Norovirus in Pediatric Gastroenteritis: A Study in Argentine Hospitals Before and After the Introduction of Universal Rotavirus Vaccination
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Samples
2.4. Statistical Analysis
3. Results
3.1. Overall NoV Detection
3.2. NoV in Outpatients and Hospitalized Patients
3.3. Norovirus Detection by Age Group
3.4. Norovirus Detection by Sex in Pre- and Post-RV Vaccination Periods
3.5. Distribution of NoV in Children Vaccinated and Unvaccinated Against RVA
3.6. NoV Seasonality
3.7. Molecular Characterization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| NoV | Norovirus |
| SaV | Sapovirus |
| RVA | Rotavirus |
| AdV | Adenovirus |
| AsV | Astrovirus |
| ORF | Open reading frames |
| RdRp | RNA-dependent RNA polymerase |
References
- Enfermedades Diarreicas. Available online: https://www.who.int/es/news-room/fact-sheets/detail/diarrhoeal-disease (accessed on 10 July 2025).
- Degiuseppe, J.I. Trends in Hospital Discharges for Intestinal Infectious Disease in Infants in Argentina, 2005–2013. Arch. Argent. de Pediatr. 2017, 115, 350–356. [Google Scholar] [CrossRef]
- Bányai, K.; Estes, M.K.; Martella, V.; Parashar, U.D. Viral Gastroenteritis. Lancet 2018, 392, 175–186. [Google Scholar] [CrossRef]
- Chhabra, P.; Payne, D.C.; Szilagyi, P.G.; Edwards, K.M.; Staat, M.A.; Shirley, S.H.; Wikswo, M.; Nix, W.A.; Lu, X.; Parashar, U.D.; et al. Etiology of Viral Gastroenteritis in Children <5 Years of Age in the United States, 2008–2009. J. Infect. Dis. 2013, 208, 790–800. [Google Scholar] [CrossRef]
- Bok, K.; Green, K.Y. Norovirus Gastroenteritis in Immunocompromised Patients. N. Engl. J. Med. 2012, 367, 2126–2132. [Google Scholar] [CrossRef] [PubMed]
- Cardemil, C.V.; Parashar, U.D.; Hall, A.J. Norovirus Infection in Older Adults Epidemiology, Risk Factors, and Opportunities for Prevention and Control. Infect. Dis. Clin. N. Am. 2017, 31, 839–870. [Google Scholar] [CrossRef]
- Robilotti, E.; Deresinski, S.; Pinsky, B.A. Norovirus. Clin. Microbiol. Rev. 2015, 28, 134–164. [Google Scholar] [CrossRef]
- Lucero, Y.; Matson, D.O.; Ashkenazi, S.; George, S.; O’Ryan, M. Norovirus: Facts and Reflections from Past, Present, and Future. Viruses 2021, 13, 2399. [Google Scholar] [CrossRef] [PubMed]
- Ludwig-Begall, L.F.; Mauroy, A.; Thiry, E. Noroviruses—The State of the Art, Nearly Fifty Years after Their Initial Discovery. Viruses 2021, 13, 1541. [Google Scholar] [CrossRef]
- Chhabra, P.; de Graaf, M.; Parra, G.I.; Chan, M.C.-W.; Green, K.; Martella, V.; Wang, Q.; White, P.A.; Katayama, K.; Vennema, H.; et al. Updated Classification of Norovirus Genogroups and Genotypes. J. Gen. Virol. 2019, 100, 1393–1406. [Google Scholar] [CrossRef]
