; Russell, M.; Kelly, J.K. The Pathology of Q Fever Hepatitis: A Case Diagnosed by Liver Biopsy. J. Clin. Gastroenterol. 1987, 9, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Schneeberger, P.M.; Wintenberger, C.; van der Hoek, W.; Stahl, J.P. Q fever in the Netherlands—2007–2010: What we learned from the largest outbreak ever. Med. Mal. Infect. 2014, 44, 339–353. [Google Scholar] [CrossRef] [PubMed]
- Szablewski, V.; Costes, V.; Rousset, T.; Mania, E.; El Aoufi, N. FièvreQ: Localisationmédullaire d’un granulomecaractéristique. Ann. Pathol. 2012, 32, 263–266. [Google Scholar] [CrossRef]
- Palmela, C.; Badura, R.; Valadas, E. cute Q fever in Portugal. Epidemiological and clinical features of 32 hospitalized patients. GERMS 2012, 2, 43–59. [Google Scholar] [CrossRef] [PubMed]
- Melenotte, C.; Million, M.; Raoult, D. New insights in Coxiella burnetii infection: Diagnosis and therapeutic update. Expert. Rev. Anti Infect. Ther. 2020, 18, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Million, M.; Thuny, F.; Richet, H.; Raoult, D. Long-term outcome of Q fever endocarditis: A 26-year personal survey. Lancet Infect. Dis. 2010, 10, 527–535. [Google Scholar] [CrossRef]
- Brouqui, P. Chronic Q Fever: Ninety-two Cases from France, Including 27 Cases Without Endocarditis. Arch. Intern. Med. 1993, 153, 642–648. [Google Scholar] [CrossRef]
- Lepidi, H.; Fournier, P.E.; Karcher, H.; Schneider, T.; Raoult, D. Immunohistochemical detection of Coxiella burnetii in an aortic graft. Clin. Microbiol. Infect. 2009, 15 (Suppl. S2), 171–172. [Google Scholar] [CrossRef]
- Botelho-Nevers, E.; Fournier, P.E.; Richet, H.; Fenollar, F.; Lepidi, H.; Foucault, C.; Branchereau, A.; Piquet, P.; Maurin, M.; Raoult, D. Coxiella burnetii infection of aortic aneurysms or vascular grafts: Report of 30 new cases and evaluation of outcome. Eur. J. Clin. Microbiol. Infect. Dis. 2007, 26, 635–640. [Google Scholar] [CrossRef]
- Benslimani, A.; Fenollar, F.; Lepidi, H.; Raoult, D. Bacterial Zoonoses and Infective Endocarditis, Algeria. Emerg. Infect. Dis. 2005, 11, 216–224. [Google Scholar] [CrossRef]
- Hagenaars, J.C.J.P.; Wever, P.C.; Van Petersen, A.S.; Lestrade, P.J.; De Jager-Leclercq, M.G.L.; Hermans, M.H.A.; Moll, F.L.; Koning, O.H.; Renders, N.H. Estimated prevalence of chronic Q fever among Coxiella burnetii seropositive patients with an abdominal aortic/iliac aneurysm or aorto-iliac reconstruction after a large Dutch Q fever outbreak. J. Infect. 2014, 69, 154–160. [Google Scholar] [CrossRef]
- Ghigo, E.; Pretat, L.; Desnues, B.; Capo, C.; Raoult, D.; Mege, J. Intracellular Life of Coxiella burnetii in Macrophages: An Update. Ann. NY Acad. Sci. 2009, 1166, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Ka, M.B.; Mezouar, S.; Ben Amara, A.; Raoult, D.; Ghigo, E.; Olive, D.; Mege, J.-L. Coxiella burnetii Induces Inflammatory Interferon-Like Signature in Plasmacytoid Dendritic Cells: A New Feature of Immune Response in Q Fever. Front. Cell Infect. Microbiol. 2016, 6, 70. Available online: http://journal.frontiersin.org/Article/10.3389/fcimb.2016.00070/abstract (accessed on 20 November 2024). [CrossRef]
- Dellacasagrande, J.; Ghigo, E.; Machergui-El, S.; Hammami Toman, R.; Raoult, D.; Capo, T.; Mege, J.-L. αv β3 Integrin and Bacterial Lipopolysaccharide Are Involved in Coxiella burnetii -Stimulated Production of Tumor Necrosis Factor by Human Monocytes. Infect. Immun. 2000, 68, 5673–5678. [Google Scholar] [CrossRef] [PubMed]
