Challenges of Multidrug-Resistant Tuberculosis Meningitis: Current Treatments and the Role of Glutathione as an Adjunct Therapy
Abstract
:1. Introduction
2. Current Treatment Options for MDR-TBM
2.1. Pretomanid-Based Combinations
2.2. Modified WHO Regimens
2.3. Ongoing Research
3. Challenges of Treatment Regimens in MDR-TBM
4. Adjunct Immunotherapies for MDR-TBM
4.1. Effector Cytokine Therapies
4.2. Promoting a Favorable Immune Response
4.3. Immunosuppressive Strategies
4.4. Balancing Pro- and Anti-Inflammatory Responses
5. Challenges of Immunotherapies for MDR-TBM
5.1. Balancing Challenges in Cytokine Therapy for MDR-TB
5.2. Limited Research in TBM-Specific Contexts
5.3. Variability in Patient Response to Cytokine Therapy
5.4. The Impact of Cytokines on the CNS Immune Environment
6. Glutathione and MDR-TBM Management
Benefit | Description | Mechanism | Clinical Relevance to MDR-TBM |
---|---|---|---|
Antioxidant Properties [21] | Glutathione acts as a key antioxidant, protecting cells from oxidative stress. | Maintains redox balance and reduces oxidative damage during inflammation, critical in TBM. | Protects neuronal integrity and function, which is vital in preventing neurological damage in TBM. |
Immune Modulation [69,70,71,72,73] | Enhances immune response by improving lymphocyte and macrophage function. | Increases levels of Th1 cytokines (IFN-γ, TNF-α, IL-2) and reduces anti-inflammatory cytokines (IL-6, IL-10). | Strengthens host defenses specifically against MDR strains, improving treatment efficacy in MDR-TBM. |
Synergistic Effect with NAC [71,74] | Combining glutathione with N-acetylcysteine (NAC) boosts intracellular levels. | NAC replenishes glutathione, enhancing its antioxidant effects and cellular protection. | May enhance the therapeutic response to standard TB drugs, addressing drug resistance in MDR-TBM. |
Enhanced Bioavailability [75,76,77,78] | Liposomal formulations improve stability and delivery. | Encapsulates glutathione to protect against degradation, ensuring effective transport across the BBB. | Ensures effective delivery of antioxidants to the CNS, critical for managing TBM complications. |
Prevention of Drug Resistance [74,79,80,81] | Cysteine (a glutathione derivative) prevents emergence of drug-resistant strains. | Inhibits cells from entering a persister state and induces an oxidative burst, enhancing drug activity. | Helps mitigate the development of drug resistance, a major concern in treating MDR-TBM. |
Hepatoprotection [74,79,80,81] | NAC protects against hepatotoxicity associated with anti-TB drugs. | Reduces liver enzyme levels and mitigates drug-induced liver damage. | Essential for maintaining liver health, thus ensuring continuity of MDR-TBM treatment. |
Cost-Effectiveness [82] | Could alleviate the financial burden on MDR-TB patients. | Enhances treatment efficacy and may reduce length of hospital stays. | Addresses the significant economic strain on patients, making treatment more accessible and sustainable. |
7. Glutathione and Oxidative Stress in MDR-TBM
8. Implications of Glutathione for Vaccine Development
8.1. Upregulating Glutathione Synthesis via the Nrf2 Pathway
8.2. Increasing Availability of Glutathione Precursors
8.3. Enhancing NADPH Production for Sustained Glutathione Activity
9. Feasibility and Challenges of Glutathione-Targeted Vaccines for MDR-TBM
9.1. Practical Feasibility of Glutathione-Targeted Vaccines
9.2. Potential Limitations and Side Effects
9.3. Current Progress in Glutathione-Based Vaccine Research
10. Future Research Directions
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Global Tuberculosis Report; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Dheda, K.; Mirzayev, F.; Cirillo, D.M.; Udwadia, Z.; Dooley, K.E.; Chang, K.-C.; Omar, S.V.; Reuter, A.; Perumal, T.; Horsburgh, C.R., Jr. Multidrug-resistant tuberculosis. Nat. Rev. Dis. Primers 2024, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Biswas, P.; Ansar, W.; Mukherjee, P.; Jawed, J.J. Tuberculosis of the central nervous system: Pathogenicity and molecular mechanism. In A Review on Diverse Neurological Disorders; Elsevier: Amsterdam, The Netherlands, 2024; pp. 93–102. [Google Scholar]
- Wilkinson, R.J.; Rohlwink, U.; Misra, U.K.; Van Crevel, R.; Mai, N.T.H.; Dooley, K.E.; Caws, M.; Figaji, A.; Savic, R.; Solomons, R. Tuberculous meningitis. Nat. Rev. Neurol. 2017, 13, 581–598. [Google Scholar] [CrossRef] [PubMed]