- van Beek, J.; Ambert-Balay, K.; Botteldoorn, N.; Eden, J.S.; Fonager, J.; Hewitt, J.; Iritani, N.; Kroneman, A.; Vennema, H.; Vinjé, J.; et al. Indications for Worldwide Increased Norovirus Activity Associated with Emergence of a New Variant of Genotype II.4, Late 2012. Eurosurveillance 2013, 18, 8–9. [Google Scholar] [CrossRef]
- Bok, K.; Castagnaro, N.; Borsa, A.; Nates, S.; Espul, C.; Fay, O.; Fabri, A.; Grinstein, S.; Miceli, I.; Matson, D.O.; et al. Surveillance for Rotavirus in Argentina. J. Med. Virol. 2001, 65, 190–198. [Google Scholar] [CrossRef]
- Marti, S.G.; Gibbons, L.; Reidel, S.; Stupka, J.; Degiuseppe, J.; Argento, F.; Gómez, J.A. Rotavirus Vaccine Impact since Its Introduction in the National Immunization Program of Argentina. Infect. Dis. Ther. 2023, 12, 513–526. [Google Scholar] [CrossRef]
- Gentile, Á.; Areso, M.S.; Degiuseppe, J.I.; Orqueda, A.; Turco, M.; Sabbaj, L.; Rodrigo, A.; Juárez, M.D.V.; Stupka, J.A. Role of Noroviruses in Sporadic Acute Gastroenteritis Cases from Children Attending a Large Referral Children’s Hospital in Buenos Aires City, Argentina. Pediatr. Infect. Dis. J. 2023, 42, 94–98. [Google Scholar] [CrossRef]
- Halasa, N.; Piya, B.; Stewart, L.S.; Rahman, H.; Payne, D.C.; Woron, A.; Thomas, L.; Constantine-Renna, L.; Garman, K.; McHenry, R.; et al. The Changing Landscape of Pediatric Viral Enteropathogens in the Post-Rotavirus Vaccine Era. Clin. Infect. Dis. 2021, 72, 576–585. [Google Scholar] [CrossRef]
- Velázquez, R.F.; Linhares, A.C.; Muñoz, S.; Seron, P.; Lorca, P.; DeAntonio, R.; Ortega-Barria, E. Efficacy, Safety and Effectiveness of Licensed Rotavirus Vaccines: A Systematic Review and Meta-Analysis for Latin America and the Caribbean. BMC Pediatr. 2017, 17, 14. [Google Scholar] [CrossRef] [PubMed]
- Jonesteller, C.L.; Burnett, E.; Yen, C.; Tate, J.E.; Parashar, U.D. Effectiveness of Rotavirus Vaccination: A Systematic Review of the First Decade of Global Postlicensure Data, 2006–2016. Clin. Infect. Dis. 2017, 65, 840–850. [Google Scholar] [CrossRef] [PubMed]
- Burnett, E.; Parashar, U.; Tate, J. Rotavirus Vaccines: Effectiveness, Safety, and Future Directions. Pediatr. Drugs 2018, 20, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Gastañaduy, P.A.; Contreras-Roldán, I.; Bernart, C.; López, B.; Benoit, S.R.; Xuya, M.; Muñoz, F.; Desai, R.; Quaye, O.; Tam, K.I.; et al. Effectiveness of Monovalent and Pentavalent Rotavirus Vaccines in Guatemala. Clin. Infect. Dis. 2016, 62, S121–S126. [Google Scholar] [CrossRef]
- Ministerio de Salud de la Nación Resolución 1027/2014 Programa Nacional de Control de Enfermedades Inmunoprevenibles. Incorporación. Available online: https://www.argentina.gob.ar/ (accessed on 10 July 2025).
