Degron Pathways and Leishmaniasis: Debating Potential Roles of Leishmania spp. Proteases Activity on Guiding Hosts Immune Response and Their Relevance to the Development of Vaccines
Abstract
1. Introduction
2. Materials and Methods
2.1. Querying for Protease Sequence Motifs in Databases
2.2. Searches for Degrons
2.3. Interaction Network Prediction
2.4. Three-Dimensional Models
3. Results
3.1. Degrons Mapping
3.2. Degrons Location
3.3. Proteins with Conserved Structures
3.4. Degrons Composition-Motifs
3.5. Network of Protease-Induced Interactions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reithinger, R.; Dujardin, J.-C.; Louzir, H.; Pirmez, C.; Alexander, B.; Brooker, S. Cutaneous leishmaniasis. Lancet Infect. Dis. 2007, 7, 581–596. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kedzierski, L. Leishmaniasis vaccine: Where are we today? J. Glob. Infect. Dis. 2010, 2, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Matlashewski, G. Leishmania infection and virulence. Med. Microbiol. Immunol. 2001, 190, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Barrett, A.J. Classification of peptidases. Methods Enzymol. 1994, 244, 1–15. [Google Scholar] [CrossRef]
- McKerrow, J.H.; Caffrey, C.; Kelly, B.; Loke, P.; Sajid, M. Proteases in Parasitic Diseases. Annu. Rev. Pathol. Mech. Dis. 2006, 1, 497–536. [Google Scholar] [CrossRef]
- Silva-Lopez, R.E.; Morgado-Díaz, J.A.; Alves, C.R.; Côrte-Real, S.; Giovanni-De-Simone, S. Subcellular localization of an extracellular serine protease in Leishmania (Leishmania) amazonensis. Parasitol. Res. 2004, 93, 328–331. [Google Scholar] [CrossRef]
- Silva-Almeida, M.; Pereira, B.A.; Ribeiro-Guimarães, M.L.; Alves, C.R. Proteinases as virulence factors in Leishmania spp. infection in mammals. Parasites Vectors 2012, 5, 160. [Google Scholar] [CrossRef][Green Version]
- Varshavsky, A. N-degron and C-degron pathways of protein degradation. Proc. Natl. Acad. Sci. USA 2019, 116, 358–366. [Google Scholar] [CrossRef][Green Version]
- Wu, T.; Yoon, H.; Xiong, Y. Targeted protein degradation as a powerful research tool in basic biology and drug target discovery. Nat. Struct. Mol. Biol. 2020, 27, 605–614. [Google Scholar] [CrossRef]
- Ruan, H.; Yu, C.; Niu, X.; Zhang, W.; Liu, H.; Chen, L.; Xiong, R.; Sun, Q.; Jin, C.; Liu, Y.; et al. Computational strategy for intrinsically disordered protein ligand design leads to the discovery of p53 transactivation domain I binding compounds that activate the p53 pathway. Chem. Sci. 2020, 12, 3004–3016. [Google Scholar] [CrossRef]
- Kwon, Y.T.; Ciechanover, A. The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy. Trends Biochem. Sci. 2017, 42, 873–886. [Google Scholar] [CrossRef]
- Pickart, C.M.; Eddins, M.J. Ubiquitin: Structures, functions, mechanisms. Biochim. Biophys. Acta 2004, 1695, 55–72. [Google Scholar] [CrossRef][Green Version]
- Dye, B.T.; Schulman, B.A. Structural Mechanisms Underlying Posttranslational Modification by Ubiquitin-Like Proteins. Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 131–150. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Shabek, N. Ubiquitin Ligases: Structure, Function, and Regulation. Annu. Rev. Biochem. 2017, 86, 129–157. [Google Scholar] [CrossRef] [PubMed]
