Potential Cost-Effectiveness of Maternal Influenza Immunisation in Low-Income Countries: An Explorative Modelling Study and Value of Information Analysis to Guide Future Clinical Research
Abstract
:1. Introduction
1.1. Maternal Influenza Immunisation
1.2. Non-Specific Effects of Vaccines
1.3. MII Introduction in LICs
1.4. Current Health Economic Evidence from LMICs
1.5. The Aim of the Study
2. Methods
2.1. Study Design
2.2. Vaccine Efficacy
2.3. Disease Burden of Influenza
2.4. Disease Burden of PTB
2.5. Vaccination Coverage
2.6. Cost and Health Resources Use
2.7. Health Outcomes
2.8. Cost-Effectiveness Analysis
2.9. Sensitivity Analysis
2.10. Value of Information Analysis
Inputs | Base Value | Low Value | High Value | Distribution | Reference |
---|---|---|---|---|---|
Vaccine specific efficacy (against incidence of influenza) | |||||
Pregnant women | 39% | 8% | 60% | Beta | LMICs study [24] |
Infants under 6 months of age | 34% | 19% | 46% | Beta | LMICs study [24] |
Vaccine non-specific efficacy | |||||
Preterm birth | 0% | 0% | 25% | Uniform (0–5% in PSA) | Base case conservative assumption based on existing conflicting evidence and high value from Canadian study [17] |
Burden of influenza illness | |||||
Incidence attack rate, lab-confirmed (pregnant women) | 1.18% | 0.82% | 3.60% | Beta | LMICs study [24] |
Incidence attack rate, lab-confirmed (infants) | 4.36% | 0.49% | 5.53% | Beta | LMICs study [24] |
Hospitalisation rate given influenza (pregnant women) | 2.34% | 1.80% | 5.18% | Beta | Estimated based on LMICs study [42] |
Hospitalisation rate given influenza (infants) | 1.30% | 0.18% | 3.10% | Beta | LMICs in Global study [5] |
In-hospital case fatality rate of influenza (pregnant women) | 6.80% | 1.10% | 12.50% | Beta | Kenyan study [43] |
In-hospital case fatality rate of influenza (infants) | 3.20% | 0.60% | 15.40% | Beta | LMICs in Global study [5] |
Reduced risk of influenza-attributed hospitalisation for infants given maternal immunisation | 0.61 | 0.45 | 0.84 | Log normal | US study [44] |
Increased risk of influenza-attributed hospitalisation for preterm birth infants | 2.24 | 1.44 | 3.5 | Log normal | Norwegian study [46] |
Burden of preterm birth | |||||
Preterm birth incidence | 10% | 3% | 22% | Beta | LICs in global study [39] |
Preterm birth mortality | 13% | 3% | 34% | Beta | LICs in global study [45] |
Proportion of preterm infants receiving neonatal care | 62% | 20% | 94% | Beta | Estimated based on LMIC study [55] |
Vaccine coverage and wastage | |||||
Vaccine coverage | 25% | 10% | 50% | Beta | Malawian study [47] |
Vaccine wastage | 10% | 0% | 20% | Beta | Estimated based on WHO and Gambian study [50,51] |
Costs of vaccination program | |||||
Trivalent influenza vaccine dose price | USD 3.7 | USD 3.3 | USD 4.4 | Beta | WHO database [28] |
Vaccine delivery cost | USD 7.3 | USD 5.8 | USD 8.7 | Beta | Estimated based on Malawian study [47] |
Cost of disease management | |||||
Outpatient visits for influenza per case | USD 5.5 | USD 0.4 | USD 19.2 | Gamma | Estimated based on WHO-CHOICE for all available LICs |
Hospitalisation for influenza per case | USD 79.8 | USD 1.7 | USD 478.4 | Gamma | Estimated based on WHO-CHOICE for all available LICs |