- Bucardo, F.; Lindgren, P.-E.; Svensson, L.; Nordgren, J. Low Prevalence of Rotavirus and High Prevalence of Norovirus in Hospital and Community Wastewater after Introduction of Rotavirus Vaccine in Nicaragua. PLoS ONE 2011, 6, e25962. [Google Scholar] [CrossRef]
- Bucardo, F.; Reyes, Y.; Svensson, L.; Nordgren, J. Predominance of Norovirus and Sapovirus in Nicaragua after Implementation of Universal Rotavirus Vaccination. PLoS ONE 2014, 9, e98201. [Google Scholar] [CrossRef]
- Hemming, M.; Räsänen, S.; Huhti, L.; Paloniemi, M.; Salminen, M.; Vesikari, T. Major Reduction of Rotavirus, but Not Norovirus, Gastroenteritis in Children Seen in Hospital after the Introduction of RotaTeq Vaccine into the National Immunization Programme in Finland. Eur. J. Pediatr. 2013, 172, 739–746. [Google Scholar] [CrossRef]
- Hughes, S.L.; Greer, A.L.; Elliot, A.J.; McEwen, S.A.; Young, I.; Papadopoulos, A. Epidemiology of Norovirus and Viral Gastroenteritis in Ontario, Canada, 2009–2014. Can. Commun. Dis. Rep. 2021, 47, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Ong, D.S.; Harris, M.; Hart, J.D.; Russell, F.M. Indirect Effects of Universal Infant Rotavirus Vaccination: A Narrative Systematic Review. Vaccines 2025, 13, 503. [Google Scholar] [CrossRef]
- Gomes, K.A.; Stupka, J.A.; Diana, A.; Parra, G.I. Molecular characterization of calicivirus strains detected in outbreaks of gastroenteritis occurring in Argentina during 2005 and 2006. Rev. Argent. Microbiol. 2008, 40, 222–228. [Google Scholar]
- Degiuseppe, J.I.; Barclay, L.; Gomes, K.A.; Costantini, V.; Vinjé, J.; Stupka, J.A. Molecular Epidemiology of Norovirus Outbreaks in Argentina, 2013–2018. J. Med. Virol. 2020, 92, 1330–1333. [Google Scholar] [CrossRef]
- Gomes, K.A.; Stupka, J.A.; Gómez, J.; Parra, G.I. Molecular Characterization of Calicivirus Strains Detected in Outbreaks of Gastroenteritis in Argentina. J. Med. Virol. 2007, 79, 1703–1709. [Google Scholar] [CrossRef]
- Gomes, K.A.; Degiuseppe, J.I.; Stupka, J.A. Norovirus Outbreaks in a Nursery School in Buenos Aires, Argentina. Rev. Argent. Microbiol. 2024, 56, 373–379. [Google Scholar] [CrossRef]
- Loisy, F.; Atmar, R.L.; Guillon, P.; Le Cann, P.; Pommepuy, M.; Le Guyader, F.S. Real-Time RT-PCR for Norovirus Screening in Shellfish. J. Virol. Methods 2005, 123, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Oka, T.; Katayama, K.; Hansman, G.S.; Kageyama, T.; Ogawa, S.; Wu, F.-T.; White, P.A.; Takeda, N. Detection of Human Sapovirus by Real-Time Reverse Transcription-Polymerase Chain Reaction. J. Med. Virol. 2006, 78, 1347–1353. [Google Scholar] [CrossRef] [PubMed]
- Jothikumar, N.; Cromeans, T.L.; Hill, V.R.; Lu, X.; Sobsey, M.D.; Erdman, D.D. Quantitative Real-Time PCR Assays for Detection of Human Adenoviruses and Identification of Serotypes 40 and 41. Appl. Environ. Microbiol. 2005, 71, 3131–3136. [Google Scholar] [CrossRef]
- Vega, C.G.; Garaicoechea, L.L.; Degiuseppe, J.I.; Bok, M.; Rivolta, A.A.; Piantanida, A.P.; Asenzo, G.; Guerrero, M.A.; Wigdorovitz, A.; Stupka, J.A.; et al. ROTADIAL: The First Nanobody-Based Immunoassay to Detect Group A Rotavirus. J. Virol. Methods 2021, 298, 114279. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, P.; Browne, H.; Huynh, T.; Diez-Valcarce, M.; Barclay, L.; Kosek, M.N.; Ahmed, T.; Lopez, M.R.; Pan, C.-Y.; Vinjé, J. Single-Step RT-PCR Assay for Dual Genotyping of GI and GII Norovirus Strains. J. Clin. Virol. 2021, 134, 104689. [Google Scholar] [CrossRef]
- Kroneman, A.; Vega, E.; Vennema, H.; Vinjé, J.; White, P.A.; Hansman, G.; Green, K.; Martella, V.; Katayama, K.; Koopmans, M. Proposal for a Unified Norovirus Nomenclature and Genotyping. Arch. Virol. 2013, 158, 2059–2068. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Humphries, R.M.; Linscott, A.J. Practical Guidance for Clinical Microbiology Laboratories: Diagnosis of Bacterial Gastroenteritis. Clin. Microbiol. Rev. 2015, 28, 3–31. [Google Scholar] [CrossRef]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. Infostat; Version 2020; Grupo InfoStat, Facultad Ciencias Agropecuarias, Universidad Nacional de Córdoba: Córdoba, Argentina, 2020; Available online: https://www.infostat.com.ar/ (accessed on 10 July 2025).