- Cameron, P.; McGachy, A.; Anderson, M.; Paul, A.; Coombs, G.H.; Mottram, J.C.; Alexander, J.; Plevin, R. Inhibition of Lipopolysaccharide-Induced Macrophage IL-12 Production by Leishmania mexicana Amastigotes: The Role of Cysteine Peptidases and the NF-kappaB Signaling Pathway. J. Immunol. 2004, 173, 3297–3304. [Google Scholar] [CrossRef][Green Version]
- Contreras, I.; Gómez, M.A.; Nguyen, O.; Shio, M.T.; McMaster, R.W.; Olivier, M. Leishmania-Induced Inactivation of the Macrophage Transcription Factor AP-1 Is Mediated by the Parasite Metalloprotease GP63. PLoS Pathog. 2010, 6, e1001148. [Google Scholar] [CrossRef][Green Version]
- Antoine, J.C.; Jouanne, C.; Lang, T.; Prina, E.; de Chastellier, C.; Frehel, C. Localization of major histocompatibility complex class II molecules in phagolysosomes of murine macrophages infected with Leishmania amazonensis. Infect. Immun. 1991, 59, 764–775. [Google Scholar] [CrossRef][Green Version]
- Pereira, B.A.; Alves, C.R. Immunological characteristics of experimental murine infection with Leishmania (Leishmania) amazonensis. Veter. Parasitol. 2008, 158, 239–255. [Google Scholar] [CrossRef] [PubMed]
- Morozov, A.V.; Spasskaya, D.S.S.; Karpov, V.D.S.; Karpov, L. The central domain of yeast transcription factor Rpn4 facilitates degradation of reporter protein in human cells. FEBS Lett. 2014, 588, 3713–3719. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Fortmann, K.T.; Lewis, R.D.; Ngo, K.A.; Fagerlund, R.; Hoffmann, A. A Regulated, Ubiquitin-Independent Degron in IκBα. J. Mol. Biol. 2015, 427, 2748–2756. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mashahreh, B.; Armony, S.; Johansson, K.E.; Chappleboim, A.; Friedman, N.; Gardner, R.G.; Hartmann-Petersen, R.; Lindorff-Larsen, K.; Ravid, T. Conserved degronome features governing quality control associated proteolysis. Nat. Commun. 2022, 13, 7588. [Google Scholar] [CrossRef]
- Ahn, D.; Prince, A. Participation of the IL-10RB Related Cytokines, IL-22 and IFN-λ in Defense of the Airway Mucosal Barrier. Front. Cell. Infect. Microbiol. 2020, 10, 300. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.; Corte-Real, S.; Bourguignon, S.C.; Chaves, C.; Saraiva, E. Leishmania amazonensis: Early proteinase activities during promastigote–amastigote differentiation in vitro. Exp. Parasitol. 2005, 109, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Gomes, C.B.; Souza-Silva, F.; dos Santos Charret, K.; Pereira, B.A.S.; Finkelstein, L.C.; Santos-de-Souza, R.; de Castro Côrtes, L.M.; Pereira, M.C.S.; de Oliveira, F.O.R., Jr.; Alves, C.R. Increasing in cysteine proteinase B expression and enzymatic activity during in vitro differentiation of Leishmania (Viannia) braziliensis: First evidence of modulation during morphological transition. Biochimie 2017, 133, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.R.; de Souza, R.S.; Charret, K.S.; Côrtes, L.M.C.; de Sá-Silva, M.P.; Barral-Veloso, L.; Oliveira, L.F.G.; da Silva, F.S. Understanding serine proteases implications on Leishmania spp lifecycle. Exp. Parasitol. 2018, 184, 67–81. [Google Scholar] [CrossRef]