- Huynh, J.; Donovan, J.; Phu, N.H.; Nghia, H.D.T.; Thuong, N.T.T.; Thwaites, G.E. Tuberculous meningitis: Progress and remaining questions. Lancet Neurol. 2022, 21, 450–464. [Google Scholar] [CrossRef] [PubMed]
- Boubour, A.; Paradkar, M.; Thakur, K.T. Global and regional burden of tuberculosis and tuberculous meningitis. In Tuberculous Meningitis; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–15. [Google Scholar]
- Byrd, T.F.; Davis, L.E. Multidrug-resistant tuberculous meningitis. Curr. Neurol. Neurosci. Rep. 2007, 7, 470–475. [Google Scholar] [CrossRef]
- Garg, R.K.; Rizvi, I.; Malhotra, H.S.; Uniyal, R.; Kumar, N. Management of complex tuberculosis cases: A focus on drug-resistant tuberculous meningitis. Expert Rev. Anti-Infect. Ther. 2018, 16, 813–831. [Google Scholar] [CrossRef]
- Inbaraj, L.R.; Daniel, B.D.; Padmapriyadarsini, C. Drug resistant tuberculous meningitis: A neglected foe in ending tuberculosis epidemic. Indian J. Tuberc. 2024, in press. [Google Scholar]
- Smith, A.; Gujabidze, M.; Avaliani, T.; Blumberg, H.; Collins, J.; Sabanadze, S.; Bakuradze, T.; Avaliani, Z.; Kempker, R.; Kipiani, M. Clinical outcomes among patients with tuberculous meningitis receiving intensified treatment regimens. Int. J. Tuberc. Lung Dis. 2021, 25, 632–639. [Google Scholar] [CrossRef]
- Evans, E.E.; Avaliani, T.; Gujabidze, M.; Bakuradze, T.; Kipiani, M.; Sabanadze, S.; Smith, A.G.; Avaliani, Z.; Collins, J.M.; Kempker, R.R. Long term outcomes of patients with tuberculous meningitis: The impact of drug resistance. PLoS ONE 2022, 17, e0270201. [Google Scholar] [CrossRef]
- Thee, S.; Basu Roy, R.; Blázquez-Gamero, D.; Falcón-Neyra, L.; Neth, O.; Noguera-Julian, A.; Lillo, C.; Galli, L.; Venturini, E.; Buonsenso, D. Treatment and outcome in children with tuberculous meningitis: A multicenter pediatric tuberculosis network European trials group study. Clin. Infect. Dis. 2022, 75, 372–381. [Google Scholar] [CrossRef]
- World Health Organization (WHO). WHO Consolidated Guidelines on Drug-Resistant Tuberculosis Treatment; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Migliori, G.B.; Sotgiu, G.; Richardson, M.A.; Centis, R.; Facchini, A.; Guenther, G.; Spanevello, A.; Lange, C. MDR-TB and XDR-TB: Drug resistance and treatment outcomes. Eur. Respir. J. 2009, 34, 778–779. [Google Scholar] [CrossRef]
- Hatami, H.; Sotgiu, G.; Bostanghadiri, N.; Abadi, S.S.D.; Mesgarpour, B.; Goudarzi, H.; Migliori, G.B.; Nasiri, M.J. Bedaquiline-containing regimens and multidrug-resistant tuberculosis: A systematic review and meta-analysis. J. Bras. Pneumol. 2022, 48, e20210384. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, M.J.; Zangiabadian, M.; Arabpour, E.; Amini, S.; Khalili, F.; Centis, R.; D’Ambrosio, L.; Denholm, J.T.; Schaaf, H.S.; van den Boom, M. Delamanid-containing regimens and multidrug-resistant tuberculosis: A systematic review and meta-analysis. Int. J. Infect. Dis. 2022, 124, S90–S103. [Google Scholar] [CrossRef] [PubMed]
- Méchaï, F.; Bouchaud, O. Tuberculous meningitis: Challenges in diagnosis and management. Rev. Neurol. 2019, 175, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Cresswell, F.V.; Te Brake, L.; Atherton, R.; Ruslami, R.; Dooley, K.E.; Aarnoutse, R.; Van Crevel, R. Intensified antibiotic treatment of tuberculosis meningitis. Expert Rev. Clin. Pharmacol. 2019, 12, 267–288. [Google Scholar] [CrossRef]
- Cresswell, F.V.; Musubire, A.K.; Århem, K.M.J. Treatment guidelines for tuberculosis and tuberculous meningitis. In Tuberculous Meningitis; Elsevier: Amsterdam, The Netherlands, 2020; pp. 67–101. [Google Scholar]
- Huynh, J.; Abo, Y.-N.; du Preez, K.; Solomons, R.; Dooley, K.E.; Seddon, J.A. Tuberculous meningitis in children: Reducing the burden of death and disability. Pathogens 2021, 11, 38. [Google Scholar] [CrossRef]
- Venketaraman, V.; Millman, A.; Salman, M.; Swaminathan, S.; Goetz, M.; Lardizabal, A.; Hom, D.; Connell, N.D. Glutathione levels and immune responses in tuberculosis patients. Microb. Pathog. 2008, 44, 255–261. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Key Updates to the Treatment of Drug-Resistant Tuberculosis: Rapid Communication, June 2024. Available online: https://www.who.int/publications/i/item/B09123 (accessed on 1 June 2024).