- O’Ryan, M.; Riera-Montes, M.; Lopman, B. Norovirus in Latin America: Systematic Review and Meta-Analysis. Pediatr. Infect. Dis. J. 2017, 36, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Eden, J.-S.; Hewitt, J.; Lim, K.L.; Boni, M.F.; Merif, J.; Greening, G.; Ratcliff, R.M.; Holmes, E.C.; Tanaka, M.M.; Rawlinson, W.D.; et al. The Emergence and Evolution of the Novel Epidemic Norovirus GII.4 Variant Sydney 2012. Virology 2014, 450–451, 106–113. [Google Scholar] [CrossRef]
- Leshem, E.; Wikswo, M.; Barclay, L.; Brandt, E.; Storm, W.; Salehi, E.; DeSalvo, T.; Davis, T.; Saupe, A.; Dobbins, G.; et al. Effects and Clinical Significance of GII.4 Sydney Norovirus, United States, 2012–2013. Emerg. Infect. Dis. 2013, 19, 1231–1238. [Google Scholar] [CrossRef]
- Duan, L.; Yang, X.; Xie, J.; Zhan, W.; Zhang, C.; Liu, H.; Wei, M.; Tang, Y.; Zhao, H.; Luo, M. Prevalence of GII.4 Sydney Norovirus Strains and Associated Factors of Acute Gastroenteritis in Children: 2019/2020 Season in Guangzhou, China. Food Environ. Virol. 2021, 13, 357–367. [Google Scholar] [CrossRef]
- Zhang, P.; Hao, C.; Di, X.; Chuizhao, X.; Jinsong, L.; Guisen, Z.; Hui, L.; Zhaojun, D. Global Prevalence of Norovirus Gastroenteritis after Emergence of the GII.4 Sydney 2012 Variant: A Systematic Review and Meta-Analysis. Front. Public Health 2024, 12, 1373322. [Google Scholar] [CrossRef] [PubMed]
- Agoti, C.N.; Curran, M.D.; Murunga, N.; Ngari, M.; Muthumbi, E.; Lambisia, A.W.; Frost, S.D.W.; Blacklaws, B.A.; Nokes, D.J.; Drumright, L.N. Differences in Epidemiology of Enteropathogens in Children Pre- and Post-Rotavirus Vaccine Introduction in Kilifi, Coastal Kenya. Gut Pathog. 2022, 14, 32. [Google Scholar] [CrossRef]
- Lartey, B.L.; Quaye, O.; Damanka, S.A.; Agbemabiese, C.A.; Armachie, J.; Dennis, F.E.; Enweronu-Laryea, C.; Armah, G.E. Understanding Pediatric Norovirus Epidemiology: A Decade of Study among Ghanaian Children. Viruses 2020, 12, 1321. [Google Scholar] [CrossRef]
- Muhsen, K.; Kassem, E.; Rubenstein, U.; Goren, S.; Ephros, M.; Shulman, L.M.; Cohen, D. No Evidence of an Increase in the Incidence of Norovirus Gastroenteritis Hospitalizations in Young Children after the Introduction of Universal Rotavirus Immunization in Israel. Hum. Vaccines Immunother. 2019, 15, 1284–1293. [Google Scholar] [CrossRef] [PubMed]