- Silva-Almeida, M.; Souza-Silva, F.; Pereira, B.A.S.; Ribeiro-Guimarães, M.L.; Alves, C.R. Overview of the organization of protease genes in the genome of Leishmania spp. Parasit. Vectors 2014, 7, 387. [Google Scholar] [CrossRef][Green Version]
- Besteiro, S.; Williams, R.A.; Coombs, G.H.; Mottram, J.C. Protein turnover and differentiation in Leishmania. Int. J. Parasitol. 2007, 37, 1063–1075. [Google Scholar] [CrossRef][Green Version]
- Silverman, J.M.; Clos, J.; Horakova, E.; Wang, A.Y.; Wiesgigl, M.; Kelly, I.; Lynn, M.A.; McMaster, W.R.; Foster, L.J.; Levings, M.K.; et al. Leishmania Exosomes Modulate Innate and Adaptive Immune Responses through Effects on Monocytes and Dendritic Cells. J. Immunol. 2010, 185, 5011–5022. [Google Scholar] [CrossRef][Green Version]
- Hassani, K.; Shio, M.T.; Martel, C.; Faubert, D.; Olivier, M. Absence of Metalloprotease GP63 Alters the Protein Content of Leishmania Exosomes. PLoS ONE 2014, 9, e95007. [Google Scholar] [CrossRef][Green Version]
- Clausen, L.; Abildgaard, A.B.; Gersing, S.K.; Stein, A.; Lindorff-Larsen, K.; Hartmann-Petersen, R. Protein stability and degradation in health and disease. Adv. Protein Chem. Struct. Biol. 2019, 114, 61–83. [Google Scholar] [CrossRef]
- Guharoy, M.; Bhowmick, P.; Sallam, M.; Tompa, P. Tripartite degrons confer diversity and specificity on regulated protein degradation in the ubiquitin-proteasome system. Nat. Commun. 2016, 7, 10239. [Google Scholar] [CrossRef][Green Version]
- Kanarek, N.; London, N.; Schueler-Furman, O.; Ben-Neriah, Y. Ubiquitination and Degradation of the Inhibitors of NF- B. Cold Spring Harb. Perspect. Biol. 2009, 2, a000166. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Scott, P.; Novais, P.S.F.O. Cutaneous leishmaniasis: Immune responses in protection and pathogenesis. Nat. Rev. Immunol. 2016, 16, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Huang, L.; Mendez, S. A live Leishmania major vaccine containing CpG motifs induces the de novo generation of Th17 cells in C57BL/6 mice. Eur. J. Immunol. 2010, 40, 2517–2527. [Google Scholar] [CrossRef] [PubMed]
- Quirino, G.F.S.; Nascimento, M.S.L.; Davoli-Ferreira, M.; Sacramento, L.A.; Lima, M.H.F.; Almeida, R.P.; Carregaro, V.; Silva, J.S. Interleukin-27 (IL-27) Mediates Susceptibility to Visceral Leishmaniasis by Suppressing the IL-17–Neutrophil Response. Infect. Immun. 2016, 84, 2289–2298. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Matthews, D.J.; Emson, C.L.; McKenzie, G.J.; Jolin, H.E.; Blackwell, J.M.; McKenzie, A.N. IL-13 Is a Susceptibility Factor for Leishmania major Infection. J. Immunol. 2000, 164, 1458–1462. [Google Scholar] [CrossRef][Green Version]
- Paul, K.M. Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy. 2022. Available online: https://www.intechopen.com/books/10796 (accessed on 22 February 2023).