- Chen, X.; Arun, B.; Nino-Meza, O.J.; Sarhan, M.O.; Singh, M.; Jeon, B.; Mane, K.; Shah, M.; Tucker, E.W.; Carroll, L.S. Dynamic PET reveals compartmentalized brain and lung tissue antibiotic exposures of tuberculosis drugs. Nat. Commun. 2024, 15, 6657. [Google Scholar] [CrossRef]
- Akkerman, O.W.; Odish, O.F.; Bolhuis, M.S.; de Lange, W.C.; Kremer, H.P.; Luijckx, G.-J.R.; van der Werf, T.S.; Alffenaar, J.-W. Pharmacokinetics of bedaquiline in cerebrospinal fluid and serum in multidrug-resistant tuberculous meningitis. Clin. Infect. Dis. 2016, 62, 523–524. [Google Scholar] [CrossRef]
- Fang, M.-T.; Su, Y.-F.; An, H.-R.; Zhang, P.-Z.; Deng, G.-F.; Liu, H.-M.; Mao, Z.; Zeng, J.-F.; Li, G.; Yang, Q.-T. Decreased mortality seen in rifampicin/multidrug-resistant tuberculous meningitis treated with linezolid in Shenzhen, China. BMC Infect. Dis. 2021, 21, 1015. [Google Scholar] [CrossRef]
- Nyang’wa, B.-T.; Berry, C.; Kazounis, E.; Motta, I.; Parpieva, N.; Tigay, Z.; Solodovnikova, V.; Liverko, I.; Moodliar, R.; Dodd, M. A 24-week, all-oral regimen for rifampin-resistant tuberculosis. N. Engl. J. Med. 2022, 387, 2331–2343. [Google Scholar] [CrossRef]
- Cholo, M.C.; Mothiba, M.T.; Fourie, B.; Anderson, R. Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline. J. Antimicrob. Chemother. 2016, 72, dkw426. [Google Scholar] [CrossRef] [PubMed]
- Upton, C.M.; Steele, C.I.; Maartens, G.; Diacon, A.H.; Wiesner, L.; Dooley, K.E. Pharmacokinetics of bedaquiline in cerebrospinal fluid (CSF) in patients with pulmonary tuberculosis (TB). J. Antimicrob. Chemother. 2022, 77, 1720–1724. [Google Scholar] [CrossRef] [PubMed]
- Upton, C.M.; Wiesner, L.; Dooley, K.E.; Maartens, G. Cerebrospinal fluid and tuberculous meningitis. Clin. Infect. Dis. 2023, 77, 158. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.K.; Tobin, D.M.; Tucker, E.W.; Venketaraman, V.; Ordonez, A.A.; Jayashankar, L.; Siddiqi, O.K.; Hammoud, D.A.; Prasadarao, N.V.; Sandor, M. Tuberculous meningitis: A roadmap for advancing basic and translational research. Nat. Immunol. 2018, 19, 521–525. [Google Scholar] [CrossRef]
- Mota, F.; Ruiz-Bedoya, C.A.; Tucker, E.W.; Holt, D.P.; De Jesus, P.; Lodge, M.A.; Erice, C.; Chen, X.; Bahr, M.; Flavahan, K. Dynamic 18F-Pretomanid PET imaging in animal models of TB meningitis and human studies. Nat. Commun. 2022, 13, 7974. [Google Scholar] [CrossRef]
- Alffenaar, J.; Van Altena, R.; Bökkerink, H.; Luijckx, G.; Van Soolingen, D.; Aarnoutse, R.; Van Der Werf, T. Pharmacokinetics of moxifloxacin in cerebrospinal fluid and plasma in patients with tuberculous meningitis. Clin. Infect. Dis. 2009, 49, 1080–1082. [Google Scholar] [CrossRef]
- Ruslami, R.; Ganiem, A.R.; Dian, S.; Apriani, L.; Achmad, T.H.; van der Ven, A.J.; Borm, G.; Aarnoutse, R.E.; van Crevel, R. Intensified regimen containing rifampicin and moxifloxacin for tuberculous meningitis: An open-label, randomised controlled phase 2 trial. Lancet Infect. Dis. 2013, 13, 27–35. [Google Scholar] [CrossRef]
- Pranger, A.; Van Der Werf, T.; Kosterink, J.; Alffenaar, J. The role of fluoroquinolones in the treatment of tuberculosis in 2019. Drugs 2019, 79, 161–171. [Google Scholar] [CrossRef]
- Tucker, E.W.; Pieterse, L.; Zimmerman, M.D.; Udwadia, Z.F.; Peloquin, C.A.; Gler, M.T.; Ganatra, S.; Tornheim, J.A.; Chawla, P.; Caoili, J.C. Delamanid central nervous system pharmacokinetics in tuberculous meningitis in rabbits and humans. Antimicrob. Agents Chemother. 2019, 63, e00913-19. [Google Scholar] [CrossRef]
- Li, H.; Lu, J.; Liu, J.; Zhao, Y.; Ni, X.; Zhao, S. Linezolid is associated with improved early outcomes of childhood tuberculous meningitis. Pediatr. Infect. Dis. J. 2016, 35, 607–610. [Google Scholar] [CrossRef]
- Li, C.-p.; Li, X.; Huang, S.-m.; Wang, X.-x.; Li, X.-q.; Hu, H.-x.; Fang, Y.-m. Efficacy and safety of linezolid in the treatment of children with severe tuberculous meningitis. China Trop. Med. 2021, 21, 1062–1065. [Google Scholar]
- Kempker, R.R.; Smith, A.G.; Avaliani, T.; Gujabidze, M.; Bakuradze, T.; Sabanadze, S.; Avaliani, Z.; Collins, J.M.; Blumberg, H.M.; Alshaer, M.H. Cycloserine and linezolid for tuberculosis meningitis: Pharmacokinetic evidence of potential usefulness. Clin. Infect. Dis. 2022, 75, 682–689. [Google Scholar] [CrossRef] [PubMed]