- Eldin, C.; Angelakis, E.; Renvoisé, A.; Raoult, D. Coxiella burnetii DNA, But Not Viable Bacteria, in Dairy Products in France. Am. Soc. Trop. Med. Hyg. 2013, 88, 765–769. [Google Scholar] [CrossRef] [PubMed]
- Ben Amara, A.; Ghigo, E.; Le Priol, Y.; Lépolard, C.; Salcedo, S.P.; Lemichez, E.; Bretelle, F.; Capo, C.; Mege, J.-L. Coxiella burnetii, the Agent of Q Fever, Replicates within Trophoblasts and Induces a Unique Transcriptional Response. PLoS ONE 2010, 5, e15315. [Google Scholar] [CrossRef] [PubMed]
- Gilot, B.; Pautou, G.; Moncada, E.; Ain, G. Ecological study of Ixodes ricinus (Linné, 1758) (Acarina, Ixodoides) in southeastern France. Acta Trop. 1975, 32, 232–258. [Google Scholar] [PubMed]
- Delaby, A.; Gorvel, L.; Espinosa, L.; Lépolard, C.; Raoult, D.; Ghigo, E.; Capo, C.; Mege, J.-L. Defective Monocyte Dynamics in Q Fever Granuloma Deficiency. J. Infect. Dis. 2012, 205, 1086–1094. [Google Scholar] [CrossRef] [PubMed]
- van Loenhout, J.A.F.; van Tiel, H.H.M.M.; van den Heuvel, J.; Vercoulen, J.H.; Bor, H.; van der Velden, K.; Paget, W.J.; Hautvast, J.L.A. Serious long-term health consequences of Q-fever and Legionnaires’ disease. J. Infect. 2014, 68, 527–533. [Google Scholar] [CrossRef] [PubMed]
- McQuiston, J.H.; Childs, J.E. Q Fever in Humans and Animals in the United States. Vector Borne Zoonotic Dis. 2002, 2, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Scholzen, A.; Richard, G.; Moise, L.; Baeten, L.A.; Reeves, P.M.; Martin, W.D.; Brauns, T.A.; Boyle, C.M.; Paul, S.R.; Bucala, R.; et al. Promiscuous Coxiella burnetii CD4 Epitope Clusters Associated with Human Recall Responses Are Candidates for a Novel T-Cell Targeted Multi-Epitope Q Fever Vaccine. Front. Immunol. 2019, 10, 207. [Google Scholar] [CrossRef]
- Waag, D.M. Coxiella burnetii: Host and bacterial responses to infection. Vaccine 2007, 25, 7288–7295. [Google Scholar] [CrossRef]
- Sluder, A.E.; Raju Paul, S.; Moise, L.; Dold, C.; Richard, G.; Silva-Reyes, L.; Baeten, L.A.; Scholzen, A.; Reeves, P.M.; Pollard, A.J.; et al. Evaluation of a Human T Cell-Targeted Multi-Epitope Vaccine for Q Fever in Animal Models of Coxiella burnetii Immunity. Front. Immunol. 2022, 13, 901372. [Google Scholar] [CrossRef]
- Gilkes, A.P.; Albin, T.J.; Manna, S.; Supnet, M.; Ruiz, S.; Tom, J.; Badten, A.J.; Jain, A.; Nakajima, R.; Felgner, J.; et al. Tuning Subunit Vaccines with Novel TLR Triagonist Adjuvants to Generate Protective Immune Responses against Coxiella burnetii. J. Immunol. 2020, 204, 611–621. [Google Scholar] [CrossRef]
- Gregory, A.E.; Van Schaik, E.J.; Russell-Lodrigue, K.E.; Fratzke, A.P.; Samuel, J.E. Coxiella burnetii Intratracheal Aerosol Infection Model in Mice, Guinea Pigs, and Nonhuman Primates. Infect. Immun. 2019, 87, e00178-19. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Darton, T.C.; Kimmelman, J. Decision analysis approach to risk/benefit evaluation in the ethical review of controlled human infection studies. Bioethics 2020, 34, 764–770. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Samuel, J.E. Vaccines against Coxiella infection. Expert. Rev. Vaccines 2004, 3, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Smadel, J.E.; Snyder, M.J.; Robbins, F.C. Vaccination against Q fever. Am. J. Hyg. 1948, 47, 71–81. [Google Scholar]