- Dong, G.; Wagner, V.; Minguez-Menendez, A.; Fernandez-Prada, C.; Olivier, M. Extracellular vesicles and leishmaniasis: Current knowledge and promising avenues for future development. Mol. Immunol. 2021, 135, 73–83. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol. Med. 2007, 13, 460–469. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Rosas, L.E.; Lafuse, W.; Satoskar, A.R. Leishmania inhibits STAT1-mediated IFN-γ signaling in macrophages: Increased tyrosine phosphorylation of dominant negative STAT1β by Leishmania mexicana. Int. J. Parasitol. 2005, 35, 75–82. [Google Scholar] [CrossRef]
- Edwards, C.L.; de Oca, M.M.; Rivera, F.D.L.; Kumar, R.; Ng, S.; Wang, Y.; Amante, F.H.; Kometani, K.; Kurosaki, T.; Sidwell, T.; et al. The Role of BACH2 in T Cells in Experimental Malaria Caused by Plasmodium chabaudi chabaudi AS. Front. Immunol. 2018, 9, 2578. [Google Scholar] [CrossRef]
- Cheeseman, K.; Weitzman, J.B. Host–parasite interactions: An intimate epigenetic relationship. Cell. Microbiol. 2015, 17, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
Organisms | Proteases | Degrons | ||||||||||||||||||||||||||
Protease Amino Acid Residues Positions Described in Merops | Corresponding Amino Acid Residue Positions (Mus musculus) | |||||||||||||||||||||||||||
IFN-y | IL-4 | |||||||||||||||||||||||||||
P4 | P3 | P2 | P1 | P1’ | P2’ | P3’ | P4’ | P4 | P3 | P2 | P1 | P1’ | P2’ | P3’ | P4’ | P4 | P3 | P2 | P1 | P1’ | P2’ | P3’ | P4’ | |||||
Carica papaya | Papain | P | P | V | R | A | S | G | P | - | G | C | R | C | H | G | P | - | - | F | R | A | F | G | C | |||
P | P | V | Q | S | R | K | Q | - | P | L | Q | L | R | K | - | - | - | - | - | - | - | - | - | |||||
P | P | V | A | T | - | P | N | - | P | L | A | L | P | Q | - | - | - | - | - | - | - | - | - | |||||
P | P | V | A | T | R | P | N | - | P | L | A | L | R | P | - | - | - | - | - | - | - | - | - | |||||
Homo sapiens | Cathepsin L | - | K | F | R | H | S | - | - | - | R | H | A | K | F | R | - | - | Q | R | K | F | R | A | - | |||
- | R | F | R | S | H | - | - | - | - | R | L | A | R | F | R | - | F | R | A | F | R | C | - | |||||
H | K | F | R | H | - | - | - | - | - | F | R | A | H | K | F | - | - | Q | R | K | F | R | A | |||||
Homo sapiens | Cathepsin B | - | - | F | R | F | F | - | - | - | R | F | F | F | R | F | - | F | R | F | F | F | R | R | F | |||
- | - | Y | K | F | F | - | - | - | K | F | F | L | K | F | - | Q | K | F | F | R | K | F | - | |||||
H | L | M | K | - | - | - | - | - | J | L | K | H | Q | L | - | - | - | - | - | - | - | - | - | |||||
Q | S | V | G | F | A | - | - | - | C | G | F | A | Q | Q | L | - | F | A | Q | S | V | - | - | |||||
Sus scrofa | Prolyl oligopeptidase | P | P | R | P | Q | P | Q | P | - | P | R | P | Q | P | Q | - | - | P | G | P | N | P | Q | - | |||
G | Q | G | A | G | G | G | L | G | C | G | C | G | G | G | - | - | Q | G | A | G | G | G | - | |||||
E. coli | Oligopeptidase B | D | G | R | R | G | Y | I | G | - | G | R | R | G | Q | J | - | D | G | G | R | R | E | I | I | |||