- Abdelgawad, N.; Wasserman, S.; Abdelwahab, M.T.; Davis, A.; Stek, C.; Wiesner, L.; Black, J.; Meintjes, G.; Wilkinson, R.J.; Denti, P. Linezolid population pharmacokinetic model in plasma and cerebrospinal fluid among patients with tuberculosis meningitis. J. Infect. Dis. 2024, 229, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
- Stadler, J.A.; Maartens, G.; Meintjes, G.; Wasserman, S. Clofazimine for the treatment of tuberculosis. Front. Pharmacol. 2023, 14, 1100488. [Google Scholar] [CrossRef]
- Nau, R.; Sörgel, F.; Eiffert, H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin. Microbiol. Rev. 2010, 23, 858–883. [Google Scholar] [CrossRef]
- Garg, R. Tuberculous meningitis. Acta Neurol. Scand. 2010, 122, 75–90. [Google Scholar] [CrossRef]
- Uhlin, M.; Andersson, J.; Zumla, A.; Maeurer, M. Adjunct immunotherapies for tuberculosis. J. Infect. Dis. 2012, 205 (Suppl. S2), S325–S334. [Google Scholar] [CrossRef]
- Johnson, J.L.; Ssekasanvu, E.; Okwera, A.; Mayanja, H.; Hirsch, C.S.; Nakibali, J.G.; Jankus, D.D.; Eisenach, K.D.; Boom, W.H.; Ellner, J.J. Randomized trial of adjunctive interleukin-2 in adults with pulmonary tuberculosis. Am. J. Respir. Crit. Care Med. 2003, 168, 185–191. [Google Scholar] [CrossRef]
- Tan, Q.; Min, R.; Dai, G.-q.; Wang, Y.-l.; Nan, L.; Yang, Z.; Xia, J.; Pan, S.-y.; Mao, H.; Xie, W.-p. Clinical and immunological effects of rhIL-2 therapy in eastern Chinese patients with multidrug-resistant tuberculosis. Sci. Rep. 2017, 7, 17854. [Google Scholar] [CrossRef]
- Maeurer, M.J.; Trinder, P.; Hommel, G.; Walter, W.; Freitag, K.; Atkins, D.; Störkel, S. Interleukin-7 or interleukin-15 enhances survival of Mycobacterium tuberculosis-infected mice. Infect. Immun. 2000, 68, 2962–2970. [Google Scholar] [CrossRef]
- Singh, V.; Gowthaman, U.; Jain, S.; Parihar, P.; Banskar, S.; Gupta, P.; Gupta, U.D.; Agrewala, J.N. Coadministration of interleukins 7 and 15 with bacille Calmette-Guerin mounts enduring T cell memory response against Mycobacterium tuberculosis. J. Infect. Dis. 2010, 202, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Mata-Espinosa, D.A.; Francisco-Cruz, A.; Marquina-Castillo, B.; Barrios-Payan, J.; Ramos-Espinosa, O.; Bini, E.I.; Xing, Z.; Hernández-Pando, R. Immunotherapeutic effects of recombinant adenovirus encoding interleukin 12 in experimental pulmonary tuberculosis. Scand. J. Immunol. 2019, 89, e12743. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Yang, E.; Guo, M.; Yang, R.; Huang, G.; Peng, Y.; Sha, W.; Wang, F.; Shen, L. Adjunctive Zoledronate+ IL-2 administrations enhance anti-tuberculosis Vγ2Vδ2 T-effector populations, and improve treatment outcome of multidrug-resistant tuberculosis1. Emerg. Microbes Infect. 2022, 11, 1790–1805. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Chen, H.-D.; Wang, Y.; Wang, Q.; Li, Y.; Zhao, Y.; Zhang, X.-l. Interleukin 24 as a novel potential cytokine immunotherapy for the treatment of Mycobacterium tuberculosis infection. Microbes Infect. 2011, 13, 1099–1110. [Google Scholar] [CrossRef] [PubMed]
- Dawson, R.; Condos, R.; Tse, D.; Huie, M.L.; Ress, S.; Tseng, C.-H.; Brauns, C.; Weiden, M.; Hoshino, Y.; Bateman, E. Immunomodulation with recombinant interferon-γ1b in pulmonary tuberculosis. PLoS ONE 2009, 4, e6984. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, L.; Guo, L.; Lin, M.; Chen, X. A short-term efficacy on aerosolizing inhalation recombinant human gamma interferon in multidrug-resistant pulmonary tuberculosis. Chin. J. Antituberc. 2009, 31, 660. [Google Scholar]
- Lee, H.-J.; Kang, S.-J.; Woo, Y.; Hahn, T.-W.; Ko, H.-J.; Jung, Y.-J. TLR7 stimulation with imiquimod induces selective autophagy and controls Mycobacterium tuberculosis growth in mouse macrophages. Front. Microbiol. 2020, 11, 1684. [Google Scholar] [CrossRef]
- Roy, E.; Brennan, J.; Jolles, S.; Lowrie, D.B. Beneficial effect of anti-interleukin-4 antibody when administered in a murine model of tuberculosis infection. Tuberculosis 2008, 88, 197–202. [Google Scholar] [CrossRef]
- Thwaites, G.E.; Bang, N.D.; Dung, N.H.; Quy, H.T.; Oanh, D.T.T.; Thoa, N.T.C.; Hien, N.Q.; Thuc, N.T.; Hai, N.N.; Lan, N.T.N. Dexamethasone for the treatment of tuberculous meningitis in adolescents and adults. N. Engl. J. Med. 2004, 351, 1741–1751. [Google Scholar] [CrossRef]
- Török, M.E.; Bang, N.D.; Chau, T.T.H.; Yen, N.T.B.; Thwaites, G.E.; Thi Quy, H.; Dung, N.H.; Hien, T.T.; Chinh, N.T.; Thi Thanh Hoang, H. Dexamethasone and long-term outcome of tuberculous meningitis in Vietnamese adults and adolescents. PLoS ONE 2011, 6, e27821. [Google Scholar] [CrossRef]
