Flares and Predicting Factors of Flares in Patients with Systemic Lupus Erythematosus Associated with Different Doses and Types of COVID-19 Vaccines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Vaccines
2.3. Data Collection
2.4. Disease Activity, Flares, and Organ Damage Measurement
2.5. Statistical Analysis
2.6. Sample Size Calculation
3. Results
3.1. Demographic Characteristics
3.2. SLE Disease Activity and Disease Flares According to Vaccine Doses
3.3. SLE Disease Activity and Disease Flares According to Type of Vaccine
3.4. Predicting Factors for SLE Flares
3.5. Effect of SLE Disease Activity on Disease Flares
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahmani, K.; Shavaleh, R.; Forouhi, M.; Disfani, H.F.; Kamandi, M.; Oskooi, R.K.; Foogerdi, M.; Soltani, M.; Rahchamani, M.; Mohaddespour, M.; et al. The effectiveness of COVID-19 vaccines in reducing the incidence, hospitalization, and mortality from COVID-19: A systematic review and meta-analysis. Front. Public Health 2022, 10, 873596. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, I.; Nauman, A.; Paul, P.; Ganesan, S.; Chen, K.H.; Jalil, S.M.S.; Jaouni, S.H.; Kawas, H.; Khan, W.A.; Vattoth, A.L.; et al. The efficacy and effectiveness of the COVID-19 vaccines in reducing infection, severity, hospitalization, and mortality: A systematic review. Hum. Vaccines Immunother. 2022, 18, 2027160. [Google Scholar] [CrossRef] [PubMed]
- Dhamanti, I.; Suwantika, A.A.; Adlia, A.; Yamani, L.N.; Yakub, F. Adverse Reactions of COVID-19 Vaccines: A Scoping Review of Observational Studies. Int. J. Gen. Med. 2023, 16, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Abufares, H.I.; Oyoun Alsoud, L.; Alqudah, M.A.Y.; Shara, M.; Soares, N.C.; Alzoubi, K.H.; El-Huneidi, W.; Bustanji, Y.; Soliman, S.S.M.; Semreen, M.H. COVID-19 Vaccines, Effectiveness, and Immune Responses. Int. J. Mol. Sci. 2022, 23, 15415. [Google Scholar] [CrossRef]
- Zhang, Z.; Mateus, J.; Coelho, C.H.; Dan, J.M.; Moderbacher, C.R.; Galvez, R.I.; Cortes, F.H.; Grifoni, A.; Tarke, A.; Chang, J.; et al. Humoral and cellular immune memory to four COVID-19 vaccines. Cell 2022, 185, 2434–2451.e2417. [Google Scholar] [CrossRef]
- Moreira, E.D., Jr.; Kitchin, N.; Xu, X.; Dychter, S.S.; Lockhart, S.; Gurtman, A.; Perez, J.L.; Zerbini, C.; Dever, M.E.; Jennings, T.W.; et al. Safety and Efficacy of a Third Dose of BNT162b2 COVID-19 Vaccine. N. Engl. J. Med. 2022, 386, 1910–1921. [Google Scholar] [CrossRef] [PubMed]
- Puthanakit, T.; Chantasrisawad, N.; Yoohat, K.; Nantanee, R.; Sophonphan, J.; Meepuksom, T.; Sodsai, P.; Phanthanawiboon, S.; Jantarabenjakul, W.; Hirankarn, N.; et al. Immunogenicity of a Fractional Dose of mRNA BNT162b2 COVID-19 Vaccine for Primary Series and Booster Vaccination among Healthy Adolescents. Vaccines 2022, 10, 1646. [Google Scholar] [CrossRef]
- Pego-Reigosa, J.M.; Nicholson, L.; Pooley, N.; Langham, S.; Embleton, N.; Marjenberg, Z.; Barut, V.; Desta, B.; Wang, X.; Langham, J.; et al. The risk of infections in adult patients with systemic lupus erythematosus: Systematic review and meta-analysis. Rheumatology 2021, 60, 60–72. [Google Scholar] [CrossRef]