G | V | G | R | S | S | R | G | - | I | G | R | L | Q | R | - | - | - | - | - | - | - | - | - | |||||
Organisms | Proteases | Corresponding amino acid residue positions (Mus musculus) | ||||||||||||||||||||||||||
IL-5 | IL-13 | IL-17 | ||||||||||||||||||||||||||
P4 | P3 | P2 | P1 | P1’ | P2’ | P3’ | P4’ | P4 | P3 | P2 | P1 | P1’ | P2’ | P3’ | P4 | P3 | P2 | P1 | P1’ | P2’ | P3’ | P4’ | ||||||
Carica papaya | Papain | - | P | R | R | A | L | G | - | - | P | V | R | A | L | G | - | - | P | M | D | K | Y | G | P | |||
- | P | R | R | M | R | K | - | - | P | V | Q | A | R | K | - | - | P | M | D | K | R | K | Q | |||||
- | P | V | P | T | H | K | N | - | P | V | A | A | L | P | - | - | - | M | K | T | G | P | N | |||||
- | P | V | P | T | R | K | N | - | P | V | A | A | R | P | - | - | P | M | D | K | R | P | N | |||||
Homo sapiens | Cathepsin L | - | R | H | S | K | F | R | - | - | R | V | L | K | F | R | - | - | H | D | K | F | R | H | - | |||
- | M | R | R | F | R | L | - | - | R | V | H | R | F | R | - | - | F | R | S | H | R | C | R | |||||
- | F | R | R | H | K | F | - | - | F | R | H | A | K | F | - | - | F | R | V | H | W | F | - | |||||
Homo sapiens | Cathepsin B | - | R | R | R | F | R | F | - | - | R | F | F | F | R | F | - | - | R | F | F | F | W | F | - | |||
P | K | F | F | H | K | N | F | Q | K | F | R | H | G | F | F | P | K | D | F | Y | K | F | - | |||||
- | L | R | K | H | L | L | - | - | A | M | K | A | L | A | - | - | - | M | D | K | L | I | K | |||||
- | G | F | A | Q | L | V | - | - | G | F | A | Q | L | V | - | G | R | A | Q | G | V | G | F | |||||
Sus scrofa | Prolyl oligopeptidase | - | P | R | R | Q | P | Q | - | - | P | R | P | Q | P | Q | - | - | N | R | P | Q | N | Q | - | |||
- | Q | G | A | G | G | G | - | - | Q | G | A | G | G | G | - | - | Q | G | V | G | W | Q | - | |||||
E. coli | Oligopeptidase B | - | G | R | R | G | L | J | - | - | G | R | R | G | L | I | - | - | - | R | D | G | Y | I | G | |||
- | M | G | R | M | L | R | - | - | V | G | R | A | L | R | - | G | D | G | R | I | H | R | - |
Organisms | Proteases | Degrons | ||||||||||||||||||||||||||
Protease Amino Acid Residues Positions Described in Merops | Corresponding Amino Acid Residue Positions (Mus musculus) | |||||||||||||||||||||||||||
Nf-kappa-B | STAT-1 | |||||||||||||||||||||||||||
P4 | P3 | P2 | P1 | P1’ | P2’ | P3’ | P4’ | P4 | P3 | P2 | P1 | P1’ | P2’ | P3’ | P4’ | P4 | P3 | P2 | P1 | P1’ | P2’ | P3’ | P4’ | |||||
Carica papaya | Papain | P | P | V | R | A | S | G | P | - | P | G | R | D | G | G | - | - | P | K | R | A | P | G | - | |||
P | P | V | Q | S | R | K | Q | N | P | M | Z | I | R | K | Q | - | P | V | Q | D | R | K | D | |||||
P | P | V | A | T | - | P | N | - | P | G | A | D | G | P | - | - | P | M | A | K | K | P | - | |||||
P | P | V | A | T | R | P | N | P | G | A | D | G | P | - | - | P | M | A | K | K | P | - | ||||||
Homo sapiens | Cathepsin L | - | K | F | R | H | S | - | - | K | N | R | H | E | K | F | R | - | F | R | H | S | K | D | - | |||
- | R | F | R | S | H | - | - | F | R | G | F | R | F | R | Y | - | - | H | R | E | R | K | H | |||||