- Lahat, G.; Halperin, D.; Barazovsky, E.; Shalit, I.; Rabau, M.; Klausner, J.; Fabian, I. Immunomodulatory effects of ciprofloxacin in TNBS-induced colitis in mice. Inflamm. Bowel Dis. 2007, 13, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Beigelman, A.; Mikols, C.L.; Gunsten, S.P.; Cannon, C.L.; Brody, S.L.; Walter, M.J. Azithromycin attenuates airway inflammation in a mouse model of viral bronchiolitis. Respir. Res. 2010, 11, 90. [Google Scholar] [CrossRef] [PubMed]
- Michaud, M.; Martins, I.; Sukkurwala, A.Q.; Adjemian, S.; Ma, Y.; Pellegatti, P.; Shen, S.; Kepp, O.; Scoazec, M.; Mignot, G. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011, 334, 1573–1577. [Google Scholar] [CrossRef] [PubMed]
- Geffner, L.; Yokobori, N.; Basile, J.; Schierloh, P.; Balboa, L.; Romero, M.M.; Ritacco, V.; Vescovo, M.; González Montaner, P.; Lopez, B.; et al. Patients with multidrug-resistant tuberculosis display impaired Th1 responses and enhanced regulatory T-cell levels in response to an outbreak of multidrug-resistant Mycobacterium tuberculosis M and Ra strains. Infect. Immun. 2009, 77, 5025–5034. [Google Scholar] [CrossRef]
- Basile, J.I.; Geffner, L.J.; Romero, M.M.; Balboa, L.; Sabio, Y.G.C.; Ritacco, V.; García, A.; Cuffré, M.; Abbate, E.; López, B.; et al. Outbreaks of mycobacterium tuberculosis MDR strains induce high IL-17 T-cell response in patients with MDR tuberculosis that is closely associated with high antigen load. J. Infect. Dis. 2011, 204, 1054–1064. [Google Scholar] [CrossRef]
- Moideen, K.; Kumar, N.P.; Bethunaickan, R.; Banurekha, V.V.; Nair, D.; Babu, S. Heightened systemic levels of anti-inflammatory cytokines in pulmonary tuberculosis and alterations following anti-tuberculosis treatment. Cytokine 2020, 127, 154929. [Google Scholar] [CrossRef]
- Riou, C.; Du Bruyn, E.; Ruzive, S.; Goliath, R.T.; Lindestam Arlehamn, C.S.; Sette, A.; Sher, A.; Barber, D.L.; Wilkinson, R.J. Disease extent and anti-tubercular treatment response correlates with Mycobacterium tuberculosis-specific CD4 T-cell phenotype regardless of HIV-1 status. Clin. Transl. Immunol. 2020, 9, e1176. [Google Scholar] [CrossRef]
- Russomando, G.; Sanabria, D.; Díaz Acosta, C.C.; Rojas, L.; Franco, L.; Arenas, R.; Delogu, G.; Ndiaye, M.D.B.; Bayaa, R.; Rakotosamimanana, N. C1q and HBHA-specific IL-13 levels as surrogate plasma biomarkers for monitoring tuberculosis treatment efficacy: A cross-sectional cohort study in Paraguay. Front. Immunol. 2024, 15, 1308015. [Google Scholar] [CrossRef]
- Sun, M.; Phan, J.M.; Kieswetter, N.S.; Huang, H.; Yu, K.K.; Smith, M.T.; Liu, Y.E.; Wang, C.; Gupta, S.; Obermoser, G. Specific CD4+ T cell phenotypes associate with bacterial control in people who ‘resist’infection with Mycobacterium tuberculosis. Nat. Immunol. 2024, 25, 1411–1421. [Google Scholar] [CrossRef]
- Nguyen, L. Antibiotic resistance mechanisms in M. tuberculosis: An update. Arch. Toxicol. 2016, 90, 1585–1604. [Google Scholar] [CrossRef]
- Nasiri, M.J.; Haeili, M.; Ghazi, M.; Goudarzi, H.; Pormohammad, A.; Imani Fooladi, A.A.; Feizabadi, M.M. New insights in to the intrinsic and acquired drug resistance mechanisms in mycobacteria. Front. Microbiol. 2017, 8, 681. [Google Scholar] [CrossRef] [PubMed]
- Bekale, R.B.; Du Plessis, S.-M.; Hsu, N.-J.; Sharma, J.R.; Sampson, S.L.; Jacobs, M.; Meyer, M.; Morse, G.D.; Dube, A. Mycobacterium tuberculosis and interactions with the host immune system: Opportunities for nanoparticle based immunotherapeutics and vaccines. Pharm. Res. 2019, 36, 8. [Google Scholar] [CrossRef] [PubMed]
- Guerra, C.; Morris, D.; Sipin, A.; Kung, S.; Franklin, M.; Gray, D.; Tanzil, M.; Guilford, F.; Khasawneh, F.T.; Venketaraman, V. Glutathione and adaptive immune responses against Mycobacterium tuberculosis infection in healthy and HIV infected individuals. PloS ONE 2011, 6, e28378. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.; Bailey, C.; Cahatol, I.; Dodge, L.; Yim, J.; Kassissa, C.; Luong, J.; Kasko, S.; Pandya, S.; Venketaraman, V. Mechanisms of control of Mycobacterium tuberculosis by NK cells: Role of glutathione. Front. Immunol. 2015, 6, 508. [Google Scholar] [CrossRef]
