Observations of Wart Clearance Following COVID-19 Vaccination: Coincidence or Missed Immunologic Signals?
Abstract
1. Introduction
2. Case Presentations
2.1. Case 1
2.2. Case 2
2.3. Case 3
2.4. Case 4
2.5. Case 5
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, Q.; Fathy, R.; McMahon, D.E.; Freeman, E.E. COVID-19 Vaccines and the Skin: The Landscape of Cutaneous Vaccine Reactions Worldwide. Dermatol. Clin. 2021, 39, 653–673. [Google Scholar] [CrossRef]
- Gambichler, T.; Boms, S.; Susok, L.; Dickel, H.; Finis, C.; Abu Rached, N.; Barras, M.; Stücker, M.; Kasakovski, D. Cutaneous findings following COVID-19 vaccination: Review of world literature and own experience. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 172–180. (In English) [Google Scholar] [CrossRef]
- Qaderi, K.; Golezar, M.H.; Mardani, A.; Mallah, M.A.; Moradi, B.; Kavoussi, H.; Shamsabadi, A.; Golezar, S. Cutaneous adverse reactions of COVID-19 vaccines: A systematic review. Dermatol. Ther. 2022, 35, e15391. (In English) [Google Scholar] [CrossRef]
- Avallone, G.; Quaglino, P.; Cavallo, F.; Roccuzzo, G.; Ribero, S.; Zalaudek, I.; Conforti, C. SARS-CoV-2 vaccine-related cutaneous manifestations: A systematic review. Int. J. Dermatol. 2022, 61, 1187–1204. (In English) [Google Scholar] [CrossRef]
- Steinbach, A.; Riemer, A.B. Immune evasion mechanisms of human papillomavirus: An update. Int. J. Cancer 2018, 142, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Płaszczyńska, A.; Sławińska, M.; Sobjanek, M. Regression of common viral warts after ChAdOx1-S COVID-19 vaccine. J. Eur. Acad. Dermatol. Venereol. 2022, 36, e162–e164. (In English) [Google Scholar] [CrossRef] [PubMed]
- Dalamaga, M.; Tsilingiris, D.; Katoulis, A. Regression of common viral warts in an immunocompetent child and an immunosuppressed adult relative after mRNA BNT162b2 COVID-19 vaccine. J. Eur. Acad. Dermatol. Venereol. 2023, 37, e125–e126. (In English) [Google Scholar] [CrossRef]
- Mohta, A. Clearance of recalcitrant verruca plana following COVID-19 vaccination. JAAD Int. 2022, 8, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Bressler, M.Y.; Delgado, A.R.; Charlie, N. Resolution of recalcitrant verruca following Moderna COVID-19 vaccination in a person with HIV. JAAD Case Rep. 2023, 31, 118–120. [Google Scholar] [CrossRef]
- Erkayman, M.H.; Bilen, H. Clearance of longstanding treatment-resistant warts during COVID-19 in a transplant recipient. Transpl. Infect. Dis. 2021, 23, e13572. (In English) [Google Scholar] [CrossRef]
- Barzallo, D.; Kusari, A.; Leslie, K.S. Recalcitrant verruca vulgaris regression following severe SARS-CoV-2 infection. JAAD Case Rep. 2022, 28, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Arunachalam, P.S.; Scott, M.K.D.; Hagan, T.; Li, C.; Feng, Y.; Wimmers, F.; Grigoryan, L.; Trisal, M.; Edara, V.V.; Lai, L.; et al. Systems vaccinology of the BNT162b2 mRNA vaccine in humans. Nature 2021, 596, 410–416. (In English) [Google Scholar] [CrossRef] [PubMed]
- Chau, A.S.; Weber, A.G.; Maria, N.I.; Narain, S.; Liu, A.; Hajizadeh, N.; Malhotra, P.; Bloom, O.; Marder, G.; Kaplan, B. The Longitudinal Immune Response to Coronavirus Disease 2019: Chasing the Cytokine Storm. Arthritis Rheumatol. 2021, 73, 23–35. (In English) [Google Scholar] [CrossRef]
- Piccolo, V.; Bassi, A.; Mazzatenta, C.; Argenziano, G.; Cutrone, M.; Grimalt, R.; Russo, T. COVID vaccine-induced reaction around molluscum contagiosum with secondary partial clearance of lesions. J. Eur. Acad. Dermatol. Venereol. 2022, 36, e335–e337. [Google Scholar] [CrossRef]
