DNA Vaccines for Epidemic Preparedness: SARS-CoV-2 and Beyond
Abstract
:1. Introduction
2. DNA Vaccines against SARS-CoV-2
3. Persistence of the Immune Response Relative to Delivery Device
4. Booster Vaccination
5. Dose Response
6. Vaccine Efficacy
7. Devices
8. Advantages of DNA Vaccines
9. Challenges of DNA Vaccines
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chavda, V.P.; Pandya, R.; Apostolopoulos, V. DNA vaccines for SARS-CoV-2: Toward third-generation vaccination era. Expert Rev. Vaccines 2021, 20, 1549–1560. [Google Scholar] [CrossRef] [PubMed]
- Shafaati, M.; Saidijam, M.; Soleimani, M.; Hazrati, F.; Mirzaei, R.; Amirheidari, B.; Tanzadehpanah, H.; Karampoor, S.; Kazemi, S.; Yavari, B.; et al. A brief review on DNA vaccines in the era of COVID-19. Future Virol. 2022, 17, 1. [Google Scholar] [CrossRef] [PubMed]
- Momin, T.; Kansagra, K.; Hardik Patel, H.; Sunil Sharma, S.; Sharma, B.; Patel, J.; Tanzadehpanah, H.; Karampoor, S.; Kazemi, S.; Yavari, B.; et al. Safety and Immunogenicity of a DNA SARS-CoV-2 vaccine (ZyCoV-D): Results of an open-label, non-randomized phase I part of phase I/II clinical study by intradermal route in healthy subjects in India. EClinicalMedicine 2021, 38, 101020. [Google Scholar] [CrossRef] [PubMed]
- Khobragade, A.; Bhate, S.; Ramaiah, V.; Deshpande, S.; Giri, K.; Phophle, H.; Supe, P.; Godara, I.; Revanna, R.; Nagarkar, R.; et al. Efficacy, safety, and immunogenicity of the DNA SARS-CoV-2 vaccine (ZyCoV-D): The interim efficacy results of a phase 3, randomised, double-blind, placebo-controlled study in India. Lancet 2022, 399, 1313–1321. [Google Scholar] [CrossRef]
- Mammen, M.P.; Tebas, P.; Agnes, J.; Giffear, M.; Kraynyak, K.; Blackwood, E.; Amante, D.; Reuschel, E.L.; Purwar, M.; Christensen-Quick, A.; et al. Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: A preliminary report of a randomized, blinded, placebo-controlled, Phase 2 clinical trial in adults at high risk of viral exposure. medRxiv 2021. [Google Scholar] [CrossRef]
- Tebas, P.; Yang, S.P.; Boyer, J.D.; Reuschel, E.L.; Patel, A.; Christensen-Quick, A.; Andrade, V.M.; Morrow, M.P.; Kraynyak, K.; Agnes, J.; et al. Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: A preliminary report of an open-label, Phase 1 clinical trial. EClinicalMedicine 2021, 31, 100689. [Google Scholar] [CrossRef] [PubMed]
- Inovio Pharmaceuticals. Inovio Reports First Quarter 2022 Financial Results and Program Developments; SEC: Washington, DC, USA, 2022. Available online: https://www.sec.gov/Archives/edgar/data/1055726/000119312522146350/d259881dex991.htm (accessed on 13 February 2023).