- Cao, R.; Teskey, G.; Islamoglu, H.; Abrahem, R.; Munjal, S.; Gyurjian, K.; Zhong, L.; Venketaraman, V. Characterizing the effects of glutathione as an immunoadjuvant in the treatment of tuberculosis. Antimicrob. Agents Chemother. 2018, 62, e01132-18. [Google Scholar] [CrossRef]
- Singh, M.; Vaughn, C.; Sasaninia, K.; Yeh, C.; Mehta, D.; Khieran, I.; Venketaraman, V. Understanding the relationship between glutathione, TGF-β, and vitamin D in combating Mycobacterium tuberculosis infections. J. Clin. Med. 2020, 9, 2757. [Google Scholar] [CrossRef]
- Abnousian, A.; Vasquez, J.; Sasaninia, K.; Kelley, M.; Venketaraman, V. Glutathione modulates efficacious changes in the immune response against tuberculosis. Biomedicines 2023, 11, 1340. [Google Scholar] [CrossRef]
- Vilchèze, C.; Jacobs, W.R., Jr. The promises and limitations of N-acetylcysteine as a potentiator of first-line and second-line tuberculosis drugs. Antimicrob. Agents Chemother. 2021, 65, e01703-20. [Google Scholar] [CrossRef]
- Gaillard, P.J.; Appeldoorn, C.C.; Rip, J.; Dorland, R.; van der Pol, S.M.; Kooij, G.; de Vries, H.E.; Reijerkerk, A. Enhanced brain delivery of liposomal methylprednisolone improved therapeutic efficacy in a model of neuroinflammation. J. Control. Release 2012, 164, 364–369. [Google Scholar] [CrossRef]
- To, K.; Cao, R.; Yegiazaryan, A.; Owens, J.; Nguyen, T.; Sasaninia, K.; Vaughn, C.; Singh, M.; Truong, E.; Medina, A. Effects of oral liposomal glutathione in altering the immune responses against mycobacterium tuberculosis and the mycobacterium bovis bcg strain in individuals with type 2 diabetes. Front. Cell. Infect. Microbiol. 2021, 11, 657775. [Google Scholar] [CrossRef]
- To, K.; Cao, R.; Yegiazaryan, A.; Owens, J.; Sasaninia, K.; Vaughn, C.; Singh, M.; Truong, E.; Sathananthan, A.; Venketaraman, V. The Effects of Oral Liposomal Glutathione and In Vitro Everolimus in Altering the Immune Responses against Mycobacterium bovis BCG Strain in Individuals with Type 2 Diabetes. Biomol. Concepts 2021, 12, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Kachour, N.; Beever, A.; Owens, J.; Cao, R.; Kolloli, A.; Kumar, R.; Sasaninia, K.; Vaughn, C.; Singh, M.; Truong, E. Liposomal glutathione helps to mitigate mycobacterium tuberculosis infection in the lungs. Antioxidants 2022, 11, 673. [Google Scholar] [CrossRef] [PubMed]
- Vilchèze, C.; Hartman, T.; Weinrick, B.; Jain, P.; Weisbrod, T.R.; Leung, L.W.; Freundlich, J.S.; Jacobs, W.R., Jr. Enhanced respiration prevents drug tolerance and drug resistance in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 2017, 114, 4495–4500. [Google Scholar] [CrossRef] [PubMed]
- Moosa, M.S.; Maartens, G.; Gunter, H.; Allie, S.; Chughlay, M.F.; Setshedi, M.; Wasserman, S.; Stead, D.F.; Hickman, N.; Stewart, A. A Randomized controlled trial of intravenous N-acetylcysteine in the management of anti-tuberculosis drug–induced liver injury. Clin. Infect. Dis. 2021, 73, e3377–e3383. [Google Scholar] [CrossRef]
- Sukumaran, D.; Usharani, P.; Paramjyothi, G.; Subbalaxmi, M.; Sireesha, K.; Ali, M.A. A study to evaluate the hepatoprotective effect of N-acetylcysteine on anti tuberculosis drug induced hepatotoxicity and quality of life. Indian J. Tuberc. 2023, 70, 303–310. [Google Scholar] [CrossRef]
- Akalu, T.Y.; Clements, A.C.; Wolde, H.F.; Alene, K.A. Economic burden of multidrug-resistant tuberculosis on patients and households: A global systematic review and meta-analysis. Sci. Rep. 2023, 13, 22361. [Google Scholar] [CrossRef]
- Ung, K.S.; Av-Gay, Y. Mycothiol-dependent mycobacterial response to oxidative stress. FEBS Lett. 2006, 580, 2712–2716. [Google Scholar] [CrossRef]
- Sao Emani, C.; Williams, M.; Wiid, I.; Baker, B. The functional interplay of low molecular weight thiols in Mycobacterium tuberculosis. J. Biomed. Sci. 2018, 25, 55. [Google Scholar] [CrossRef]
- Sao Emani, C.; Gallant, J.; Wiid, I.; Baker, B. The role of low molecular weight thiols in Mycobacterium tuberculosis. Tuberculosis 2019, 116, 44–55. [Google Scholar] [CrossRef]
- Fontán, P.; Aris, V.; Ghanny, S.; Soteropoulos, P.; Smith, I. Global transcriptional profile of Mycobacterium tuberculosis during THP-1 human macrophage infection. Infect. Immun. 2008, 76, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Reyes, A.M.; Pedre, B.; De Armas, M.I.; Tossounian, M.-A.; Radi, R.; Messens, J.; Trujillo, M. Chemistry and redox biology of mycothiol. Antioxid. Redox Signal. 2018, 28, 487–504. [Google Scholar] [CrossRef] [PubMed]