- Bell, J.F.; Lackman, D.B.; Meis, A.; Hadlow, W.J. Recurrent Reaction of Site of Q Fever Vaccination in a Sensitized Person. Mil. Med. 1964, 129, 591–595. [Google Scholar] [CrossRef] [PubMed]
- Kazár, J.; Brezina, R.; Palanová, A.; Tvrdá, B.; Schramek, S. Immunogenicity and reactogenicity of a Q fever chemovaccine in persons professionally exposed to Q fever in Czechoslovakia. Bull. World Health Organ. 1982, 60, 389–394. [Google Scholar]
- Gidding, H.F.; Wallace, C.; Lawrence, G.L.; McIntyre, P.B. Australia’s national Q fever vaccination program. Vaccine 2009, 27, 2037–2041. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.M.; Chen, C.; Rowin, K.; Mertens, K.; Galvan, G.; Zhi, H.; Dealing, C.M.; Roman, V.A.; Banga, S.; Tan, Y.; et al. Identification of Coxiella burnetii Type IV Secretion Substrates Required for Intracellular Replication and Coxiella-Containing Vacuole Formation. J. Bacteriol. 2013, 195, 3914–3924. [Google Scholar] [CrossRef] [PubMed]
- Beare, P.A.; Gilk, S.D.; Larson, C.L.; Hill, J.; Stead, C.M.; Omsland, A.; Cockrell, D.C.; Howe, D.; Voth, D.E.; Heinzen, R.A. Dot/Icm Type IVB Secretion System Requirements for Coxiella burnetii Growth in Human Macrophages. mBio 2011, 2, e00175-11. [Google Scholar] [CrossRef] [PubMed]
- Van Schaik, E.J.; Chen, C.; Mertens, K.; Weber, M.M.; Samuel, J.E. Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii. Nat. Rev. Microbiol. 2013, 11, 561–573. [Google Scholar] [CrossRef] [PubMed]
- Roest, H.I.J.; Tilburg, J.J.H.C.; van der Hoek, W.; Vellema, P.; van Zijderveld, F.G.; Klaassen, C.H.W.; Raoult, D. The Q fever epidemic in The Netherlands: History, onset, response and reflection. Epidemiol. Infect. 2011, 139, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kersh, G.J.; Fitzpatrick, K.A.; Self, J.S.; Biggerstaff, B.J.; Massung, R.F. Long-Term Immune Responses to Coxiella burnetii after Vaccination. Clin. Vaccine Immunol. 2013, 20, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Fontes, S.D.S.; Maia, F.D.M.; Ataides, L.S.; Conte, F.P.; Lima-Junior, J.D.C.; Rozental, T.; da Silva Assis, M.R.; Júnior, A.A.P.; Fernandes, J.; de Lemos, E.R.S.; et al. Identification of Immunogenic Linear B-Cell Epitopes in C. burnetii Outer Membrane Proteins Using Immunoinformatics Approaches Reveals Potential Targets of Persistent Infections. Pathogens 2021, 10, 1250. [Google Scholar] [CrossRef]
- Fries, L.F.; Waag, D.M.; Williams, J.C. Safety and immunogenicity in human volunteers of a chloroform-methanol residue vaccine for Q fever. Infect. Immun. 1993, 61, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Hu, X.; Fu, M.; Dai, L.; Yu, Y.; Luo, W.; Zhao, Z.; Lu, Z.; Du, Z.; Zhou, D.; et al. Enhanced protection against Q fever in BALB/c mice elicited by immunization of chloroform-methanol residue of Coxiella burnetii via intratracheal inoculation. Vaccine 2019, 37, 6076–6084. [Google Scholar] [CrossRef]
- Anacker, R.L.; Lackman, D.B.; Pickens, E.G.; Ribi, E. Antigenic and Skin-Reactive Properties of Fractions of Coxiella burnetii. J. Immunol. 1962, 89, 145–153. [Google Scholar] [CrossRef]
- Sluder, A.E.; Poznansky, M.C. Q fever vaccine development: Challenges and progress in balancing safety and efficacy. Cell Rep. Med. 2021, 2, 100480. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, S.; Kumar, R.; Sharma, A.K.; Singh, B.; Sharma, D. Computational studies on metabolic pathways of Coxiella burnetii to combat Q fever: A roadmap to vaccine development. Microb. Pathog. 2025, 198, 107136. [Google Scholar] [CrossRef]