Neonatal care for preterm infants (survived) per case | USD 638.4 | USD 19.8 | USD 3553.7 | Gamma | Estimated based on WHO-CHOICE for all available LICs |
Neonatal care for preterm infants (died) per case | USD 159.6 | USD 3.3 | USD 820.1 | Gamma | Estimated based on WHO-CHOICE for all available LICs |
Utilities | |||||
Years of life lost, maternal death | 28.7 | 25.7 | 30.7 | Log normal | Sub-Saharan region in global study and UN report [56,57] |
Years of life lost, neonatal death | 57.4 | 54.8 | 59.8 | Log normal | Sub-Saharan region in global study [56] |
3. Results
3.1. Base Case Results
3.2. Sensitivity Analyses
3.2.1. One-Way Sensitivity Analysis
3.2.2. Multi-Way Sensitivity Analysis
3.2.3. Probabilistic Sensitivity Analysis
3.3. Value of Information Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Country | Year | Sample Size | Study Type | Result | Outcome | Things to Consider | Reference |
---|---|---|---|---|---|---|---|
Canada | 2012 | 55,570 | Retrospective Cohort Study | aRR [95% CI]: 0.73 [0.58, 0.91] | Preterm birth (<37 weeks) | H1N1; lack of time-varying exposure analysis | [22] |
Australia | 2021 | 269,493 | Retrospective Cohort Study | aRR [95% CI]: 0.69 [0.66, 0.72] | Preterm birth (<37 weeks) | Not TIV | [15] |
Canada | 2014 | 11,293 | Retrospective Cohort Study | aRR [95% CI]: 0.75 [0.60, 0.94] | Preterm birth (<37 weeks) | TIV; time-varying analysis; sub-group analysis | [17] |
South Africa | 2021 | 4084 | Retrospective Cohort Study | aOR [95% CI]: 0.61 [0.44, 0.85] (primigravidae) | Preterm birth (<37 weeks) | Lack of time-varying exposure analysis | [16] |
Lao | 2016 | 5103 | Retrospective Cohort Study | RR [95% CI]: 0.56 [0.45, 0.70] | Preterm birth (<37 weeks) | The sample size outside flu season may be too small to detect differences in PTB rates | [19] |
Nicaragua | 2017 | 3258 | Retrospective Cohort Study | aOR [95% CI]: 0.66 [0.45, 0.96] (vaccinated in third trimester) | Preterm birth (<37 weeks) | Potential selection bias and recall bias | [20] |
USA | 2012 | 10,225 | Retrospective Cohort Study | 5% vs. 6% in vaccinated and unvaccinated group | Preterm birth (<37 weeks) | Lack of time-varying exposure analysis | [21] |
Multiple | 2019 | 40 studies | Systematic Review | aOR [95% CI]: 0.87 [0.78, 0.96] | Preterm birth (<37 weeks) | Not TIV | [15] |
Country | 2021 GDP per Capita 1 | Base CET 2 | Low CET 2 | High CET 2 |
---|---|---|---|---|
Afghanistan | 517 | 336 | 103 | 527 |
Burkina Faso | 918 | 211 | 64 | 331 |
Burundi | 237 | 92 | 28 | 144 |
Central African Republic | 512 | 153 | 51 | 246 |
Chad | 696 | 104 | 35 | 160 |
Democratic People’s Republic of Korea | NA | NA | NA | NA |
Democratic Republic of the Congo | 584 | 88 | 29 | 134 |
Eritrea | 643 | NA | NA | NA |
Ethiopia | 944 | 132 | 47 | 217 |
Gambia | 836 | 134 | 42 | 209 |
Guinea * | 1174 | 211 | 70 | 341 |
Guinea-Bissau | 813 | 276 | 89 | 431 |
Liberia | 673 | 249 | 74 | 384 |
Madagascar | 515 | 93 | 31 | 149 |
Malawi | 643 | 148 | 45 | 231 |
Mali | 918 | 147 | 46 | 229 |
Mozambique | 500 | 180 | 55 | 280 |
Niger | 595 | 149 | 48 | 232 |
Rwanda | 834 | 258 | 83 | 409 |
Sierra Leone | 516 | 160 | 52 | 253 |
Somalia | 446 | NA | NA | NA |
South Sudan | 1120 | NA | NA | NA |