- Zhai, W.; Wu, F.; Zhang, Y.; Fu, Y.; Liu, Z. The immune escape mechanisms of Mycobacterium tuberculosis. Int. J. Mol. Sci. 2019, 20, 340. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, G.S.; Kirk, N.M.; Ackart, D.F.; Shanley, C.A.; Orme, I.M.; Basaraba, R.J. Evidence for oxidative stress and defective antioxidant response in guinea pigs with tuberculosis. PLoS ONE 2011, 6, e26254. [Google Scholar] [CrossRef]
- Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef]
- Matsuyama, M.; Nonaka, M.; Nakajima, M.; Morishima, Y.; Ishii, Y.; Hizawa, N. The role of Nrf2 in mycobacterial infection. Antioxidants 2021, 10, 1861. [Google Scholar] [CrossRef]
- Jiang, Q.; Shi, L. Coordination of the uptake and metabolism of amino acids in Mycobacterium tuberculosis-infected macrophages. Front. Immunol. 2021, 12, 711462. [Google Scholar] [CrossRef]
- Connell, N.D.; Venketaraman, V. Control of Mycobacterium tuberculosis infection by glutathione. Recent Pat. Anti-Infect. Drug Discov. 2009, 4, 214–226. [Google Scholar] [CrossRef]
- Whitlow, E.; Mustafa, A.; Hanif, S. An overview of the development of new vaccines for tuberculosis. Vaccines 2020, 8, 586. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Fang, R.; Li, X.; Xing, J.; Li, Z.; Song, N. Enhancing TB Vaccine Efficacy: Current Progress on Vaccines, Adjuvants and Immunization Strategies. Vaccines 2023, 12, 38. [Google Scholar] [CrossRef]
- Zhuang, L.; Ye, Z.; Li, L.; Yang, L.; Gong, W. Next-generation TB vaccines: Progress, challenges, and prospects. Vaccines 2023, 11, 1304. [Google Scholar] [CrossRef]
Treatment Approaches | Components | Indications | Population Suitability | Key Considerations |
---|---|---|---|---|
Pretomanid-Based Combinations [23] | Pretomanid, Sutezolid, Moxifloxacin | Potential MDR-TBM treatment option, especially for cases needing CNS penetration | Experimental; currently tested in animal models with potential for human use | Higher brain tissue penetration than some MDR-TB drugs; promising animal model results |
Modified WHO Regimens [23,24,25]. | Bedaquiline, Pretomanid, Linezolid, Moxifloxacin | Adaptations for MDR-TBM under consideration, primarily developed for pulmonary MDR-TB | Patients with MDR-TB, experimental for CNS infections | CNS penetration is limited, requiring substitutions like sutezolid for effectiveness |
Ongoing Research [22,26] | Various regimens in trials (e.g., endTB, TB-PRACTECAL) | Exploring short-course, all-oral regimens for MDR-TB with limited CNS adaptations | Focuses on general MDR-TB population; MDR-TBM suitability under investigation | Further research is essential for CNS efficacy, as current studies focus on pulmonary MDR-TB |
Drug | CNS Penetration | Safety and Challenges for MDR-TBM |
---|---|---|
Pretomanid [30,31] | Moderate CNS penetration; higher than some MDR-TB drugs | Limited data on safety in human TBM; potential for efficacy |
Moxifloxacin [32,33,34] | Moderate CNS penetration; commonly used in TBM studies | Risk of QT prolongation; moderate CNS efficacy |
Levofloxacin [32,33,34] | Moderate CNS penetration; some effectiveness in TBM cases | Risk of tendon damage; CNS efficacy moderate |
Bedaquiline [28,29] | Low CNS penetration, reducing efficacy for TBM | Low efficacy in CNS; associated with hepatotoxicity |
Delamanid [35] | Low CNS penetration; not optimal for TBM | Limited CNS efficacy; risk of QT prolongation |
Linezolid [36,37,38,39] | Better CNS penetration but associated with neurotoxicity | Potential neurotoxicity; requires careful monitoring |
Clofazimine [40] | Low CNS penetration; limited efficacy in the CNS | Associated with skin discoloration; low CNS effectiveness |
Pyrazinamide [41] | Moderate CNS penetration; some effect in TBM | Myelosuppression risk; requires monitoring in TBM |
Cytokine/Therapy | Mechanism of Action | Preclinical/Clinical Findings | How They Could Improve MDR-TBM |
---|---|---|---|
Recombinant IL-2 [44,45] | Enhances T-cell proliferation and activation; increases cytotoxic T lymphocyte response | Significant improvement in conversion rates in patients with MDR-TB receiving anti-TB therapy | Boosts adaptive immunity, enhancing clearance of Mtb and reducing treatment duration. |
Recombinant IL-7 [46,47] | Promotes survival and proliferation of memory T cells; supports lymphocyte homeostasis | Statistically significant reduction in lung mycobacterial load in supplemented mice | Enhances long-term immunity and reduces risk of disease recurrence by maintaining T cell memory. |