- Aurisicchio, L.; Brambilla, N.; Cazzaniga, M.E.; Bonfanti, P.; Milleri, S.; Ascierto, P.A.; Capici, S.; Vitalini, C.; Girolami, F.; Giacovelli, G.; et al. A first-in-human trial on the safety and immunogenicity of COVID-eVax, a cellular response-skewed DNA vaccine against COVID-19. Mol. Ther. 2023, 31, 788–800. [Google Scholar] [CrossRef] [PubMed]
- Nakagami, H.; Hayashi, H.; Sun, J.; Yanagida, Y.; Otera, T.; Nakagami, F.; Hamaguchi, S.; Yoshida, H.; Okuno, H.; Yoshida, S.; et al. Phase I study to assess the safety and immunogenicity of an intradermal COVID-19 DNA Vaccine administered using a pyro-drive jet injector in healthy adults. Vaccines 2022, 10, 1427. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.Y.; Lee, J.; Suh, Y.S.; Song, Y.G.; Choi, Y.J.; Lee, K.H.; Seo, S.H.; Song, M.; Oh, J.W.; Kim, M.; et al. Safety and immunogenicity of two recombinant DNA COVID-19 vaccines containing the coding regions of the spike or spike and nucleocapsid proteins: An interim analysis of two open-label, non-randomised, phase 1 trials in healthy adults. Lancet Microbe 2022, 3, e173–e183. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.J.; Roberts, C.C.; Song, J.Y.; Yoon, J.G.; Seong, H.; Hyun, H.J.; Lee, H.; Gil, A.; Oh, Y.; Park, J.; et al. Safety and immunogenicity of the bi-cistronic GLS-5310 COVID-19 DNA vaccine delivered with the GeneDerm suction device. Int. J. Infect. Dis. 2023, 128, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.; Kudchodkar, S.B.; Gil, A.; Jeon, B.; Park, G.H.; Cho, Y.; Lee, H.; Cheong, M.S.; Kim, W.; Hwang, Y.-H.; et al. Immune responses of a novel bi-cistronic SARS-CoV-2 DNA vaccine following intradermal immunization with suction delivery. Front. Virol. 2022, 2, 891540. [Google Scholar] [CrossRef]
- Lallow, E.O.; Jhumar, N.C.; Ahmed, I.; Kudchodkar, S.B.; Roberts, C.C.; Jeong, M.; Melnick, J.M.; Park, S.H.; Muthumani, K.; Shan, J.W.; et al. Novel suction-based in vivo intradermal DNA transfection platform. Sci. Adv. 2021, 7, eabj0611. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.J.; Roberts, C.C.; Kwon, I.; Kim, W.; Kudchodkar, S.B.; Park, Y.K.; Muthumani, K.; Maslow, J.N. GLS-5310 DNA vaccine as part of a heterologous vaccination against SARS-CoV-2. In Proceedings of the International Society for Vaccines, 2022 ISV Annual Congress, Quebec City, QC, Canada, 18–20 September 2022. [Google Scholar]
- Atmar, R.L.; Lyke, K.E.; Deming, M.E.; Jackson, L.A.; Branche, A.R.; El Sahly, H.M.; Rostad, C.A.; Martin, J.M.; Johnston, C.; Rupp, R.E.; et al. Homologous and heterologous COVID-19 booster vaccinations. N. Engl. J. Med. 2022, 386, 1046–1057. [Google Scholar] [CrossRef]
- Munro, A.P.S.; Janani, L.; Cornelius, V.; Aley, P.K.; Babbage, G.; Baxter, D.; Bula, M.; Cathie, K.; Chatterjee, K.; Dodd, K.; et al. Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): A blinded, multicentre, randomised, controlled, phase 2 trial. Lancet 2021, 398, 2258–2276. [Google Scholar] [CrossRef] [PubMed]
- Dey, A.; Chozhavel Rajanathan, T.M.; Chandra, H.; Pericherla, H.P.R.; Kumar, S.; Choonia, H.S.; Bajpai, M.; Singh, A.K.; Sinha, A.; Saini, G.; et al. Immunogenic potential of DNA vaccine candidate, ZyCoV-D against SARS-CoV-2 in animal models. Vaccine 2021, 39, 4108–4116. [Google Scholar] [CrossRef]
- Smith, T.R.F.; Patel, A.; Ramos, S.; Elwood, D.; Zhu, X.; Yan, J.; Gary, E.N.; Walker, S.N.; Schultheis, K.; Purwar, M.; et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat. Commun. 2020, 11, 2601. [Google Scholar] [CrossRef]
- Tebas, P.; Roberts, C.C.; Muthumani, K.; Reuschel, E.L.; Kudchodkar, S.B.; Zaidi, F.I.; White, S.; Khan, A.S.; Racine, T.; Choi, H.; et al. Safety and immunogenicity of an anti-Zika Virus DNA vaccine. N. Engl. J. Med. 2021, 385, e35. [Google Scholar] [CrossRef]