Sudan | 764 | 214 | 69 | 329 |
Syrian Arab Republic | 1266 | NA | NA | NA |
Togo | 992 | 238 | 69 | 367 |
Uganda | 858 | 146 | 43 | 232 |
Yemen | 691 | NA | NA | NA |
Zambia * | 1121 | 426 | 213 | 538 |
Country | Base | Low | High |
---|---|---|---|
Democratic Republic of the Congo | 12.4 | 7.8 | 19.5 |
Ethiopia | 12.9 | 7.9 | 20.7 |
Malawi | 14.5 | 9.5 | 21.6 |
Mali | 6.1 | 3.1 | 11.5 |
Mozambique | 7.0 | 4.4 | 10.9 |
Rwanda | 9.3 | 3.7 | 21.2 |
Uganda | 10.0 | 6.1 | 16.0 |
Zambia | 7.7 | 4.5 | 12.5 |
Country | Base | Low | High |
---|---|---|---|
Afghanistan | 12.0 | 6.3 | 19.6 |
Burkina Faso | 13.7 | 9.1 | 19.5 |
Burundi | 10.1 | 6.7 | 14.3 |
Central African Republic | 23.5 | 16.0 | 32.9 |
Chad | 16.3 | 10.1 | 22.9 |
Democratic People’s Republic of Korea | NA | NA | NA |
Democratic Republic of the Congo | 12.3 | 8.0 | 17.3 |
Eritrea | 8.2 | 4.8 | 12.9 |
Ethiopia | 9.2 | 6.5 | 12.4 |
Gambia | 10.2 | 5.7 | 16.8 |
Guinea | 15.9 | 10.7 | 21.9 |
Guinea-Bissau | 18.6 | 13.0 | 25.1 |
Liberia | 12.1 | 7.8 | 17.9 |
Madagascar | 12.5 | 8.4 | 17.6 |
Malawi | 9.9 | 6.2 | 14.3 |
Mali | 23.1 | 15.8 | 32.0 |
Mozambique | 11.6 | 7.7 | 16.3 |
Niger | 14.2 | 10.2 | 18.9 |
Rwanda | 8.6 | 5.6 | 12.0 |
Sierra Leone | 17.5 | 12.1 | 24.5 |
Somalia | 11.9 | 7.5 | 18.1 |
South Sudan | 14.6 | 9.6 | 20.4 |
Sudan | 25.2 | 18.4 | 34.0 |
Syrian Arab Republic | 4.0 | 2.6 | 5.7 |
Togo | 13.7 | 9.7 | 18.0 |
Uganda | 5.2 | 3.5 | 7.5 |
Yemen | 22.9 | 14.8 | 32.7 |
Zambia | 7.5 | 4.6 | 11.2 |
Country | Base 1 | Low 2 | High 3 |
---|---|---|---|
Afghanistan | NA | NA | NA |
Burkina Faso | 13.0 | 9.9 | 14.5 |
Burundi | 0.6 | 0.4 | 0.6 |
Central African Republic | 15.3 | 11.6 | 17.0 |
Chad | 17.2 | 13.1 | 19.2 |
Democratic People’s Republic of Korea | NA | NA | NA |
Democratic Republic of the Congo | NA | NA | NA |
Eritrea | NA | NA | NA |
Ethiopia | 1.2 | 0.9 | 1.4 |
Gambia | 1.7 | 1.3 | 1.8 |
Guinea | 1.8 | 1.4 | 2.0 |
Guinea-Bissau | 12.8 | 9.7 | 14.2 |
Liberia | NA | NA | NA |
Madagascar | 0.8 | 0.6 | 0.9 |
Malawi | 1.0 | 0.8 | 1.1 |
Mali | 12.1 | 9.2 | 13.5 |
Mozambique | 1.1 | 0.8 | 1.2 |
Niger | 7.6 | 5.7 | 8.4 |
Rwanda | 1.2 | 0.9 | 1.3 |
Sierra Leone | 1.1 | 0.8 | 1.2 |
Somalia | NA | NA | NA |
South Sudan | NA | NA | NA |
Sudan | 2.2 | 1.6 | 2.4 |
Syrian Arab Republic | NA | NA | NA |
Togo | 10.7 | 8.1 | 11.9 |
Uganda | 1.4 | 1.1 | 1.5 |
Yemen | NA | NA | NA |
Zambia | 1.2 | 0.9 | 1.3 |
Country | Base 1 | Low 2 | High 3 |
---|---|---|---|
Afghanistan | NA | NA | NA |
Burkina Faso | 43.9 | 45.8 | 59.2 |
Burundi | 1.5 | 1.5 | 2.0 |
Central African Republic | 44.3 | 46.1 | 59.7 |
Chad | 60.5 | 63.0 | 81.5 |
Democratic People’s Republic of Korea | NA | NA | NA |
Democratic Republic of the Congo | NA | NA | NA |
Eritrea | NA | NA | NA |
Ethiopia | 3.8 | 4.0 | 5.1 |
Gambia | 6.4 | 6.7 | 8.7 |
Guinea | 5.6 | 5.8 | 7.5 |
Guinea-Bissau | 41.9 | 43.7 | 56.5 |
Liberia | NA | NA | NA |
Madagascar | 2.4 | 2.5 | 3.2 |
Malawi | 2.9 | 3.1 | 4.0 |
Mali | 40.4 | 42.1 | 54.5 |
Mozambique | 3.2 | 3.3 | 4.3 |
Niger | 20.3 | 21.1 | 27.3 |
Rwanda | 3.9 | 4.0 | 5.2 |
Sierra Leone | 3.5 | 3.7 | 4.8 |
Somalia | NA | NA | NA |
South Sudan | NA | NA | NA |
Sudan | 9.1 | 9.5 | 12.3 |
Syrian Arab Republic | NA | NA | NA |
Togo | 32.8 | 34.2 | 44.2 |