- Mehta, P.; Gasparyan, A.Y.; Zimba, O.; Kitas, G.D. Systemic lupus erythematosus in the light of the COVID-19 pandemic: Infection, vaccination, and impact on disease management. Clin. Rheumatol. 2022, 41, 2893–2910. [Google Scholar] [CrossRef]
- Jiang, X.; Sparks, J.; Wallace, Z.; Deng, X.; Li, H.; Lu, N.; Xie, D.; Wang, Y.; Zeng, C.; Lei, G.; et al. Risk of COVID-19 among unvaccinated and vaccinated patients with systemic lupus erythematosus: A general population study. RMD Open 2023, 9, e002839. [Google Scholar] [CrossRef]
- Izmirly, P.M.; Kim, M.Y.; Samanovic, M.; Fernandez-Ruiz, R.; Ohana, S.; Deonaraine, K.K.; Engel, A.J.; Masson, M.; Xie, X.; Cornelius, A.R.; et al. Evaluation of Immune Response and Disease Status in Systemic Lupus Erythematosus Patients Following SARS-CoV-2 Vaccination. Arthritis Rheumatol. 2022, 74, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.Y.S.; Yee, A.M.; Sim, J.J.L.; Lim, C.C. COVID-19 vaccination in systemic lupus erythematosus: A systematic review of its effectiveness, immunogenicity, flares and acceptance. Rheumatology 2023, 62, 1757–1772. [Google Scholar] [CrossRef] [PubMed]
- Curtis, J.R.; Johnson, S.R.; Anthony, D.D.; Arasaratnam, R.J.; Baden, L.R.; Bass, A.R.; Calabrese, C.; Gravallese, E.M.; Harpaz, R.; Kroger, A.; et al. American College of Rheumatology Guidance for COVID-19 Vaccination in Patients With Rheumatic and Musculoskeletal Diseases: Version 5. Arthritis Rheumatol. 2023, 75, E1–E16. [Google Scholar] [CrossRef] [PubMed]
- González-Meléndez, A.; Báez-Negrón, L.; Ríos-Rivera, R.; Franco-O’Connell, A.S.; Nieves-Plaza, M.; Vilá, L.M. Short- and mid-term outcomes in systemic lupus erythematosus patients presenting with disease exacerbation after SARS-CoV-2 mRNA vaccination: A cohort study from Puerto Rico. Lupus 2023, 32, 571–579. [Google Scholar] [CrossRef]
- Kikuchi, J.; Kondo, Y.; Kojima, S.; Kasai, S.; Sakai, Y.; Takeshita, M.; Hiramoto, K.; Saito, S.; Fukui, H.; Hanaoka, H.; et al. Risk of disease flares after SARS-CoV-2 mRNA vaccination in patients with systemic lupus erythematosus. Immunol. Med. 2024, 47, 76–84. [Google Scholar] [CrossRef]
- Ma, M.; Santosa, A.; Fong, W.; Chew, L.C.; Low, A.H.; Law, A.; Poh, Y.J.; Yeo, S.I.; Leung, Y.Y.; Ng, V.W.; et al. Post-mRNA vaccine flares in autoimmune inflammatory rheumatic diseases: Results from the COronavirus National Vaccine registry for ImmuNe diseases SINGapore (CONVIN-SING). J. Autoimmun. 2023, 134, 102959. [Google Scholar] [CrossRef]
- Gerosa, M.; Schioppo, T.; Argolini, L.M.; Sciascia, S.; Ramirez, G.A.; Moroni, G.; Sinico, R.A.; Bonelli, G.; Alberici, F.; Mescia, F.; et al. The Impact of Anti-SARS-CoV-2 Vaccine in Patients with Systemic Lupus Erythematosus: A Multicentre Cohort Study. Vaccines 2022, 10, 663. [Google Scholar] [CrossRef]
- Larsen, E.S.; Nilsson, A.C.; Möller, S.; Voss, A.B.; Johansen, I.S. Immunogenicity and risk of disease flare after a three-dose regimen with SARS-CoV-2 vaccination in patients with systemic lupus erythematosus: Results from the prospective cohort study COVAC-SLE. Clin. Exp. Rheumatol. 2023, 41, 676–684. [Google Scholar] [CrossRef]
- Mok, C.C.; Chan, K.L.; Tse, S.M. Hesitancy for SARS-CoV-2 vaccines and post-vaccination flares in patients with systemic lupus erythematosus. Vaccine 2022, 40, 5959–5964. [Google Scholar] [CrossRef]