H | K | F | R | H | - | - | - | - | K | N | R | H | E | K | F | H | K | E | R | K | H | K | W | |||||
Homo sapiens | Cathepsin B | - | - | F | R | F | F | - | - | - | F | R | F | R | F | G | C | - | R | F | F | F | R | R | - | |||
- | - | Y | K | F | F | - | - | K | K | N | F | M | E | F | F | - | K | F | F | K | K | F | - | |||||
H | L | M | K | - | - | - | - | H | L | M | K | K | N | M | K | Q | E | M | K | H | L | W | - | |||||
Q | S | V | G | F | A | - | - | Q | M | E | G | F | I | Q | - | - | - | F | A | Q | K | K | G | |||||
Sus scrofa | Prolyl oligopeptidase | P | P | R | P | Q | P | Q | P | P | P | E | P | Q | P | Q | - | - | P | K | P | Q | P | R | - | |||
G | Q | G | A | G | G | G | L | - | P | G | A | G | G | G | - | G | Q | E | A | G | G | G | W | |||||
E. coli | Oligopeptidase B | D | G | R | R | G | Y | I | G | - | G | G | R | G | G | I | - | - | - | W | R | G | F | I | G | |||
G | V | G | R | S | S | R | G | - | P | G | R | D | G | R | - | P | G | R | A | P | R | - | - | |||||
Organisms | Proteases | Corresponding amino acid residue positions (Mus musculus) | ||||||||||||||||||||||||||
AP-1 | CREB | BACH2 | ||||||||||||||||||||||||||
P4 | P3 | P2 | P1 | P1’ | P2’ | P3’ | P4’ | P4 | P3 | P2 | P1 | P1’ | P2’ | P3’ | P4’ | P4 | P3 | P2 | P1 | P1’ | P2’ | P3’ | P4’ | |||||
Carica papaya | Papain | - | - | - | - | - | - | - | - | - | P | V | R | A | N | G | - | - | P | G | R | P | M | G | - | |||
- | - | - | - | - | - | - | - | - | P | V | Q | S | R | N | - | - | - | V | Q | D | R | G | Q | |||||
- | - | - | - | - | - | - | - | - | P | R | K | F | S | P | - | - | P | G | A | P | M | P | - | |||||
- | P | V | A | S | R | N | - | - | P | G | A | P | R | P | - | |||||||||||||
Homo sapiens | Cathepsin L | K | C | R | K | R | K | - | - | F | R | H | M | E | N | R | I | F | H | R | M | K | F | R | H | |||
- | - | - | - | - | - | - | - | - | D | R | V | H | R | E | R | - | F | R | A | H | R | F | - | |||||
- | K | C | R | K | R | N | - | - | - | F | R | H | H | K | N | F | R | H | H | K | F | R | H | |||||
Homo sapiens | Cathepsin B | F | E | F | F | F | R | D | D | F | R | F | F | E | R | F | F | F | R | F | F | F | K | F | F | |||
E | K | F | F | Y | D | D | - | R | K | F | F | E | K | F | - | F | K | F | F | I | K | F | F | |||||
K | L | M | K | H | L | N | - | K | Q | A | Q | S | N | G | - | F | Q | M | K | I | K | M | K | |||||
V | G | N | A | Q | N | V | G | - | F | A | Q | S | N | G | V | G | F | A | C | S | E | G | ||||||
Sus scrofa | Prolyl oligopeptidase | - | - | - | - | - | - | - | - | - | P | R | K | K | P | Z | - | - | P | G | P | P | P | Q | - | |||
- | - | G | G | G | G | G | L | - | Q | G | A | G | G | G | - | - | P | G | A | G | G | G | - | |||||
E. coli | Oligopeptidase B | D | E | R | R | G | Y | D | G | - | G | R | R | G | N | N | - | D | G | D | G | G | Y | N | - | |||
- | - | - | - | - | - | - | - | - | M | G | R | S | N | R | - | G | F | W | R | A | L | R | G |
Similarity Analysis | ||||||||
---|---|---|---|---|---|---|---|---|