Uganda | 4.7 | 4.9 | 6.3 |
Yemen | NA | NA | NA |
Zambia | 4.3 | 4.5 | 5.8 |
Country | Base | Low | High |
---|---|---|---|
Afghanistan | 49% | 45% | 53% |
Burkina Faso | 67% | 64% | 70% |
Burundi | 88% | 87% | 89% |
Central African Republic | NA | NA | NA |
Chad | 23% | 20% | 25% |
Democratic People’s Republic of Korea | NA | NA | NA |
Democratic Republic of the Congo | 81% | 78% | 84% |
Eritrea | NA | NA | NA |
Ethiopia | 27% | 24% | 31% |
Gambia | 63% | 59% | 68% |
Guinea | 53% | 49% | 56% |
Guinea-Bissau | NA | NA | NA |
Liberia | 56% | 53% | 60% |
Madagascar | 36% | 33% | 39% |
Malawi | 93% | 92% | 94% |
Mali | 67% | 63% | 71% |
Mozambique | 57% | 53% | 60% |
Niger | 30% | 28% | 33% |
Rwanda | 92% | 91% | 93% |
Sierra Leone | 84% | 81% | 86% |
Somalia | NA | NA | NA |
South Sudan | NA | NA | NA |
Sudan | NA | NA | NA |
Syrian Arab Republic | NA | NA | NA |
Togo | 73% | 70% | 77% |
Uganda | 75% | 73% | 77% |
Yemen | 31% | 29% | 33% |
Zambia | 85% | 83% | 87% |
References
- Buchy, P.; Badur, S.; Kassianos, G.; Preiss, S.; Tam, J.S. Vaccinating pregnant women against influenza needs to be a priority for all countries: An expert commentary. Int. J. Infect. Dis. 2020, 92, 1–12. [Google Scholar] [CrossRef]
- Abu Raya, B.; Edwards, K.M.; Scheifele, D.W.; Halperin, S.A. Pertussis and influenza immunisation during pregnancy: A landscape review. Lancet Infect. Dis. 2017, 17, e209–e222. [Google Scholar] [CrossRef]
- Abu-Raya, B.; Maertens, K.; Edwards, K.M.; Omer, S.B.; Englund, J.A.; Flanagan, K.L.; Snape, M.D.; Amirthalingam, G.; Leuridan, E.; Van Damme, P.; et al. Global perspectives on immunization during pregnancy and priorities for future research and development: An international consensus statement. Front. Immunol. 2020, 11, 1282. [Google Scholar] [CrossRef]
- Rasmussen, S.A.; Jamieson, D.J.; Uyeki, T.M. Effects of influenza on pregnant women and infants. Am. J. Obstet. Gynecol. 2012, 207, S3–S8. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Y.; O’Brien, K.L.; Madhi, S.A.; Widdowson, M.-A.; Byass, P.; Omer, S.B.; Abbas, Q.; Ali, A.; Amu, A.; et al. Global burden of respiratory infections associated with seasonal influenza in children under 5 years in 2018: A systematic review and modelling study. Lancet Glob. Health 2020, 8, e497–e510. [Google Scholar] [CrossRef]
- The Centers for Disease Control and Prevention. Protect Against Flu: Caregivers of Infants and Young Children. 2022. Available online: https://www.cdc.gov/flu/highrisk/infantcare.htm (accessed on 26 April 2023).
- World Health Organization. Seasonal Influenza Vaccines: An Overview for Decision-Makers; World Health Organization: Geneva, Switzerland, 2020.
- Buchy, P.; Badur, S. Who and when to vaccinate against influenza. Int. J. Infect. Dis. 2020, 93, 375–387. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Safety of Immunization during Pregnancy: A Review of the Evidence: Global Advisory Committee on Vaccine Safety; World Health Organization: Geneva, Switzerland, 2021.
- World Health Organization. How to Implement Influenza Vaccination of Pregnant Women: An Introduction Manual for National Immunization Programme Managers and Policy Makers; World Health Organization: Geneva, Switzerland, 2016.