- Fratzke, A.P.; van Schaik, E.J.; Samuel, J.E. Immunogenicity and Reactogenicity in Q Fever Vaccine Development. Front. Immunol. 2022, 13, 886810. [Google Scholar] [CrossRef] [PubMed]
- Bakhteyari, H.; Jahangiri, R.; Nazifi, N.; Kakanezhadifard, A.; Soleimani, Z.; Forouharmehr, A.; Chegeni, S.A.; Jaydari, A. Cloning and Expression of Com1 and OmpH Genes of Coxiella burnetii in Periplasmic Compartment of Escherichia coli with Purpose of Recombinant Subunit Vaccine Production. Arch. Razi Inst. 2019, 74, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Van Hoeven, N.; Joshi, S.W.; Nana, G.I.; Bosco-Lauth, A.; Fox, C.; Bowen, R.A.; Clements, D.E.; Martyak, T.; Parks, D.E.; Baldwin, S.; et al. A Novel Synthetic TLR-4 Agonist Adjuvant Increases the Protective Response to a Clinical-Stage West Nile Virus Vaccine Antigen in Multiple Formulations. PLoS ONE 2016, 11, e0149610. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.C.; Peacock, M.G.; McCaul, T.F. Immunological and biological characterization of Coxiella burnetii, phases I and II, separated from host components. Infect. Immun. 1981, 32, 840–851. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, Y.; Mitchell, W.J.; Zhang, G. Development of a Lipopolysaccharide-Targeted Peptide Mimic Vaccine against Q Fever. J. Immunol. 2012, 189, 4909–4920. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, M.; Cong, H. Advances in the study of HLA-restricted epitope vaccines. Hum. Vaccines Immunother. 2013, 9, 2566–2577. [Google Scholar] [CrossRef]
- Sam, G.; Plain, K.; Chen, S.; Islam, A.; Westman, M.E.; Marsh, I.; Stenos, J.; Graves, S.R.; Rehm, B.H.A. Synthetic Particulate Subunit Vaccines for the Prevention of Q Fever. Adv. Healthc. Mater. 2024, 13, e2302351. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Amin, A.; Farid, A.; Ullah, A.; Waris, A.; Shinwari, K.; Hussain, Y.; Alsharif, K.F.; Alzahrani, K.J.; Khan, H. Recent Advances in Genomics-Based Approaches for the Development of Intracellular Bacterial Pathogen Vaccines. Pharmaceutics 2022, 15, 152. [Google Scholar] [CrossRef] [PubMed]
- Filipić, B.; Pantelić, I.; Nikolić, I.; Majhen, D.; Stojić-Vukanić, Z.; Savić, S.; Krajišnik, D. Nanoparticle-Based Adjuvants and Delivery Systems for Modern Vaccines. Vaccines 2023, 11, 1172. [Google Scholar] [CrossRef]
- Kozak, M.; Hu, J. DNA Vaccines: Their Formulations, Engineering and Delivery. Vaccines 2024, 12, 71. [Google Scholar] [CrossRef] [PubMed]
- Gurunathan, S.; Klinman, D.M.; Seder, R.A. DNA Vaccines: Immunology, Application, and Optimization. Annu. Rev. Immunol. 2000, 18, 927–974. [Google Scholar] [CrossRef]
- Donnelly, J.J.; Ulmer, J.B.; Shiver, J.W.; Liu, M.A. DNA Vaccines. Annu. Rev. Immunol. 1997, 15, 617–648. [Google Scholar] [CrossRef] [PubMed]
- Schirmbeck, R.; Reimann, J. Revealing the Potential of DNA-Based Vaccination: Lessons Learned from the Hepatitis B Virus Surface Antigen. Biol. Chem. 2001, 382, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Petrovsky, N. Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert. Rev. Vaccines 2016, 15, 313–329. [Google Scholar] [CrossRef]