- So, H.; Li, T.; Chan, V.; Tam, L.S.; Chan, P.K. Immunogenicity and safety of inactivated and mRNA COVID-19 vaccines in patients with systemic lupus erythematosus. Ther. Adv. Musculoskelet. Dis. 2022, 14, 1759720x221089586. [Google Scholar] [CrossRef]
- Barbhaiya, M.; Levine, J.M.; Siegel, C.H.; Bykerk, V.P.; Jannat-Khah, D.; Mandl, L.A. Adverse events and disease flares after SARS-CoV-2 vaccination in patients with systemic lupus erythematosus. Clin. Rheumatol. 2022, 41, 1619–1622. [Google Scholar] [CrossRef] [PubMed]
- Delkash, P.; Azimi, A.; Taherpour, N.; Aghajani, S.H. The Role of Sinopharm BIBP COVID-19 Vaccine Immunization in Systemic Lupus Erythematous Flare-up. Arch. Clin. Infect. Dis. 2023, 18, e139989. [Google Scholar] [CrossRef]
- Yoshida, T.; Tsuji, H.; Onishi, A.; Takase, Y.; Shirakashi, M.; Onizawa, H.; Hiwa, R.; Kitagori, K.; Akizuki, S.; Nakashima, R.; et al. Medium-term impact of the SARS-CoV-2 mRNA vaccine against disease activity in patients with systemic lupus erythematosus. Lupus Sci. Med. 2022, 9, e000727. [Google Scholar] [CrossRef]
- Mormile, I.; Della Casa, F.; Petraroli, A.; Furno, A.; Granata, F.; Portella, G.; Rossi, F.W.; de Paulis, A. Immunogenicity and Safety of mRNA Anti-SARS-CoV-2 Vaccines in Patients with Systemic Lupus Erythematosus. Vaccines 2022, 10, 1221. [Google Scholar] [CrossRef] [PubMed]
- Zavala-Flores, E.; Salcedo-Matienzo, J.; Quiroz-Alva, A.; Berrocal-Kasay, A. Side effects and flares risk after SARS-CoV-2 vaccination in patients with systemic lupus erythematosus. Clin. Rheumatol. 2022, 41, 1349–1357. [Google Scholar] [CrossRef]
- Fan, Y.; Geng, Y.; Wang, Y.; Deng, X.; Li, G.; Zhao, J.; Ji, L.; Zhang, X.; Song, Z.; Zhang, H.; et al. Safety and disease flare of autoimmune inflammatory rheumatic diseases: A large real-world survey on inactivated COVID-19 vaccines. Ann. Rheum. Dis. 2022, 81, 443–445. [Google Scholar] [CrossRef] [PubMed]
- Assawasaksakul, T.; Lertussavavivat, T.; Sathitratanacheewin, S.; Oudomying, N.; Vichaiwattana, P.; Wanlapakorn, N.; Poovorawan, Y.; Avihingsanon, Y.; Assawasaksakul, N.; Buranapraditkun, S.; et al. Comparison of Immunogenicity and Safety of Inactivated, Adenovirus-Vectored, and Heterologous Adenovirus-Vectored/mRNA Vaccines in Patients with Systemic Lupus Erythematosus and Rheumatoid Arthritis: A Prospective Cohort Study. Vaccines 2022, 10, 853. [Google Scholar] [CrossRef] [PubMed]
- Felten, R.; Kawka, L.; Dubois, M.; Ugarte-Gil, M.F.; Fuentes-Silva, Y.; Piga, M.; Arnaud, L. Tolerance of COVID-19 vaccination in patients with systemic lupus erythematosus: The international VACOLUP study. Lancet Rheumatol. 2021, 3, e613–e615. [Google Scholar] [CrossRef]
- Rider, L.G.; Parks, C.G.; Wilkerson, J.; Schiffenbauer, A.I.; Kwok, R.K.; Noroozi Farhadi, P.; Nazir, S.; Ritter, R.; Sirotich, E.; Kennedy, K.; et al. Baseline factors associated with self-reported disease flares following COVID-19 vaccination among adults with systemic rheumatic disease: Results from the COVID-19 global rheumatology alliance vaccine survey. Rheumatology 2022, 61, si143–si150. [Google Scholar] [CrossRef]
- Hochberg, M.C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997, 40, 1725. [Google Scholar] [CrossRef]