- Regan, A.K.; Munoz, F.M. Efficacy and safety of influenza vaccination during pregnancy: Realizing the potential of maternal influenza immunization. Expert Rev. Vaccines 2021, 20, 649–660. [Google Scholar] [CrossRef]
- Pollard, A.J.; Finn, A.; Curtis, N. Non-specific effects of vaccines: Plausible and potentially important, but implications uncertain. Arch. Dis. Child. 2017, 102, 1077–1081. [Google Scholar] [CrossRef]
- Aaby, P.; Benn, C.S.; Flanagan, K.L.; Klein, S.L.; Kollmann, T.R.; Lynn, D.J.; Shann, F. The non-specific and sex-differential effects of vaccines. Nat. Rev. Immunol. 2020, 20, 464–470. [Google Scholar] [CrossRef]
- de Bree, L.C.J.; Koeken, V.A.C.M.; Joosten, L.A.B.; Aaby, P.; Benn, C.S.; van Crevel, R.; Netea, M.G. Non-specific effects of vaccines: Current evidence and potential implications. Semin. Immunol. 2018, 39, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Giles, M.L.; Davey, M.A.; Wallace, E.M. Associations Between Maternal Immunisation and Reduced Rates of Preterm Birth and Stillbirth: A Population Based Retrospective Cohort Study. Front. Immunol. 2021, 12, 704254. [Google Scholar] [CrossRef]
- McMorrow, M.L.; Rossi, L.; Meiring, S.; Bishop, K.; Itzikowitz, R.; Isaacs, W.; Stellenboom, F.; Walaza, S.; Hellferscee, O.; Treurnicht, F.K.; et al. A Retrospective observational cohort study of the effect of antenatal influenza vaccination on birth outcomes in Cape Town, South Africa, 2015–2016. Influenza Other Respir. Viruses 2021, 15, 446–456. [Google Scholar] [CrossRef]
- Legge, A.; Dodds, L.; MacDonald, N.E.; Scott, J.; McNeil, S. Rates and determinants of seasonal influenza vaccination in pregnancy and association with neonatal outcomes. Can. Med. Assoc. J. 2014, 186, E157–E164. [Google Scholar] [CrossRef]
- Giles, M.L.; Krishnaswamy, S.; Macartney, K.; Cheng, A. The safety of inactivated influenza vaccines in pregnancy for birth outcomes: A systematic review. Hum. Vaccines Immunother. 2019, 15, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Olsen, S.J.; Mirza, S.A.; Vonglokham, P.; Khanthamaly, V.; Chitry, B.; Pholsena, V.; Chitranonh, V.; Omer, S.B.; Moen, A.; Bresee, J.S.; et al. The Effect of Influenza Vaccination on Birth Outcomes in a Cohort of Pregnant Women in Lao PDR, 2014–2015. Clin. Infect. Dis. 2016, 63, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Arriola, C.S.; Vasconez, N.; Thompson, M.G.; Olsen, S.J.; Moen, A.C.; Bresee, J.; Ropero, A.M. Association of influenza vaccination during pregnancy with birth outcomes in Nicaragua. Vaccine 2017, 35, 3056–3063. [Google Scholar] [CrossRef] [PubMed]
- Sheffield, J.S.; Greer, L.G.; Rogers, V.L.; Roberts, S.W.; Lytle, H.; McIntire, D.D.; Wendel, G.D. Effect of influenza vaccination in the first trimester of pregnancy. Obstet. Gynecol. 2012, 120, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Fell, D.B.; Sprague, A.E.; Liu, N.; Yasseen, A.S., 3rd; Wen, S.W.; Smith, G.; Walker, M.C.; Better Outcomes Registry & Network (BORN) Ontario. H1N1 influenza vaccination during pregnancy and fetal and neonatal outcomes. Am. J. Public Health 2012, 102, e33–e40. [Google Scholar] [CrossRef]
- Yadav, K.; Lewis, R.J. Immortal Time Bias in Observational Studies. JAMA 2021, 325, 686–687. [Google Scholar] [CrossRef]
- Omer, S.B.; Clark, D.R.; Madhi, S.A.; Tapia, M.D.; Nunes, M.C.; Cutland, C.L.; Simões, E.A.F.; Aqil, A.R.; Katz, J.; Tielsch, J.M.; et al. Efficacy, duration of protection, birth outcomes, and infant growth associated with influenza vaccination in pregnancy: A pooled analysis of three randomised controlled trials. Lancet Respir. Med. 2020, 8, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Giles, M.L.; Way, S.S.; Marchant, A.; Aghaepour, N.; James, T.; Schaltz-Buchholzer, F.; Zazara, D.; Arck, P.; Kollmann, T.R. Maternal Vaccination to Prevent Adverse Pregnancy Outcomes: An Underutilized Molecular Immunological Intervention? J. Mol. Biol. 2023, 435, 168097. [Google Scholar] [CrossRef]
- Ortiz, J.R.; Neuzil, K.M. Influenza immunization of pregnant women in resource-constrained countries: An update for funding and implementation decisions. Curr. Opin. Infect. Dis. 2017, 30, 455–462. [Google Scholar] [CrossRef]
- Gavi. Vaccine Investment Strategy. 2018. Available online: https://www.gavi.org/our-alliance/strategy/vaccine-investment-strategy (accessed on 13 September 2022).
- World Health Organization. MI4A 2022 Public Database; World Health Organization: Geneva, Switzerland, 2022.
- World Health Organization. Influenza Vaccination Policy; World Health Organization: Geneva, Switzerland, 2023.
- Gavi. Vaccine Investment Strategy: Short List. 2018. Available online: https://www.gavi.org/sites/default/files/board_meetings/2018/6_Jun/07%20-%20Vaccine%20investment%20strategy%20-%20short%20list%20%281%29.pdf (accessed on 25 April 2023).