- McAtee, C.L.; Webman, R.; Gilman, R.H.; Mejia, C.; Bern, C.; Apaza, S.; Espetia, S.; Pajuelo, M.; Saito, M.; Challappa, R.; et al. Burden of Norovirus and Rotavirus in Children after Rotavirus Vaccine Introduction, Cochabamba, Bolivia. Am. J. Trop. Med. Hyg. 2016, 94, 212–217. [Google Scholar] [CrossRef]
- Lian, S.; Liu, J.; Wu, Y.; Xia, P.; Zhu, G. Bacterial and Viral Co-Infection in the Intestine: Competition Scenario and Their Effect on Host Immunity. Int. J. Mol. Sci. 2022, 23, 2311. [Google Scholar] [CrossRef] [PubMed]
- Tandukar, S.; Sherchand, J.B.; Karki, S.; Malla, B.; Shrestha, R.G.; Bhandari, D.; Thakali, O.; Haramoto, E. Co-Infection by Waterborne Enteric Viruses in Children with Gastroenteritis in Nepal. Healthcare 2019, 7, 9. [Google Scholar] [CrossRef]
- Zambruni, M.; Luna, G.; Silva, M.; Bausch, D.G.; Rivera, F.P.; Velapatino, G.; Campos, M.; Chea-Woo, E.; Baiocchi, N.; Cleary, T.G.; et al. High Prevalence and Increased Severity of Norovirus Mixed Infections Among Children 12–24 Months of Age Living in the Suburban Areas of Lima, Peru. J. Pediatr. Infect. Dis. Soc. 2016, 5, 337–341. [Google Scholar] [CrossRef]
- Munoz, G.A.; Riveros-Ramirez, M.D.; Chea-Woo, E.; Ochoa, T.J. Clinical Course of Children with Campylobacter Gastroenteritis With and Without Co-Infection in Lima, Peru. Am. J. Trop. Med. Hyg. 2022, 106, 1384–1388. [Google Scholar] [CrossRef]
- Ahmed, S.M.; Lopman, B.A.; Levy, K. A systematic review and meta-analysis of the global seasonality of norovirus. PLoS ONE 2013, 8, e75922. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rohayem, J. Norovirus Seasonality and the Potential Impact of Climate Change. Clin. Microbiol. Infect. 2009, 15, 524–527. [Google Scholar] [CrossRef] [PubMed]
- Lopman, B.A.; Steele, D.; Kirkwood, C.D.; Parashar, U.D. The Vast and Varied Global Burden of Norovirus: Prospects for Prevention and Control. PLoS Med. 2016, 13, e1001999. [Google Scholar] [CrossRef] [PubMed]
- Skansi, M.; Barnatán, I.; Diaz, M.; Garay, N.; Petino, E.; Stella, J.; Veiga, H. Atlas Climático de Argentina: Período 1991–2020; Repositorio del Servicio Meteorológico Nacional: Dorrego, Argentina, 2025.