- Petri, M.; Orbai, A.M.; Alarcon, G.S.; Gordon, C.; Merrill, J.T.; Fortin, P.R.; Bruce, I.N.; Isenberg, D.; Wallace, D.J.; Nived, O.; et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012, 64, 2677–2686. [Google Scholar] [CrossRef] [PubMed]
- Uribe, A.G.; Vila, L.M.; McGwin, G., Jr.; Sanchez, M.L.; Reveille, J.D.; Alarcon, G.S. The Systemic Lupus Activity Measure-revised, the Mexican Systemic Lupus Erythematosus Disease Activity Index (SLEDAI), and a modified SLEDAI-2K are adequate instruments to measure disease activity in systemic lupus erythematosus. J. Rheumatol. 2004, 31, 1934–1940. [Google Scholar]
- Abrahamowicz, M.; Fortin, P.R.; du Berger, R.; Nayak, V.; Neville, C.; Liang, M.H. The relationship between disease activity and expert physician’s decision to start major treatment in active systemic lupus erythematosus: A decision aid for development of entry criteria for clinical trials. J. Rheumatol. 1998, 25, 277–284. [Google Scholar] [PubMed]
- Buyon, J.P.; Petri, M.A.; Kim, M.Y.; Kalunian, K.C.; Grossman, J.; Hahn, B.H.; Merrill, J.T.; Sammaritano, L.; Lockshin, M.; Alarcon, G.S.; et al. The effect of combined estrogen and progesterone hormone replacement therapy on disease activity in systemic lupus erythematosus: A randomized trial. Ann. Intern. Med. 2005, 142, 953–962. [Google Scholar] [CrossRef]
- Gladman, D.D.; Urowitz, M.B.; Goldsmith, C.H.; Fortin, P.; Ginzler, E.; Gordon, C.; Hanly, J.G.; Isenberg, D.A.; Kalunian, K.; Nived, O.; et al. The reliability of the Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index in patients with systemic lupus erythematosus. Arthritis Rheum. 1997, 40, 809–813. [Google Scholar] [CrossRef]
- Watad, A.; De Marco, G.; Mahajna, H.; Druyan, A.; Eltity, M.; Hijazi, N.; Haddad, A.; Elias, M.; Zisman, D.; Naffaa, M.E.; et al. Immune-Mediated Disease Flares or New-Onset Disease in 27 Subjects Following mRNA/DNA SARS-CoV-2 Vaccination. Vaccines 2021, 9, 435. [Google Scholar] [CrossRef]
- Nune, A.; Durkowski, V.; Pillay, S.S.; Barman, B.; Elwell, H.; Bora, K.; Bilgrami, S.; Mahmood, S.; Babajan, N.; Venkatachalam, S.; et al. New-Onset Rheumatic Immune-Mediated Inflammatory Diseases Following SARS-CoV-2 Vaccinations until May 2023: A Systematic Review. Vaccines 2023, 11, 1571. [Google Scholar] [CrossRef]
- Li, Z.; Xiang, T.; Liang, B.; Deng, H.; Wang, H.; Feng, X.; Quan, X.; Wang, X.; Li, S.; Lu, S.; et al. Characterization of SARS-CoV-2-Specific Humoral and Cellular Immune Responses Induced by Inactivated COVID-19 Vaccines in a Real-World Setting. Front. Immunol. 2021, 12, 802858. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, S.E.; Shurin, G.V.; Yost, M.; Anderson, A.; Pinto, L.; Wells, A.; Shurin, M.R. Differential Antibody Response to mRNA COVID-19 Vaccines in Healthy Subjects. Microbiol. Spectr. 2021, 9, e0034121. [Google Scholar] [CrossRef]
- Ashmawy, R.; Hamdy, N.A.; Elhadi, Y.A.M.; Alqutub, S.T.; Esmail, O.F.; Abdou, M.S.M.; Reyad, O.A.; El-Ganainy, S.O.; Gad, B.K.; Nour El-Deen, A.E.; et al. A Meta-Analysis on the Safety and Immunogenicity of COVID-19 Vaccines. J. Prim. Care Community Health 2022, 13, 21501319221089255. [Google Scholar] [CrossRef]
- Burgos, P.I.; Alarcon, G.S. Thrombosis in systemic lupus erythematosus: Risk and protection. Expert. Rev. Cardiovasc. Ther. 2009, 7, 1541–1549. [Google Scholar] [CrossRef] [PubMed]