- Krishnaswamy, S.; Lambach, P.; Giles, M.L. Key considerations for successful implementation of maternal immunization programs in low and middle income countries. Hum. Vaccines Immunother. 2019, 15, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Kraigsley, A.M.; Moore, K.A.; Bolster, A.; Peters, M.; Richardson, D.; Arpey, M.; Sonnenberger, M.; McCarron, M.; Lambach, P.; Maltezou, H.C.; et al. Barriers and activities to implementing or expanding influenza vaccination programs in low- and middle-income countries: A global survey. Vaccine 2021, 39, 3419–3427. [Google Scholar] [CrossRef] [PubMed]
- Orenstein, E.W.; Orenstein, L.A.V.; Diarra, K.; Djiteye, M.; Sidibé, D.; Haidara, F.C.; Doumbia, M.F.; Diallo, F.; Coulibaly, F.; Keita, A.M.; et al. Cost-effectiveness of maternal influenza immunization in Bamako, Mali: A decision analysis. PLoS ONE 2017, 12, e0171499. [Google Scholar] [CrossRef]
- Ostad-Ahmadi, Z.; Boccalini, S.; Daemi, A.; Mahboub-Ahari, A. Cost-effectiveness analysis of seasonal influenza vaccination during pregnancy: A systematic review. Travel Med. Infect. Dis. 2023, 55, 102632. [Google Scholar] [CrossRef] [PubMed]
- Jit, M.; Hutubessy, R. Methodological Challenges to Economic Evaluations of Vaccines: Is a Common Approach Still Possible? Appl. Health Econ. Health Policy 2016, 14, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Edoka, I.; Kohli-Lynch, C.; Fraser, H.; Hofman, K.; Tempia, S.; McMorrow, M.; Ramkrishna, W.; Lambach, P.; Hutubessy, R.; Cohen, C. A cost-effectiveness analysis of South Africa’s seasonal influenza vaccination programme. Vaccine 2021, 39, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Sanchez, I.R.; Mott, J.A.; Kittikraisak, W.; Khanthamaly, V.; McCarron, M.; Keokhonenang, S.; Ounaphom, P.; Pathammavong, C.; Phounphenghack, K.; Sayamoungkhoun, P.; et al. Cost-effectiveness of seasonal influenza vaccination in pregnant women, healthcare workers and adults >= 60 years of age in Lao People’s Democratic Republic. Vaccine 2021, 39, 7633–7645. [Google Scholar] [CrossRef] [PubMed]
- Walani, S.R. Global burden of preterm birth. Int. J. Gynecol. Obstet. 2020, 150, 31–33. [Google Scholar] [CrossRef]
- Ohuma, E.O.; Moller, A.-B.; Bradley, E.; Chakwera, S.; Hussain-Alkhateeb, L.; Lewin, A.; Okwaraji, Y.B.; Mahanani, W.R.; Johansson, E.W.; Lavin, T.; et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: A systematic analysis. Lancet 2023, 402, 1261–1271. [Google Scholar] [CrossRef]
- The World Bank. Low Income. 2022. Available online: https://data.worldbank.org/income-level/low-income (accessed on 8 January 2023).
- World Health Organization. Preterm Birth; World Health Organization: Geneva, Switzerland, 2022.
- Dawood, F.S.; Kittikraisak, W.; Patel, A.; Hunt, D.R.; Suntarattiwong, P.; Wesley, M.G.; Thompson, M.G.; Soto, G.; Mundhada, S.; Arriola, C.S.; et al. Incidence of influenza during pregnancy and association with pregnancy and perinatal outcomes in three middle-income countries: A multisite prospective longitudinal cohort study. Lancet Infect. Dis. 2021, 21, 97–106. [Google Scholar] [CrossRef]
- McMorrow, M.L.; Emukule, G.O.; Obor, D.; Nyawanda, B.; Otieno, N.A.; Makokha, C.; Mott, J.A.; Bresee, J.S.; Reed, C. Maternal influenza vaccine strategies in Kenya: Which approach would have the greatest impact on disease burden in pregnant women and young infants? PLoS ONE 2017, 12, e0189623. [Google Scholar] [CrossRef] [PubMed]
- Eick, A.A.; Uyeki, T.M.; Klimov, A.; Hall, H.; Reid, R.; Santosham, M.; O’brien, K.L. Maternal Influenza Vaccination and Effect on Influenza Virus Infection in Young Infants. Arch. Pediatr. Adolesc. Med. 2011, 165, 104. [Google Scholar] [CrossRef]
- Cao, G.; Liu, J.; Liu, M. Global, Regional, and National Incidence and Mortality of Neonatal Preterm Birth, 1990–2019. JAMA Pediatr. 2022, 176, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Hauge, S.H.; Blasio, B.F.; Håberg, S.E.; Oakley, L. Influenza hospitalizations during childhood in children born preterm. Influenza Other Respir. Viruses 2022, 16, 247–254. [Google Scholar] [CrossRef]
- Pecenka, C.; Munthali, S.; Chunga, P.; Levin, A.; Morgan, W.; Lambach, P.; Bhat, N.; Neuzil, K.M.; Ortiz, J.R.; Hutubessy, R. Maternal influenza immunization in Malawi: Piloting a maternal influenza immunization program costing tool by examining a prospective program. PLoS ONE 2017, 12, e0190006. [Google Scholar] [CrossRef]