Recombinant IL-12 [48,49] | Activates macrophages and T cells; promotes Th1 polarization and IFN-γ production | Effectively reduced Mtb loads in mice; enhances immune response | Strengthens innate and adaptive immune responses, enhancing pathogen clearance and improving treatment outcomes. |
Recombinant IL-15 [46,47] | Supports survival and activation of memory CD8+ T cells; enhances NK cell function | Enhanced survival in Mtb-infected mice | Increases the cytotoxic response against Mtb, aiding in the reduction in bacterial loads. |
Recombinant IL-24 [50] | Activates CD8+ T cells to produce IFN-γ; enhances neutrophil function | Suppression of IL-24 may increase susceptibility and contribute to chronic TB | Promotes robust Th1 responses, potentially preventing chronic infection and improving outcomes. |
IFN-γ (Intramuscular/Aerosolized) [51,52] | Enhances innate immune response; activates macrophages and increases antigen presentation | Significant improvement in chest radiograph outcomes in patients with pulmonary MDR-TB | Increases macrophage function and Mtb clearance, potentially shortening treatment time. |
Imiquimod (TLR Agonist) [53] | Induces autophagy in macrophages; increases nitric oxide and pro-inflammatory cytokine production | Significantly inhibited Mtb growth in macrophages through autophagy | Enhances autophagic pathways to eliminate intracellular bacteria, improving immune responses against MDR-TB. |
Anti-IL-4 Neutralizing Antibodies [54] | Shifts immune response toward Th1; reduces Th2-mediated suppression | Significantly reduced bacterial load in murine model, indicating improved immune response | Targeting Th2 responses may enhance Th1 activity, improving the effectiveness of TB treatment. |
Corticosteroids [55] | Reduces inflammation and TNF-α levels; modulates immune response | Significant decrease in mortality risk and improved survival rates in TBM patients | Controls excessive inflammation, potentially improving the safety and efficacy of TB treatments. |
Strategy | Key Focus | Mechanism |
---|---|---|
Stimulating Nrf2 Activation [89,90,91] | Upregulate glutathione synthesis | Utilize adjuvants or immunostimulatory molecules (e.g., curcumin, sulforaphane) to activate Nrf2. This promotes the expression of genes involved in glutathione synthesis, such as glutamate-cysteine ligase and glutathione synthetase, increasing intracellular glutathione levels and enhancing ROS production. |
Boosting Cysteine Levels [92] | Enhance intracellular cysteine availability | Incorporate elements that upregulate SLC7A11 (cystine/glutamate transporter) to improve cysteine import into macrophages. Increased cysteine availability facilitates the conversion to glutathione via the enzyme GCL, thus sustaining glutathione synthesis and enhancing oxidative stress against Mtb. |
Sustaining Active Glutathione [93] | Maintain sufficient NADPH supply | Activate the pentose phosphate pathway to boost NADPH production by enhancing the expression of enzymes like glucose-6-phosphate dehydrogenase. This NADPH is crucial for maintaining glutathione in its reduced form, ensuring effective detoxification of ROS and enhancing macrophage oxidative responses against Mtb. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasiri, M.J.; Lutfy, K.; Venketaraman, V. Challenges of Multidrug-Resistant Tuberculosis Meningitis: Current Treatments and the Role of Glutathione as an Adjunct Therapy. Vaccines 2024, 12, 1397. https://doi.org/10.3390/vaccines12121397
Nasiri MJ, Lutfy K, Venketaraman V. Challenges of Multidrug-Resistant Tuberculosis Meningitis: Current Treatments and the Role of Glutathione as an Adjunct Therapy. Vaccines. 2024; 12(12):1397. https://doi.org/10.3390/vaccines12121397
Chicago/Turabian StyleNasiri, Mohammad J., Kabir Lutfy, and Vishwanath Venketaraman. 2024. "Challenges of Multidrug-Resistant Tuberculosis Meningitis: Current Treatments and the Role of Glutathione as an Adjunct Therapy" Vaccines 12, no. 12: 1397. https://doi.org/10.3390/vaccines12121397
APA StyleNasiri, M. J., Lutfy, K., & Venketaraman, V. (2024). Challenges of Multidrug-Resistant Tuberculosis Meningitis: Current Treatments and the Role of Glutathione as an Adjunct Therapy. Vaccines, 12(12), 1397. https://doi.org/10.3390/vaccines12121397