- Schultz, N.H.; Sorvoll, I.H.; Michelsen, A.E.; Munthe, L.A.; Lund-Johansen, F.; Ahlen, M.T.; Wiedmann, M.; Aamodt, A.H.; Skattor, T.H.; Tjonnfjord, G.E.; et al. Thrombosis and Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination. N. Engl. J. Med. 2021, 384, 2124–2130. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Burn, E.; Duarte-Salles, T.; Yin, C.; Reich, C.; Delmestri, A.; Verhamme, K.; Rijnbeek, P.; Suchard, M.A.; Li, K.; et al. Comparative risk of thrombosis with thrombocytopenia syndrome or thromboembolic events associated with different COVID-19 vaccines: International network cohort study from five European countries and the US. BMJ 2022, 379, e071594. [Google Scholar] [CrossRef]
- Gladman, D.D.; Ibanez, D.; Urowitz, M.B. Systemic lupus erythematosus disease activity index 2000. J. Rheumatol. 2002, 29, 288–291. [Google Scholar] [PubMed]
Baseline Characteristics | Total (N = 201) | |||
---|---|---|---|---|
Female | 191 (95.02) | |||
Age in years | 41.37 ± 12.99 | |||
SLE disease duration in years | 13.86 ± 8.56, 7.02 [12.91–19.49] | |||
Co-morbidities * | ||||
Hypertension | 65 (32.34) | |||
Dyslipidemia | 65 (32.34) | |||
Thyroid disease | 15 (7.46) | |||
Diabetes mellitus | 13 (6.47) | |||
Previous malignancy | 4 (1.99) | |||
Hepatitis B or C infection | 4 (1.99) | |||
Others # | 4 (1.99) | |||
Cumulative 1997 ACR manifestations | ||||
Malar rash | 119 (59.20) | |||
Oral/nasal ulcers | 58 (28.86) | |||
Photosensitivity | 33 (16.42) | |||
Discoid rash | 62 (30.85) | |||
Arthritis | 124 (61.69) | |||
Serositis | 27 (13.43) | |||
Neurological disorder | 22 (10.95) | |||
Renal involvement | 153 (76.12) | |||
Hematologic disorder | 154 (76.62) | |||
ANA positive | 201 (100.00) | |||
Immunologic, n/N (%) | ||||
Anti-dsDNA antibody | 150/184 (81.52) | |||
Anti-Sm antibody | 13/30 (43.33) | |||
Anti-phospholipid antibodies | 15/103 (14.56) | |||
Number of 1997 ACR classification criteria | 5.57 ± 1.24, 5 [5–6] | |||
Number of 2012 SLICC classification criteria | 7.05 ± 1.85, 7 [6–8] | |||
SDI score | 0.91 ± 1.22, 0 [0–2] | |||
Current active organ involvement † | ||||
Renal system | 63 (31.34) | |||
Mucocutaneous system | 25 (12.44) | |||
Musculoskeletal system | 5 (2.49) | |||
Hematological system | 5 (2.49) | |||
Gastrointestinal system | 2 (1.00) | |||
Neurological system (central and peripheral) | 1 (0.50) | |||
mSLEDAI-2K score | ||||
6 months prior to 1st vaccine dose | 2.32 ± 3.18, 0 [0–4] | |||
3 months prior to 1st vaccine dose | 2.18 ± 3.33, 0 [0–4] | |||
1st vaccine dose (D1) | 2.13 ± 3.31, 0 [0–4] | |||
Baseline medications † | ||||
Prednisolone | 174 (86.57) | |||
Dose in mg/day | 7.45 ± 6.84, 5 [5–10] | |||
Hydroxychloroquine | 67 (33.33) | |||
Dose in mg/day | 150.07 ± 69.33, 200 [100–200] | |||
Immunosuppressive drugs | 106 (52.74) | |||
Mycophenolate mofetil | 81 (40.30) | |||
Dose in mg/day | 1437.96 ± 702.19, 2000 [1000–2000] | |||
Cyclosporine | 21 (10.45) | |||
Dose in mg/day | 133.33 ± 48.30, 100 [100–200] | |||
Azathioprine | 14 (6.97) | |||
Dose in mg/day | 51.79 ± 22.92 50 [50–50] | |||
Methotrexate | 6 (2.99) | |||
Dose in mg/week | 10.83 ± 3.76, 10 [10–15] | |||
Cyclophosphamide | 6 (2.99) | |||
Dose in mg/month | 1033.33 ± 476.10, 1000 [1000–1500] | |||
Tacrolimus | 2 (1.00) | |||