- Raut, S.; Apte, A.; Srinivasan, M.; Dudeja, N.; Dayma, G.; Sinha, B.; Bavdekar, A. Determinants of maternal influenza vaccination in the context of low- and middle-income countries: A systematic review. PLoS ONE 2022, 17, e0262871. [Google Scholar] [CrossRef] [PubMed]
- Turner, H.C.; Lauer, J.A.; Tran, B.X.; Teerawattananon, Y.; Jit, M. Adjusting for Inflation and Currency Changes within Health Economic Studies. Value Health 2019, 22, 1026–1032. [Google Scholar] [CrossRef]
- Usuf, E.; Mackenzie, G.; Ceesay, L.; Sowe, D.; Kampmann, B.; Roca, A. Vaccine wastage in The Gambia: A prospective observational study. BMC Public Health 2018, 18, 864. [Google Scholar] [CrossRef]
- World Health Organization. Monitoring Vaccine Wastage at Country Level: Guidelines for Programme Managers; World Health Organization: Geneva, Switzerland, 2005.
- World Health Organization. WHO-CHOICE Estimates of Cost for Inpatient and Outpatient Health Service Delivery; World Health Organization: Geneva, Switzerland, 2021.
- Cheah, I.G.S. Economic assessment of neonatal intensive care. Transl Pediatr 2019, 8, 246–256. [Google Scholar] [CrossRef]
- Brotherton, H.; Gai, A.; Kebbeh, B.; Njie, Y.; Walker, G.; Muhammad, A.K.; Darboe, S.; Jallow, M.; Ceesay, B.; Samateh, A.L.; et al. Impact of early kangaroo mother care versus standard care on survival of mild-moderately unstable neonates <2000 grams: A randomised controlled trial. EClinicalMedicine 2021, 39, 101050. [Google Scholar] [PubMed]
- Hernández-Vásquez, A.; Chacón-Torrico, H.; Bendezu-Quispe, G. Prevalence of home birth among 880,345 women in 67 low- and middle-income countries: A meta-analysis of Demographic and Health Surveys. SSM Popul. Health 2021, 16, 100955. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Abbas, K.M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; Abolhassani, H.; Abreu, L.G.; Abrigo, M.R.; et al. Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: A comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1160–1203. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Potential Impact of Later Childbearing on Future Population. 2019. Available online: https://www.un.org/en/development/desa/population/publications/pdf/popfacts/PopFacts_2019-5.pdf (accessed on 7 February 2023).
- World Health Organization. Guidance on the Economic Evaluation of Influenza Vaccination; World Health Organization: Geneva, Switzerland, 2016.
- Pichon-Riviere, A.; Drummond, M.; Palacios, A.; Garcia-Marti, S.; Augustovski, F. Determining the efficiency path to universal health coverage: Cost-effectiveness thresholds for 174 countries based on growth in life expectancy and health expenditures. Lancet Glob. Health 2023, 11, e833–e842. [Google Scholar] [CrossRef] [PubMed]
- Fenwick, E.; Steuten, L.; Knies, S.; Ghabri, S.; Basu, A.; Murray, J.F.; Koffijberg, H.; Strong, M.; Schmidler, G.D.S.; Rothery, C. Value of Information Analysis for Research Decisions—An Introduction: Report 1 of the ISPOR Value of Information Analysis Emerging Good Practices Task Force. Value Health 2020, 23, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Rothery, C.; Strong, M.; Koffijberg, H.; Basu, A.; Ghabri, S.; Knies, S.; Murray, J.F.; Schmidler, G.D.S.; Steuten, L.; Fenwick, E. Value of Information Analytical Methods: Report 2 of the ISPOR Value of Information Analysis Emerging Good Practices Task Force. Value Health 2020, 23, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.; Johnson, R.; de Nazelle, A.; Goel, R.; de Sá, T.H.; Tainio, M.; Woodcock, J. A guide to value of information methods for prioritising research in health impact modelling. Epidemiol. Methods 2021, 10, 20210012. [Google Scholar] [CrossRef]
- Bresee, J.; Fitzner, J.; Campbell, H.; Cohen, C.; Cozza, V.; Jara, J.; Krishnan, A.; Lee, V.; for the WHO Working Group on the Burden of Influenza Disease. Progress and Remaining Gaps in Estimating the Global Disease Burden of Influenza. Emerg. Infect. Dis. 2018, 24, 1173–1177. [Google Scholar] [CrossRef]
- World Health Organization. WHO Manual for Estimating the Economic Burden of Seasonal Influenza; World Health Organization: Geneva, Switzerland, 2016.