- Maruggi, G.; Ulmer, J.B.; Rappuoli, R.; Yu, D. Self-amplifying mRNA-Based Vaccine Technology and Its Mode of Action. In mRNA Vaccines; Yu, D., Petsch, B., Eds.; Springer International Publishing: Cham, Switzerland, 2021; Volume 440, pp. 31–70. [Google Scholar] [CrossRef]
- Brito, L.A.; Kommareddy, S.; Maione, D.; Uematsu, Y.; Giovani, C.; BerlandaScorza, F.; Otten, G.R.; Yu, D.; Mandl, C.W.; Mason, P.W.; et al. Self-Amplifying mRNA Vaccines. In Advances in Genetics; Elsevier: Amsterdam, The Netherlands, 2015; pp. 179–233. [Google Scholar]
- Karam, M.; Daoud, G. mRNA vaccines: Past, present, future. Asian J. Pharm. Sci. 2022, 17, 491–522. [Google Scholar] [CrossRef]
- Ho, W.; Gao, M.; Li, F.; Li, Z.; Zhang, X.; Xu, X. Next-Generation Vaccines: Nanoparticle-Mediated DNA and mRNA Delivery. Adv. Healthc. Mater. 2021, 10, 2001812. [Google Scholar] [CrossRef]
- Gerhardt, A.; Voigt, E.; Archer, M.; Reed, S.; Larson, E.; Van Hoeven, N.; Kramer, R.; Fox, C.; Casper, C. A flexible, thermostable nanostructured lipid carrier platform for RNA vaccine delivery. Mol. Ther. Methods Clin. Dev. 2022, 25, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Jaydari, A.; Nazifi, N.; Forouharmehr, A. Computational design of a novel multi-epitope vaccine against Coxiella burnetii. Hum. Immunol. 2020, 81, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Z.; Hayat, C.; Shahab, M.; Sikandar, R.; Bibi, H.; Kamil, A.; Zheng, G.; Liang, C. Immunoinformatics and Reverse Vaccinology Driven Predication of a Multi-epitope Vaccine against Borrelia burgdorferi and Validation through in silico Cloning and Immune Simulation. Curr. Pharm. Des. 2023, 29, 1504–1515. [Google Scholar] [PubMed]
- Toth, I.; Simerska, P.; Fujita, Y. Recent Advances in Design and Synthesis of Self-Adjuvanting Lipopeptide Vaccines. Int. J. Pept. Res. Ther. 2008, 14, 333–340. [Google Scholar] [CrossRef]
- Andersson, L.; Blomberg, L.; Flegel, M.; Lepsa, L.; Nilsson, B.; Verlander, M. Large-scale synthesis of peptides. Biopolymers 2000, 55, 227–250. [Google Scholar] [CrossRef]
- Jabarzadeh, S.; Samiminemati, A.; Zeinoddini, M. Кoнструирoвание in silico нoвoй мультиэпитoпнoй кандидатнoй пептиднoй вакцины прoтив Q-лихoрадки. Мoлекулярная биoлoгия 2022, 56, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Sahdev, P.; Ochyl, L.J.; Moon, J.J. Biomaterials for Nanoparticle Vaccine Delivery Systems. Pharm. Res. 2014, 31, 2563–2582. [Google Scholar] [CrossRef] [PubMed]
- Jan, S.; Gregory, A.; Felgner, J.; Davies, J.; Nakajima, R.; Jasinskas, A.; Davies, D.H.; Felgner, P.L. Assessing Immunogenicity of Vaccines and Adjuvant Combinations for Q Fever. J. Immunol. 2022, 208 (Suppl. S1), 181.03. [Google Scholar] [CrossRef]
- O’Hagan, D.T.; Valiante, N.M. Recent advances in the discovery and delivery of vaccine adjuvants. Nat. Rev. Drug Discov. 2003, 2, 727–735. [Google Scholar] [CrossRef]
- Charlton Hume, H.K.; Lua, L.H.L. Platform technologies for modern vaccine manufacturing. Vaccine 2017, 35, 4480–4485. [Google Scholar] [CrossRef]
- Verdecia, M.; Kokai-Kun, J.F.; Kibbey, M.; Acharya, S.; Venema, J.; Atouf, F. COVID-19 vaccine platforms: Delivering on a promise? Hum. Vaccines Immunother. 2021, 17, 2873–2893. [Google Scholar] [CrossRef] [PubMed]
- Ackland, J.R.; Worswick, D.A.; Marmion, B.P. Vaccine prophylaxis of Q fever. A follow-up study of the efficacy of Q-Vax (CSL) 1985-1990. Med. J. Aust. 1994, 160, 704–708. [Google Scholar] [CrossRef] [PubMed]