- Chiu, S.C.; Hu, S.C.; Liao, L.; Chen, Y.; Lin, J. Norovirus Genogroup II Epidemics and the Potential Effect of Climate Change on Norovirus Transmission in Taiwan. Viruses 2022, 14, 641. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Graaf, M.; van Beek, J.; Vennema, H.; Podkolzin, A.; Hewitt, J.; Bucardo, F.; Templeton, K.; Mans, J.; Nordgren, J.; Reuter, G.; et al. Emergence of a novel GII.17 norovirus—End of the GII.4 era? Eurosurveillance 2015, 20, 21178. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Degiuseppe, J.I.; Gomes, K.A.; Hadad, M.F.; Parra, G.I.; Stupka, J.A. Detection of Novel GII.17 Norovirus in Argentina, 2015. Infect. Genet. Evol. 2017, 47, 121–124. [Google Scholar] [CrossRef]
- Lindesmith, L.C.; Donaldson, E.F.; Lobue, A.D.; Cannon, J.L.; Zheng, D.-P.; Vinje, J.; Baric, R.S. Mechanisms of GII.4 Norovirus Persistence in Human Populations. PLoS Med. 2008, 5, e31. [Google Scholar] [CrossRef]
- Kendra, J.A.; Tohma, K.; Parra, G.I. Global and Regional Circulation Trends of Norovirus Genotypes and Recombinants, 1995–2019: A Comprehensive Review of Sequences from Public Databases. Rev. Med. Virol. 2022, 32, e2354. [Google Scholar] [CrossRef]
- Cannon, J.L.; Bonifacio, J.; Bucardo, F.; Buesa, J.; Bruggink, L.; Chan, M.C.-W.; Fumian, T.M.; Giri, S.; Gonzalez, M.D.; Hewitt, J.; et al. Global Trends in Norovirus Genotype Distribution among Children with Acute Gastroenteritis. Emerg. Infect. Dis. 2021, 27, 1438–1445. [Google Scholar] [CrossRef]
- Hungerford, D.; Jere, K.C.; Bar-Zeev, N.; Harris, J.P.; Cunliffe, N.A.; Iturriza-Gómara, M. Epidemiology and Genotype Diver-sity of Norovirus Infections among Children Aged <5 Years Following Rotavirus Vaccine Introduction in Blantyre, Malawi. J. Clin. Virol. 2020, 123, 104248. [Google Scholar] [CrossRef]

GII.4 Sydney[P31],
GII.4[P4],
GII.3[P12],
GII.17[P17],
GII.6[P7],
GII.2[P16],
GII.4[P16]. Reference strains were retrieved from GenBank and are labeled with their accession numbers and genotypes. (B): Phylogenetic tree based on the RdRp region nucleotide sequences of norovirus strains. The tree was constructed using the Maximum Likelihood method with the Kimura 2-parameter (K2P) model. Bootstrap values (1000 replicates) greater than 70% are shown at the nodes. Sequences obtained in this study are labeled as follows:
GII.3[P12],
GII.17[P17],
GII.6[P7],
GII.4[P4],
GII.4 Sydney[P31],
GII.2[P16],
GII.4 Sydney[P16]. Reference strains were retrieved from GenBank and are labeled with their accession numbers and genotypes.
GII.4 Sydney[P31],
GII.4[P4],
GII.3[P12],
GII.17[P17],
GII.6[P7],
GII.2[P16],
GII.4[P16]. Reference strains were retrieved from GenBank and are labeled with their accession numbers and genotypes. (B): Phylogenetic tree based on the RdRp region nucleotide sequences of norovirus strains. The tree was constructed using the Maximum Likelihood method with the Kimura 2-parameter (K2P) model. Bootstrap values (1000 replicates) greater than 70% are shown at the nodes. Sequences obtained in this study are labeled as follows:
GII.3[P12],
GII.17[P17],
GII.6[P7],
GII.4[P4],
GII.4 Sydney[P31],
GII.2[P16],
GII.4 Sydney[P16]. Reference strains were retrieved from GenBank and are labeled with their accession numbers and genotypes.

