Immune Response Against SARS-CoV-2
Funding
Conflicts of Interest
List of Contributions
- Li, J.; Xie, H.; Chen, W.; Chen, M.; Bai, S.; Zhao, W.; Zhou, T.; Gao, P.; Zhang, L.; Wang, Q.; et al. Immune persistence against SARS-CoV-2 after primary and booster immunization in humans: A large-scale prospective cohort study. Vaccines 2022, 10, 1677. https://doi.org/10.3390/vaccines10101677.
- Zalewska, M.; Fus, W.; Konka, A.; Wystyrk, K.; Bochenek, A.; Botor, H.; Fronczek, M.; Zembala-John, J.; Adamek, B. An immune response to heterologous ChAdOx1/BNT162b2 vaccination against COVID-19: Evaluation of the anti-RBD specific IgG antibodies titers and interferon gamma release assay (IGRA) test results. Vaccines 2022, 10, 1546. https://doi.org/10.3390/vaccines10091546.
- Kibler, K.V.; Szczerba, M.; Lake, D.; Roeder, A.J.; Rahman, M.; Hogue, B.G.; Wong, L.Y.; Perlman, S.; Li, Y.; Jacobs, B.L. Intranasal immunization with a vaccinia virus vaccine vector expressing pre-fusion stabilized SARS-CoV-2 spike fully protected mice against lethal challenge with the heavily mutated mouse-adapted SARS2-N501YMA30 strain of SARS-CoV-2. Vaccines 2022, 10, 1172. https://doi.org/10.3390/vaccines10081172.
- Vega-Magaña, N.; Muñoz-Valle, J.F.; Peña-Rodríguez, M.; Viera-Segura, O.; Pereira-Suárez, A.L.; Hernández-Bello, J.; García-Chagollan, M. Specific T-cell immune response to SARS-CoV-2 spike protein over time in naïve and SARS-CoV-2 previously infected subjects vaccinated with BTN162b2. Vaccines 2022, 10, 1117. https://doi.org/10.3390/vaccines10071117.
- Pourmasumi, S.; Nazari, A.; Ahmadi, Z.; Kouni, S.N.; de Gregorio, C.; Koniari, I.; Dousdampanis, P.; Mplani, V.; Plotas, P.; Assimakopoulos, S.; et al. The effect of long COVID-19 infection and vaccination on male fertility: A narrative review. Vaccines 2022, 10, 1982. https://doi.org/10.3390/vaccines10121982.
- Hajissa, K.; Mussa, A.; Karobari, M.I.; Abbas, M.A.; Ibrahim, I.K.; Assiry, A.A.; Iqbal, A.; Alhumaid, S.; Mutair, A.A.; Rabaan, A.A.; et al. The SARS-CoV-2 antibodies, their diagnostic utility, and their potential for vaccine development. Vaccines 2022, 10, 1346. https://doi.org/10.3390/vaccines10081346.
- Karimabad, M.N.; Hassanshahi, G.; Kounis, N.G.; Mplani, V.; Roditis, P.; Gogos, C.; Lagadinou, M.; Assimakopoulos, S.F.; Dousdampanis, P.; Koniari, I. The chemokines CXC, CC and C in the pathogenesis of COVID-19 disease and as surrogates of vaccine-induced innate and adaptive protective responses. Vaccines 2022, 10, 1299. https://doi.org/10.3390/vaccines10081299.
References
- Maison, D.P.; Deng, Y.; Gerschenson, M. SARS-CoV-2 and the host-immune response. Front. Immunol. 2023, 14, 1195871. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Karki, R.; Williams, E.P.; Yang, D.; Fitzpatrick, E.; Vogel, P.; Jonsson, C.B.; Kanneganti, T.-D. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat. Immunol. 2021, 22, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Taefehshokr, N.; Taefehshokr, S.; Hemmat, N.; Heit, B. COVID-19: Perspectives on innate immune evasion. Front. Immunol. 2020, 11, 580641. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Y.; Li, Y.; Huang, F.; Luo, B.; Yuan, Y.; Xiaa, B.; Ma, X.; Yanga, T.; Yua, F.; et al. The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-Ι. Proc. Natl. Acad. Sci. USA 2021, 118, e2024202118. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Gao, Y.; Wang, G.; Song, G.; Liu, S.; Sun, D.; Xu, Y.; Tian, Z. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell. Mol. Immunol. 2020, 17, 533–535. [Google Scholar] [CrossRef] [PubMed]
- Sievers, B.L.; Cheng, M.T.K.; Csiba, K.; Meng, B.; Gupta, R.K. SARS-CoV-2 and innate immunity: The good, the bad, and the “goldilocks”. Cell. Mol. Immunol. 2024, 21, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Sharma, C.; Bayry, J. High risk of autoimmune diseases after COVID-19. Nat. Rev. Rheumatol. 2023, 19, 399–400. [Google Scholar] [CrossRef] [PubMed]
- De Sá, K.S.G.; Silva, J.; Bayarri-Olmos, R.; Brinda, R.; Constable, R.A.R.; Colom Diaz, P.A.; Kwon, D.-I.; Rodrigues, G.; Li, W.; Baker, C.; et al. A causal link between autoantibodies and neurological symptoms in long COVID. medRxiv 2024. [Google Scholar] [CrossRef]
- Lucchese, G.; Vogelgesang, A.; Stufano, A.; Flöel, A. Impact of COVID-19 on the brain: Antibodies against brain stem antigens. Elsevier 2024, 33, 385–391. [Google Scholar]
- Lucchese, G.; Vogelgesang, A.; Boesl, F.; Raafat, D.; Holtfreter, S.; Bröker, B.M.; Stufano, A.; Fleischmann, R.; Prüss, H.; Franke, C.; et al. Anti-neuronal antibodies against brainstem antigens are associated with COVID-19. eBioMedicine 2022, 83, 104211. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.Y.; Tang, Y.Q.; Zhang, Z.B.; Liu, J.; Zhuang, Y.X.; Li, T. COVID-19: From immune response to clinical intervention. Precis. Clin. Med. 2024, 7, pbae015. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stufano, A.; Schino, V.; Lucchese, G. Immune Response Against SARS-CoV-2. Vaccines 2024, 12, 1390. https://doi.org/10.3390/vaccines12121390
Stufano A, Schino V, Lucchese G. Immune Response Against SARS-CoV-2. Vaccines. 2024; 12(12):1390. https://doi.org/10.3390/vaccines12121390
Chicago/Turabian StyleStufano, Angela, Valentina Schino, and Guglielmo Lucchese. 2024. "Immune Response Against SARS-CoV-2" Vaccines 12, no. 12: 1390. https://doi.org/10.3390/vaccines12121390
APA StyleStufano, A., Schino, V., & Lucchese, G. (2024). Immune Response Against SARS-CoV-2. Vaccines, 12(12), 1390. https://doi.org/10.3390/vaccines12121390