Dose in mg/day | 1.25 ± 1.06, 1.25 [0.5–2.0] | |||
Type of vaccine | 1st dose (201 patients) | 2nd dose (199 patients) | 3rd dose (124 patients) | |
Inactivated vaccine (183 doses) | 116 (57.71) | 67 (33.67) | 0 | |
Adenovirus-vectored vaccine (128 doses) | 38 (18.91) | 66 (33.17) | 24 (19.35) | |
mRNA vaccine (213 doses) | 47 (23.38) | 66 (33.17) | 100 (80.64) |
Dose of Vaccine | |||
---|---|---|---|
1st Dose (N = 201) | 2nd Dose (N = 199) | 3rd Dose (N = 124) | |
Duration of observation after vaccination (in days) | 30.69 ± 25.59, 22 [20–31] | 77.81 ± 43.33, 76 [44–106] | 103.83 ± 39.75, 101 [74–131] |
mSLEDAI-2K score | |||
Vaccination date | 2.13 ± 3.31, 0 [0–4] | 2.02 ± 3.14, 0 [0–4] | 2.02 ± 2.98, 0 [0–4] |
Assessment date * | 2.06 ± 3.14, 0 [0–4] | 2.16 ± 3.19, 0 [0–4] | 2.25 ± 2.85, 0 [0–4] |
Flares (events) | |||
Mild to mod. flares | 6 (2.99) | 23 (11.56) | 10 (8.06) |
Severe flare | 12 (5.97) | 17 (8.54) | 12 (9.68) |
Total flares (mild to mod. + severe) | 18 (8.96) | 40 (20.10) [p = 0.001] a | 22 (17.74) [p = 0.010] b |
Organ flares | |||
Mucocutaneous system (alopecia, skin rash, vasculitis rash) | 3 (1.49) | 14 (7.04) | 6 (4.84) |
Hematological system (AIHA, leukopenia, thrombocytopenia) | 2 (1.00) | 7 (3.52) | 1 (0.81) |
Musculoskeletal system (myositis, arthritis) | 0 | 3 (1.51) | 1 (0.81) |
Renal system | 11 (5.47) | 14 (7.04) | 12 (9.68) |
Nervous system (CNS and peripheral) | 1 (0.50) | 1 (0.50) | 0 |
Gastrointestinal system | 0 | 1 (0.50) | 0 |
Constitutional symptoms | 1 (0.50) | 0 | 2 (1.61) |
IR (95% CI) of flares (events/100 person-months) | 9.08 (4.87–13.29) | 8.03 (5.70–10.35) | 5.49 (3.37–7.61) |
Type of Vaccine | |||
---|---|---|---|
Inactivated Virus (N = 183) | Adenovirus-Vectored (N = 128) | mRNA (N = 213) | |
Duration of observation after vaccination (in days) | 41.23 ± 37.55, 24 [21–57] | 70.59 ± 43.62, 74 [30–100] | 84.26 ± 47.02, 85 [47–116] |
mSLEDAI-2K score | |||
Vaccination date | 2.38 ± 3.66, 0 [0–4] | 2.01 ± 2.91, 0 [0–4] | 1.83 ± 2.82, 0 [0–4] |
Assessment date * | 2.23 ± 3.45, 0 [0–4] | 2.02 ± 2.80, 0 [0–4] | 2.15 ± 2.94, 0 [0–4] (p = 0.049) a |
Flares (events) | |||
Mild to mod. flares | 11 (6.01) | 9 (7.03) | 19 (8.92) |
Severe flare | 10 (5.46) | 10 (7.81) | 21 (9.86) |
Total flares (mild to mod. + severe) | 21 (11.48) | 19 (14.84) | 40 (17.84) (p = 0.060) b |
Organ flares | |||
Mucocutaneous system (alopecia, skin rash, vasculitis rash) | 4 (2.19) | 9 (7.03) | 10 (4.69) |
Hematological system (AIHA, leukopenia, thrombocytopenia) | 4 (2.19) | 2 (1.56) | 4 (1.88) |
Musculoskeletal system (myositis, arthritis) | 1 (0.55) | 0 | 3 (1.41) |
Renal system | 11 (4.37) | 7 (5.57) | 19 (8.92) |
Nervous system (CNS and peripheral) | 0 | 1 (0.78) | 1 (0.47) |
Gastrointestinal system | 0 | 0 | 1 (0.47) |
Constitutional symptoms | 1 (0.55) | 0 | 2 (0.94) |
IR (95% CI) of flares (events/100 person-months) | 8.88 (5.19–12.57) | 6.55 (3.85–9.25) | 7.12 (4.76–9.48) |
Baseline Characteristics | Cases with Flares (n = 62) | Cases Without Flares (n = 139) | p-Value |
---|---|---|---|
Female | 58 (93.55) | 133 (95.68) | 0.502 |
Age in years | 37.26 ± 10.64 | 43.21 ± 13.54 | 0.001 |
SLE disease duration in years | 13.08 ± 8.47 11.43 [7.03–17.12] | 14.20 ± 8.61 13.68 [6.88–21.73] | 0.294 |