- Kermode, M.; Yong, K.; Hurley, S.; Marmion, B. An economic evaluation of increased uptake in Q fever vaccination among meat and agricultural industry workers following implementation of the National Q Fever Management Program. Aust. N. Z. J. Public Health 2003, 27, 390–398. [Google Scholar] [CrossRef]
- Schimmer, B.; Notermans, D.W.; Harms, M.G.; Reimerink, J.H.; Bakker, J.; Schneeberger, P.; Mollema, L.; Teunis, P.; van Pelt, W.; van Duynhoven, Y. Low seroprevalence of Q fever in The Netherlands prior to a series of large outbreaks. Epidemiol. Infect. 2012, 140, 27–35. [Google Scholar] [CrossRef]
Vaccine Type | Development Stage | Advantages | Limitations | Immune Response | Safety Profile | Manufacturing Considerations |
---|---|---|---|---|---|---|
Whole-Cell Vaccines (Q-VAX) | Licensed (Australia) | Proven efficacy (>95%) | Requires pre-screening | Strong humoral and cellular immunity | Local reactions common | Requires BSL-3 facilities |
Long-term protection | High reactogenicity | 80–82% seroconversion | DTH in pre-sensitized individuals | Strict quality control | ||
Established manufacturing | Complex production | Robust T-cell response | Mandatory screening | Complex purification | ||
Subunit Vaccines | Clinical Trials | Reduced reactogenicity | Variable protection | Targeted immune response | Improved safety profile | Simpler production |
Defined composition | Requires adjuvants | IgG2c-skewed antibodies | Minimal adverse events | Standard facilities | ||
Scalable production | Multiple doses needed | Lower cellular response | No pre-screening required | Consistent quality | ||
DNA/RNA Vaccines | Preclinical/Early Clinical | No infectious material | Delivery challenges | Balanced immune response | Generally safe | Standard facilities |
Stable storage | Limited human data | Strong T-cell activation | No pre-screening required | Scalable process | ||
Precise design | Cost considerations | Sustained expression | Limited data available | Easier quality control | ||
Multi-epitope Vaccines | Preclinical | Rational design | Complex design | Broad immune response | Promising safety profile | Consistent production |
Multiple targets | Limited data | Enhanced memory cells | Requires validation | High purity required | ||
Reduced reactogenicity | Manufacturing complexity | Multiple epitope targeting | No pre-screening required | Complex quality control |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christodoulou, M.; Papagiannis, D. Q Fever Vaccines: Unveiling the Historical Journey and Contemporary Innovations in Vaccine Development. Vaccines 2025, 13, 151. https://doi.org/10.3390/vaccines13020151
Christodoulou M, Papagiannis D. Q Fever Vaccines: Unveiling the Historical Journey and Contemporary Innovations in Vaccine Development. Vaccines. 2025; 13(2):151. https://doi.org/10.3390/vaccines13020151
Chicago/Turabian StyleChristodoulou, Magdalini, and Dimitrios Papagiannis. 2025. "Q Fever Vaccines: Unveiling the Historical Journey and Contemporary Innovations in Vaccine Development" Vaccines 13, no. 2: 151. https://doi.org/10.3390/vaccines13020151
APA StyleChristodoulou, M., & Papagiannis, D. (2025). Q Fever Vaccines: Unveiling the Historical Journey and Contemporary Innovations in Vaccine Development. Vaccines, 13(2), 151. https://doi.org/10.3390/vaccines13020151