- Ruffo di Calabria, V.; Verdelli, A.; Quintarelli, L.; Corrà, A.; Mariotti, E.B.; Aimo, C.; Del Bianco, E.; Bianchi, B.; Maio, V.; Massi, D.; et al. Case Report: Resolution of Lichen Planus Pemphigoides as an unexpected outcome of SARS-CoV-2 infection. Front. Immunol. 2023, 14, 1222459. (In English) [Google Scholar] [CrossRef]
- Cyrus, N.; Blechman, A.B.; Leboeuf, M.; Belyaeva, E.A.; de Koning, M.N.C.; Quint, K.D.; Stern, J.J. Effect of Quadrivalent Human Papillomavirus Vaccination on Oral Squamous Cell Papillomas. JAMA Dermatol. 2015, 151, 1359–1363. [Google Scholar] [CrossRef]
- Nofal, A.; Marei, A.; Ibrahim, A.M.; Nofal, E.; Nabil, M. Intralesional versus intramuscular bivalent human papillomavirus vaccine in the treatment of recalcitrant common warts. J. Am. Acad. Dermatol. 2020, 82, 94–100. (In English) [Google Scholar] [CrossRef]
- Ciccarese, G.; Herzum, A.; Serviddio, G.; Occella, C.; Parodi, A.; Drago, F. Efficacy of Human Papillomavirus Vaccines for Recalcitrant Anogenital and Oral Warts. J. Clin. Med. 2023, 12, 7317. (In English) [Google Scholar] [CrossRef]
- Saadeh, D.; Kurban, M.; Abbas, O. Plasmacytoid dendritic cell and type I interferons as possible explanation for clearance of longstanding warts during COVID-19 in a transplant patient, reply to Erkayman et al. Transpl. Infect. Dis. 2021, 23, e13585. (In English) [Google Scholar] [CrossRef]
- Becker, J.; Kalinke, U. Toll-like receptors matter: Plasmacytoid dendritic cells in COVID-19. EMBO J. 2022, 41, e111208. (In English) [Google Scholar] [CrossRef] [PubMed]
- Onodi, F.; Bonnet-Madin, L.; Meertens, L.; Karpf, L.; Poirot, J.; Zhang, S.-Y.; Picard, C.; Puel, A.; Jouanguy, E.; Zhang, Q.; et al. SARS-CoV-2 induces human plasmacytoid predendritic cell diversification via UNC93B and IRAK4. J. Exp. Med. 2021, 218, e20201387. (In English) [Google Scholar] [CrossRef] [PubMed]
- Saadeh, D.; Kurban, M.; Abbas, O. Plasmacytoid dendritic cells and type I interferon in the immunological response against warts. Clin. Exp. Dermatol. 2017, 42, 857–862. (In English) [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhu, X.; Han, R.; Zhou, Q.; Cheng, H. Expressionof langerhans cell and plasmacytoid dendritic cell markers, and toll-like receptor 7/9 signaling pathway proteins in verruca vulgaris lesions. Medicine 2020, 99, e19214. (In English) [Google Scholar] [CrossRef]
- Venet, M.; Ribeiro, M.S.; Décembre, E.; Bellomo, A.; Joshi, G.; Nuovo, C.; Villard, M.; Cluet, D.; Perret, M.; Pescamona, R.; et al. Severe COVID-19 patients have impaired plasmacytoid dendritic cell-mediated control of SARS-CoV-2. Nat. Commun. 2023, 14, 694. (In English) [Google Scholar] [CrossRef]
- Cai, C.; Pham, T.N.Q.; Adam, D.; Brochiero, E.; Cohen, É.A. Sensing of SARS-CoV-2-infected cells by plasmacytoid dendritic cells is modulated via an interplay between CD54/ICAM-1 and CD11a/LFA-1 αL integrin. J. Virol. 2025, 99, e0123524. (In English) [Google Scholar] [CrossRef] [PubMed]
- He, S.; Liu, S.-Q.; Teng, X.-Y.; He, J.-Y.; Liu, Y.; Gao, J.-H.; Wu, Y.; Hu, W.; Dong, Z.-J.; Bei, J.; et al. Comparative single-cell RNA sequencing analysis of immune response to inactivated vaccine and natural SARS-CoV-2 infection. J. Med. Virol. 2024, 96, e29577. (In English) [Google Scholar] [CrossRef]
- Peng, P.; Deng, H.; Li, Z.; Chen, Y.; Fang, L.; Hu, J.; Wu, K.; Xue, J.; Wang, D.; Liu, B.; et al. Distinct immune responses in the early phase to natural SARS-CoV-2 infection or vaccination. J. Med. Virol. 2022, 94, 5691–5701. (In English) [Google Scholar] [CrossRef]
- Nofal, A.; Salah, E.; Nofal, E.; Yosef, A. Intralesional antigen immunotherapy for the treatment of warts: Current concepts and future prospects. Am. J. Clin. Dermatol. 2013, 14, 253–260. (In English) [Google Scholar] [CrossRef]