Co-morbidity * | |||
Hypertension | 20 (32.26) | 45 (32.37) | 0.987 |
Dyslipidemia | 21 (33.87) | 44 (31.65) | 0.756 |
Thyroid disease | 4 (6.45) | 11 (7.91) | 0.716 |
Diabetes mellitus | 3 (4.84) | 10 (7.19) | 0.758 |
Previous malignancy | 2 (3.23) | 2 (1.44) | 0.589 |
Hepatitis B or C infection | 2 (3.23) | 2 (1.44) | 0.589 |
Others # | 0 | 4 (2.88) | 0.314 |
Current active organ involvement † | |||
Renal system | 30 (48.39) | 33 (23.74) | 0.001 |
Mucocutaneous system | 17 (27.42) | 8 (5.76) | <0.001 |
Musculoskeletal system | 0 | 5 (3.60) | 0.326 |
Hematological system | 3 (4.84) | 2 (1.44) | 0.172 |
Gastrointestinal system | 2 (3.23) | 0 | 0.094 |
Neurological system | 0 | 1 (0.72) | 1.000 |
mSLEDAI-2K score | |||
6 months prior to 1st vaccine dose | 3.72 ± 3.68 4 [0–4] | 1.71 ± 2.73 0 [0–4] | <0.001 |
3 months prior to 1st vaccine dose | 3.62 ± 4.15 2 [0–4] | 155 ± 2.67 0 [0–4] | <0.001 |
1st vaccine dose (D1) | 3.56 ± 4.14 2 [0–4] | 1.50 ± 2.64 0 [0–4] | <0.001 |
Number of 1997 ACR classification criteria | 5.92 ± 1.23 | 5.41 ± 1.22 | 0.007 |
Number of 2012 SLICC classification criteria | 7.73 ± 1.84 | 6.75 ± 1.78 | <0.001 |
SDI score | 0.85 ± 1.30 0 [0–2] | 0.93 ± 1.19 1 [0–2] | 0.436 |
Baseline medication † | |||
Prednisolone | 56 (90.32) | 118 (84.89) | 0.297 |
Dose (mg/day) | 7.63 ± 6.31 5 [5–10] | 7.36 ± 7.10 5 [5–10] | 0.547 |
Hydroxychloroquine | 21 (33.87) | 46 (33.09) | 0.914 |
Dose (mg/day) | 157.14 ± 57.63 200 [100–200] | 146.85 ± 74.43 200 [100–200] | 0.577 |
Immunosuppressive drug | 36 (58.06) | 70 (50.36) | 0.312 |
Mycophenolate mofetil | 27 (43.55) | 54 (38.85) | 0.530 |
Dose (mg/day) | 1286.11 ± 748.95 1000 [500–2000] | 1513.89 ± 671.90 2000 [1000–2000] | 0.163 |
Cyclosporine | 11 (17.74) | 10 (7.19) | 0.024 |
Dose (mg/day) | 118.18 ± 40.45 100 [100,100] | 150.00 ± 52.70 150 [100–200] | 0.135 |
Azathioprine | 4 (6.45) | 10 (7.19) | 0.849 |
Dose (mg/day) | 50.00 ± 0.00 50 [50–50] | 52.50 ± 27.51 50 [25–50] | 0.740 |
Methotrexate | 1 (1.61) | 5 (3.60) | 0.668 |
Dose (mg/week) | 10.00 ± 0.00 10 [10–10] | 11.00 ± 4.18 10 [10–15] | 0.752 |
Cyclophosphamide | 2 (3.23) | 4 (2.88) | 1.000 |
Dose (mg/month) | 1250 ± 353.55 1250 [1000–1500] | 925.00 ± 537.74 1000 [600–1250] | 0.453 |
Tacrolimus | 0 | 2 (1.44) | 1.000 |
Dose (mg/day) | 1.25 ± 1.06 1.25 [0.5–2] |
Baseline Characteristics | Total | Flare (%) | Univariable | Multivariable | ||||
---|---|---|---|---|---|---|---|---|
HR | 95%CI | p-Value | HR | 95%CI | p-Value | |||
Female | 191 | 58 (30.37) | 0.94 | 0.34–2.60 | 0.902 | |||
Age in years | 41.37 ± 12.99 | 37.26 ± 10.64 | 0.97 | 0.95–0.99 | 0.004 | 0.98 | 0.96–1.00 | 0.089 |
SLE disease duration in years | 13.86 ± 8.56 | 13.08 ± 8.47 | 0.98 | 0.95–1.01 | 0.323 | |||
Co-morbidity * | ||||||||
Hypertension | 65 | 20 (30.77) | 1.03 | 0.61–1.77 | 0.900 | |||
Dyslipidemia | 65 | 21 (32.31) | 1.20 | 0.70–2.04 | 0.510 | |||
Thyroid disease | 15 | 4 (26.67) | 0.78 | 0.28–2.15 | 0.627 | |||
Diabetes mellitus | 13 | 3 (23.08) | 0.55 | 0.17–1.76 | 0.312 | |||
Previous malignancy | 4 | 2 (50.00) | 2.11 | 0.51–1.52 | 0.302 | |||
Hepatitis B or C infection | 4 | 2 (50.00) | 3.71 | 0.88–15.59 | 0.073 | 3.53 | 0.83–15.04 | 0.089 |
Current active organ involvement # | ||||||||