| Type of NoV Infection | Pre-Vaccination Period | Post-Vaccination Period | OR (95% CI) | p-Value |
|---|---|---|---|---|
| NoV monoinfection | 43/86 (50.0%) | 36/50 (72.0%) | 0.39 (0.18–0.82) | 0.0187 |
| NoV/RVA | 22/86 (25.6%) | 5/50 (10.0%) | 3.09 (1.09–8.78) | 0.0433 |
| NoV/AdV | 8/86 (9.3%) | 2/50 (4.0%) | 2.46 (0.50–12.08) | 0.3239 |
| NoV/AdV/SV | 1/86 (1.2%) | 0/50 (0.0%) | NA | NA |
| NoV/AdV/RVA | 2/86 (2.3%) | 0/50 (0.0%) | NA | NA |
| NoV/Campylobacter | 7/86 (8.1%) | 3/50 (6.0%) | 1.38 (0.33–4.95) | 0.7453 |
| NoV/Shigella | 2/86 (2.3%) | 2/50 (4.0%) | 0.22 (0.04–1.14) | 0.1054 |
| NoV/Salmonella | 1/86 (1.2%) | 0/50 (0.0%) | NA | NA |
| NoV/RVA/AdV/Campylobacter | 0/86 (0.0%) | 1/50 (2.0%) | NA | NA |
| NoV/AdV/Shigella | 0/86 (0.0%) | 1/50 (2.0%) | NA | NA |
| Variable | Category | Period | NoV Positive n (%) | NoV Negative n (%) | OR (95%CI) | p-Value |
|---|---|---|---|---|---|---|
| Care setting | Inpatients | Pre | 43 (50.0%) | 64 (32.1%) | 2.11 (1.26–3.54) | 0.005 |
| Outpatients | Pre | 43 (50.0%) | 135(67.8%) | — | — | |
| Inpatients | Post | 31 (62.0%) | 48 (29.6%) | 3.85 (2.00–7.52) | <0.001 | |
| Outpatients | Post | 19 (38.0%) | 114 (70.4%) | — | — | |
| Age group | <2 years | Pre | 76 (88.3%) | 151 (75.8%) | 2.42 (1.16–5.04) | 0.016 |
| ≥2 years | Pre | 10 (11.6%) | 48 (24.1%) | — | — | |
| <2 years | Post | 45 (90.0%) | 110 (67.9%) | 4.25 (1.60–11.35) | 0.002 | |
| ≥2 years | Post | 5 (10.0%) | 52 (32.1%) | — | — | |
| Sex | Male | Pre | 54 (34.6%) | 102 (65.4%) | 1.60 (0.93–2.75) | 0.091 |
| Female | Pre | 32 (24.8%) | 97 (75.2%) | — | — | |
| Male | Post | 24 (48.0%) | 95 (58.6%) | 0.65 (0.35–1.22) | 0.196 | |
| Female | Post | 26 (52.0%) | 67 (41.4%) | — | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, K.A.; Rivero, K.A.; Barrios Mathieur, C.; Degiuseppe, J.I.; Cortes, P.R.; Gonzalez, P.A.; Zurschmitten, A.; Castro, M.P.; Parreño, V.; Mozgovoj, M.V.; et al. Norovirus in Pediatric Gastroenteritis: A Study in Argentine Hospitals Before and After the Introduction of Universal Rotavirus Vaccination. Vaccines 2025, 13, 1080. https://doi.org/10.3390/vaccines13111080
Gomes KA, Rivero KA, Barrios Mathieur C, Degiuseppe JI, Cortes PR, Gonzalez PA, Zurschmitten A, Castro MP, Parreño V, Mozgovoj MV, et al. Norovirus in Pediatric Gastroenteritis: A Study in Argentine Hospitals Before and After the Introduction of Universal Rotavirus Vaccination. Vaccines. 2025; 13(11):1080. https://doi.org/10.3390/vaccines13111080
Chicago/Turabian StyleGomes, Karina A., Karina A. Rivero, Christian Barrios Mathieur, Juan I. Degiuseppe, Paulo R. Cortes, Patricia A. Gonzalez, Abel Zurschmitten, María P. Castro, Viviana Parreño, Marina V. Mozgovoj, and et al. 2025. "Norovirus in Pediatric Gastroenteritis: A Study in Argentine Hospitals Before and After the Introduction of Universal Rotavirus Vaccination" Vaccines 13, no. 11: 1080. https://doi.org/10.3390/vaccines13111080
APA StyleGomes, K. A., Rivero, K. A., Barrios Mathieur, C., Degiuseppe, J. I., Cortes, P. R., Gonzalez, P. A., Zurschmitten, A., Castro, M. P., Parreño, V., Mozgovoj, M. V., & Stupka, J. A. (2025). Norovirus in Pediatric Gastroenteritis: A Study in Argentine Hospitals Before and After the Introduction of Universal Rotavirus Vaccination. Vaccines, 13(11), 1080. https://doi.org/10.3390/vaccines13111080