Mus musculus Target Proteins | Homo sapiens | Primate (Not Human) | ||||||
Coverage (%) | E-Value | Identity (%) | Access | Coverage (%) | E-Value | Identity (%) | Access | |
Nfkappa-B | 100 | 0.0 | 96.2 | NP_001070962.1 | 100 | 0.0 | 91.9 | XP_004050061.1 |
SAT-1 | 100 | 9 × 10−170 | 83.1 | NP_001304698.1 | 100 | 6 × 10−176 | 85.6 | XP_045388373.1 |
AP-1 | 100 | 2 × 10−178 | 95.5 | NP_002219.1 | 100 | 0.0 | 98.2 | XP_003921548.1 |
CREB | 100 | 0.0 | 86.3 | NP_056136.2 | 100 | 0.0 | 86.0 | XP_003796627.1 |
BACH2 | 99 | 0.0 | 90.1 | NP_001164265.1 | 100 | 0.0 | 89.6 | XP_037858189.1 |
IFN-Y | 99 | 6 × 10−36 | 41.0 | NP_000610.2 | 99 | 2 × 10−45 | 47.4 | XP_012497489.1 |
IL-4 | 100 | 4 × 10−23 | 41.3 | CAP72493.1 | 100 | 1 × 10−26 | 42.2 | DP000644.1 |
IL-5 | 87 | 7 × 10−58 | 71.7 | NP_000870.1 | 94 | 1 × 10−62 | 73.4 | XP_012513070.1 |
IL-13 | 75 | 1 × 10−30 | 59.8 | NP_002179.2 | 75 | 9 × 10−34 | 59.0 | XP_012506775.1 |
IL-17 | 96 | 0.0 | 69.5 | NP_703191.2 | 96 | 0.0 | 71.0 | XP_012616045.1 |
Target | Protease | Protease Motifs | Residues | Alignment of Motifs in the Targets | p-Value Alignment |
---|---|---|---|---|---|
Nf-kappaB | Cathepsin B | FRFRFGC | 7 | 1.5 × 10−9 | |
STAT-1 | OPB | WRGFIG | 6 | 1.5 × 10−7 | |
AP-1 | Cathepsin L | KCRKRK | 6 | 1.1 × 10−5 | |
CREB | Cathepsin L | DRVHRER | 7 | 1.3 × 10−8 | |
BACH2 | Cathepsin L | FRAHRF | 6 | 2.7 × 10−8 | |
IFN-y | Cathepsin B | GFAQQL | 6 | 2.4 × 10−7 | |
IL-4 | OPB | DGRREIIG | 8 | 2.8 × 10−7 | |
IL-5 | OPB | MGRMLR | 6 | 1.3 × 10−7 | |
IL-13 | Cathepsin B | AMKALA | 6 | 1.0 × 10−8 | |
IL-17 | Cathepsin L | FRSHRCR | 7 | 1.1 × 10−9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, A.S.; Aredes-Riguetti, L.M.; Pereira, B.A.S.; Alves, C.R.; Souza-Silva, F. Degron Pathways and Leishmaniasis: Debating Potential Roles of Leishmania spp. Proteases Activity on Guiding Hosts Immune Response and Their Relevance to the Development of Vaccines. Vaccines 2023, 11, 1015. https://doi.org/10.3390/vaccines11061015
Oliveira AS, Aredes-Riguetti LM, Pereira BAS, Alves CR, Souza-Silva F. Degron Pathways and Leishmaniasis: Debating Potential Roles of Leishmania spp. Proteases Activity on Guiding Hosts Immune Response and Their Relevance to the Development of Vaccines. Vaccines. 2023; 11(6):1015. https://doi.org/10.3390/vaccines11061015
Chicago/Turabian StyleOliveira, Adriane Silva, Lara Mata Aredes-Riguetti, Bernardo Acácio Santini Pereira, Carlos Roberto Alves, and Franklin Souza-Silva. 2023. "Degron Pathways and Leishmaniasis: Debating Potential Roles of Leishmania spp. Proteases Activity on Guiding Hosts Immune Response and Their Relevance to the Development of Vaccines" Vaccines 11, no. 6: 1015. https://doi.org/10.3390/vaccines11061015
APA StyleOliveira, A. S., Aredes-Riguetti, L. M., Pereira, B. A. S., Alves, C. R., & Souza-Silva, F. (2023). Degron Pathways and Leishmaniasis: Debating Potential Roles of Leishmania spp. Proteases Activity on Guiding Hosts Immune Response and Their Relevance to the Development of Vaccines. Vaccines, 11(6), 1015. https://doi.org/10.3390/vaccines11061015