Renal system | 63 | 30 (47.62) | 2.21 | 1.33–3.65 | 0.002 | 2.57 | 1.47–4.50 | 0.001 |
Mucocutaneous system | 25 | 17 (68.00) | 2.36 | 1.35–4.14 | 0.003 | 2.45 | 1.31–4.60 | 0.005 |
Musculoskeletal system | 5 | 0 | ||||||
Hematological system | 5 | 3 (60.00) | 1.89 | 0.59–6.07 | 0.286 | |||
Gastrointestinal system | 2 | 2 (100.00) | 4.92 | 1.19–20.38 | 0.028 | 4.16 | 0.90–19.21 | 0.068 |
Neurological system | 1 | 0 | ||||||
mSLEDAI-2K score at 1st vaccine dose (D1) | 2.13 ± 3.31 | 3.56 ± 4.14 | 1.14 | 1.07–1.21 | <0.001 | 1.13 | 1.05–1.20 | 0.001 † |
Number of 1997 ACR classification criteria | 5.57 ± 1.24 | 5.92 ± 1.23 | 1.28 | 1.05–1.55 | 0.014 | 1.22 | 1.00–1.50 | 0.053 |
SDI score | 0.91 ± 1.22 | 0.85 ± 1.30 | 1.00 | 0.81–1.24 | 0.984 | |||
Baseline medication # | ||||||||
Prednisolone | 174 | 56 (32.18) | 1.89 | 0.81–4.39 | 0.141 | |||
Hydroxychloroquine | 67 | 21 (31.34) | 0.93 | 0.55–1.57 | 0.784 | |||
Immunosuppressive drug | 106 | 36 (33.96) | 1.57 | 0.94–2.62 | 0.087 | |||
Mycophenolate mofetil | 81 | 27 (33.33) | 1.22 | 0.74–2.03 | 0.437 | |||
Cyclosporine | 21 | 11 (52.38) | 1.58 | 0.82–3.04 | 0.170 | |||
Azathioprine | 14 | 4 (28.57) | 1.25 | 0.45–3.45 | 0.671 | |||
Methotrexate | 6 | 1 (16.67) | 1.36 | 0.19–9.94 | 0.764 | |||
Cyclophosphamide | 6 | 2 (33.33) | 2.49 | 0.60–10.31 | 0.208 | |||
Tacrolimus | 2 | 0 |
Flare: n/N (%) | p-Value | ||
---|---|---|---|
mSLEDAI-2K Score = 0–5 | mSLEDAI-2K Score ≥ 6 | ||
By dose of vaccine | |||
1st dose (N = 201) | 11/178 (6.18) | 7/23 (30.43) | <0.001 |
2nd dose (N = 199) | 33/174 (18.97) | 7/25 (28.00) | 0.368 |
3rd dos (N = 124) | 18/113 (15.93) | 4/11 (36.36) | 0.081 |
By type of vaccine | |||
Inactivated virus (N = 183) | 13/154 (8.44) | 8/29 (27.59) | 0.008 |
Adenovirus-vectored (N = 128) | 16/113 (14.16) | 3/15 (20.00) | 0.621 |
mRNA (N = 123) | 33/198 (16.67) | 7/15 (46.67) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Louthrenoo, W.; Tangkum, P.; Kasitanon, N.; Gumtorntip, W.; Winichakoon, P.; Konsamun, S.; Wongthanee, A. Flares and Predicting Factors of Flares in Patients with Systemic Lupus Erythematosus Associated with Different Doses and Types of COVID-19 Vaccines. Vaccines 2024, 12, 1399. https://doi.org/10.3390/vaccines12121399
Louthrenoo W, Tangkum P, Kasitanon N, Gumtorntip W, Winichakoon P, Konsamun S, Wongthanee A. Flares and Predicting Factors of Flares in Patients with Systemic Lupus Erythematosus Associated with Different Doses and Types of COVID-19 Vaccines. Vaccines. 2024; 12(12):1399. https://doi.org/10.3390/vaccines12121399
Chicago/Turabian StyleLouthrenoo, Worawit, Punsita Tangkum, Nuntana Kasitanon, Wanitcha Gumtorntip, Poramed Winichakoon, Supparat Konsamun, and Antika Wongthanee. 2024. "Flares and Predicting Factors of Flares in Patients with Systemic Lupus Erythematosus Associated with Different Doses and Types of COVID-19 Vaccines" Vaccines 12, no. 12: 1399. https://doi.org/10.3390/vaccines12121399
APA StyleLouthrenoo, W., Tangkum, P., Kasitanon, N., Gumtorntip, W., Winichakoon, P., Konsamun, S., & Wongthanee, A. (2024). Flares and Predicting Factors of Flares in Patients with Systemic Lupus Erythematosus Associated with Different Doses and Types of COVID-19 Vaccines. Vaccines, 12(12), 1399. https://doi.org/10.3390/vaccines12121399