- Eldahshan, R.M.; Ashry, W.M.O.; Elsaie, M.L. Comparative study between intralesional injection of MMR, BCG, and candida albicans antigen in treatment of multiple recalcitrant warts. J. Cosmet. Dermatol. 2022, 21, 1120–1126. (In English) [Google Scholar] [CrossRef]
- Mboumba Bouassa, R.S.; Péré, H.; Jenabian, M.A.; Veyer, D.; Meye, J.-F.; Touzé, A.; Bélec, L. Natural and vaccine-induced B cell-derived systemic and mucosal humoral immunity to human papillomavirus. Expert Rev. Anti-Infect. Ther. 2020, 18, 579–607. (In English) [Google Scholar] [CrossRef]
- Maldonado, L.; Teague, J.E.; Morrow, M.P.; Jotova, I.; Wu, T.C.; Wang, C.; Desmarais, C.; Boyer, J.D.; Tycko, B.; Robins, H.S.; et al. Intramuscular therapeutic vaccination targeting HPV16 induces T cell responses that localize in mucosal lesions. Sci. Transl. Med. 2014, 6, 221ra13. (In English) [Google Scholar] [CrossRef] [PubMed]
- Workowski, K.A.; Bachmann, L.H.; Chan, P.A.; Johnston, C.M.; Muzny, C.A.; Park, I.; Reno, H.; Zenilman, J.M.; Bolan, G.A. Sexually Transmitted Infections Treatment Guidelines, 2021. MMWR Recomm. Rep. 2021, 70, 1–187. (In English) [Google Scholar] [CrossRef] [PubMed]
- Cazzato, G.; Romita, P.; Foti, C.; Lobreglio, D.; Trilli, I.; Colagrande, A.; Ingravallo, G.; Resta, L. Development of Flat Warts on the Cheeks after BioNTech-Pfizer BNT162b2 Vaccine: Is There a Correlation? Vaccines 2022, 10, 532. [Google Scholar] [CrossRef] [PubMed]
- Herr, H.W.; Morales, A. History of bacillus Calmette-Guerin and bladder cancer: An immunotherapy success story. J. Urol. 2008, 179, 53–56. (In English) [Google Scholar] [CrossRef]
| Age, Gender | Immuno-Compromised? | Location of Lesions d | Duration of Lesions (Years) | Previous Therapies | Interim Medical History Changes | Vaccine Received | Dose Triggering Clearance | Time to Onset of Clearance a | Duration of Sustained Clearance (Months) b |
|---|---|---|---|---|---|---|---|---|---|
| 28, Female [6] | No | Thumb, fingers | 2 | Mechanical self-removal, over-the-counter freezing spray | Began taking biotin 2 weeks after second dose | ChAdOx1-S (AstraZeneca®, Cambridge, UK) | 2 | 3 weeks | 4 |
| 12, Female [7] | No | Periungual, hands | 4 | Formic acid, cryotherapy | N/A | mRNA BNT162b2 (Pfizer-BioNTech®, New York, NY, USA) | 2 | 3 weeks | 8 |
| 77, Female [7] | Yes (unspecified) | Fingers, hands | 8 | Untreated | N/A | mRNA BNT162b2 (Pfizer-BioNTech®) | 3 c | 4 weeks | 8 |
| 27, Male [8] | No | Mandible, temple, neck | 1 | Radiofrequency ablation | N/A | ChAdOx1-S (AstraZeneca®) | 2 | 10 days | 3 |
| 63, Male [9] | Yes (HIV) | Hands, periungual, feet | 10 | Cryotherapy, topical 5-fluorouracil, topical imiquimod, intralesional bleomycin, topical cidofovir, acitretin | N/A | mRNA-1273 (Moderna®, Cambridge, MA, USA) | 2 | 2 weeks | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.W.; Nelson, C.A.; Forman, H.P. Observations of Wart Clearance Following COVID-19 Vaccination: Coincidence or Missed Immunologic Signals? Vaccines 2025, 13, 1081. https://doi.org/10.3390/vaccines13111081
Sun QW, Nelson CA, Forman HP. Observations of Wart Clearance Following COVID-19 Vaccination: Coincidence or Missed Immunologic Signals? Vaccines. 2025; 13(11):1081. https://doi.org/10.3390/vaccines13111081
Chicago/Turabian StyleSun, Qiwei Wilton, Caroline A. Nelson, and Howard P. Forman. 2025. "Observations of Wart Clearance Following COVID-19 Vaccination: Coincidence or Missed Immunologic Signals?" Vaccines 13, no. 11: 1081. https://doi.org/10.3390/vaccines13111081
APA StyleSun, Q. W., Nelson, C. A., & Forman, H. P. (2025). Observations of Wart Clearance Following COVID-19 Vaccination: Coincidence or Missed Immunologic Signals? Vaccines, 13(11), 1081. https://doi.org/10.3390/vaccines13111081