- Castillo-Rodríguez, L.; Malo-Sánchez, D.; Díaz-Jiménez, D.; García-Velásquez, I.; Pulido, P.; Castañeda-Orjuela, C. Economic costs of severe seasonal influenza in Colombia, 2017–2019: A multi-center analysis. PLoS ONE 2022, 17, e0270086. [Google Scholar] [CrossRef]
- Blencowe, H.; Lee, A.C.; Cousens, S.; Bahalim, A.; Narwal, R.; Zhong, N.; Chou, D.; Say, L.; Modi, N.; Katz, J.; et al. Preterm birth–associated neurodevelopmental impairment estimates at regional and global levels for 2010. Pediatr. Res. 2013, 74, 17–34. [Google Scholar] [CrossRef] [PubMed]
Health Outcome | NSE Level | Do Nothing | MII | Averted |
---|---|---|---|---|
Total life years lost | 0% | 70,492 | 70,408 | 84 |
5% | - | 66,892 | 3600 | |
10% | - | 67,186 | 3306 | |
25% | - | 52,824 | 17,668 | |
Neonate life years lost | 0% | 70,441 | 70,363 | 79 |
5% | - | 66,846 | 3595 | |
10% | - | 67,186 | 3256 | |
25% | - | 52,778 | 17,663 | |
Maternal life years lost * | 0–25% | 51 | 46 | 5 |
Influenza cases, mothers * | 0–25% | 1180 | 1065 | 115 |
Influenza cases, infants | 0% | 4303 | 2840 | 1463 |
5% | - | 2842 | 1461 | |
10% | - | 2844 | 1459 | |
25% | - | 2850 | 1454 | |
Preterm birth cases | 0% | 10,000 | 10,000 | 0 |
5% | - | 9500 | 500 | |
10% | - | 9000 | 1000 | |
25% | - | 7500 | 2500 | |
Preterm birth-attributable death | 0% | 1300 | 1300 | 0 |
5% | - | 1235 | 65 | |
10% | - | 1170 | 130 | |
25% | - | 975 | 325 |
NSE Level | Do Nothing | MII | Incremental | |
---|---|---|---|---|
Total costs | 0% | 3,455,853 | 3,728,460 | 272,607 |
5% | - | 3,557,395 | 101,542 | |
10% | - | 3,386,329 | −69,524 | |
25% | - | 2,832,403 | −623,450 | |
Vaccine-related costs * | 0–25% | 0 | 284,098 | 284,098 |
Influenza-related costs | 0% | 34,447 | 22,949 | −11,498 |
5% | - | 22,955 | −11,493 | |
10% | - | 22,960 | −11,487 | |
25% | - | 22,977 | −11,470 | |
Preterm birth care costs | 0% | 3,421,406 | 3,421,412 | 6 |
5% | - | 3,250,342 | −171,064 | |
10% | - | 3,079,270 | −342,136 | |
25% | - | 2,566,059 | −855,347 | |
ICERs (Total life years lost) | 0% | Reference | 3262 | |
5% | Reference | 28 | ||
10% | Reference | Dominating | ||
25% | Reference | Dominating |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Giles, M.L.; Carvalho, N. Potential Cost-Effectiveness of Maternal Influenza Immunisation in Low-Income Countries: An Explorative Modelling Study and Value of Information Analysis to Guide Future Clinical Research. Vaccines 2024, 12, 232. https://doi.org/10.3390/vaccines12030232
Wang Y, Giles ML, Carvalho N. Potential Cost-Effectiveness of Maternal Influenza Immunisation in Low-Income Countries: An Explorative Modelling Study and Value of Information Analysis to Guide Future Clinical Research. Vaccines. 2024; 12(3):232. https://doi.org/10.3390/vaccines12030232
Chicago/Turabian StyleWang, Yingying, Michelle L. Giles, and Natalie Carvalho. 2024. "Potential Cost-Effectiveness of Maternal Influenza Immunisation in Low-Income Countries: An Explorative Modelling Study and Value of Information Analysis to Guide Future Clinical Research" Vaccines 12, no. 3: 232. https://doi.org/10.3390/vaccines12030232
APA StyleWang, Y., Giles, M. L., & Carvalho, N. (2024). Potential Cost-Effectiveness of Maternal Influenza Immunisation in Low-Income Countries: An Explorative Modelling Study and Value of Information Analysis to Guide Future Clinical Research. Vaccines, 12(3), 232. https://doi.org/10.3390/vaccines12030232