- Modjarrad, K.; Roberts, C.C.; Mills, K.T.; Castellano, A.R.; Paolino, K.; Muthumani, K.; Reuschel, E.L.; Robb, M.L.; Racine, T.; Oh, M.D.; et al. Safety and immunogenicity of an anti-Middle East respiratory syndrome coronavirus DNA vaccine: A phase 1, open-label, single-arm, dose-escalation trial. Lancet Infect. Dis. 2019, 19, 1013–1022. [Google Scholar] [CrossRef]
- Earle, K.A.; Ambrosino, D.M.; Fiore-Gartland, A.; Goldblatt, D.; Gilbert, P.B.; Siber, G.R.; Dull, P.; Plotkin, S.A. Evidence for antibody as a protective correlate for COVID-19 vaccines. Vaccine 2021, 39, 4423–4428. [Google Scholar] [CrossRef]
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef]
- Diehl, M.C.; Lee, J.C.; Daniels, S.E.; Tebas, P.; Khan, A.S.; Giffear, M.; Sardesai, N.Y.; Bagarazzi, M.L. Tolerability of intramuscular and intradermal delivery by CELLECTRA((R)) adaptive constant current electroporation device in healthy volunteers. Hum. Vaccin Immunother. 2013, 9, 2246–2252. [Google Scholar] [CrossRef] [PubMed]
- Kis, E.; Oláh, J.; Ócsai, H.; Baltas, E.; Gyulai, R.; Kemény, L.; Horvath, A.R. Electrochemotherapy of cutaneous metastases of melanoma—A case series study and systematic review of the evidence. Dermatol. Surg. 2011, 37, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Grant-Klein, R.J.; Van Deusen, N.M.; Badger, C.V.; Hannaman, D.; Dupuy, L.C.; Schmaljohn, C.S. A multiagent filovirus DNA vaccine delivered by intramuscular electroporation completely protects mice from ebola and Marburg virus challenge. Hum. Vaccin Immunother. 2012, 8, 1703–1706. [Google Scholar] [CrossRef] [PubMed]
- Schultheis, K.; Smith, T.R.F.; Kiosses, W.B.; Kraynyak, K.A.; Wong, A.; Oh, J.; Broderick, K.E. Delineating the cellular mechanisms associated with skin electroporation. Hum. Gene Ther. Methods 2018, 29, 177–188. [Google Scholar] [CrossRef]
- Gaudinski, M.R.; Houser, K.V.; Morabito, K.M.; Hu, Z.; Yamshchikov, G.; Rothwell, R.S.; Berkowitz, N.; Mendoza, F.; Saunders, J.G.; Novik, L.; et al. Safety, tolerability, and immunogenicity of two Zika virus DNA vaccine candidates in healthy adults: Randomised, open-label, phase 1 clinical trials. Lancet 2018, 391, 552–562. [Google Scholar] [CrossRef]
- Oh, S.; Jang, M.S.; Jung, K.J.; Han, J.S.; Lee, H.; Gil, A.; Jeon, B.; Roberts, C.C.; Maslow, J.N.; Kim, Y.B.; et al. Preclinical safety assessment of the suction-assisted intradermal injection of the SARS-CoV-2 DNA vaccine candidate pGO-1002 in white rabbit. Arch. Toxicol. 2023, 9, 1177–1189. [Google Scholar] [CrossRef]
- Tebas, P.; Kraynyak, K.A.; Patel, A.; Maslow, J.N.; Morrow, M.P.; Sylvester, A.J.; Knoblock, D.; Gillespie, E.; Amante, D.; Racine, T.; et al. Intradermal SynCon® Ebola GP DNA vaccine is temperature stable and safely demonstrates cellular and humoral immunogenicity advantages in healthy volunteers. J. Infect. Dis. 2019, 200, 400–410. [Google Scholar] [CrossRef]
- D’Alessio, F.; Lione, L.; Salvatori, E.; Bucci, F.; Muzi, A.; Roscilli, G.; Compagnone, M.; Pinto, E.; Battistuzzi, G.; Conforti, A.; et al. Immunogenicity of COVID-eVax delivered by electroporation is moderately impacted by temperature and molecular isoforms. Vaccines 2023, 11, 678. [Google Scholar] [CrossRef]
- McSweeney, M.D.; Mohan, M.; Commins, S.P.; Lai, S.K. Anaphylaxis to Pfizer/BioNTech mRNA COVID-19 vaccine in a patient with clinically confirmed PEG allergy. Front. Allergy 2021, 2, 715844. [Google Scholar] [CrossRef]
- Shimabukuro, T. Allergic reactions including anaphylaxis after receipt of the first dose of Pfizer-BioNTech COVID-19 vaccine—United States, 14–23 December 2020. Am. J. Transplant. 2021, 21, 1332–1337. [Google Scholar] [CrossRef]
- Shimabukuro, T. Allergic reactions including anaphylaxis after receipt of the first dose of Moderna COVID-19 vaccine—United States, 21 December 2020–10 January 2021. Am. J. Transplant. 2021, 21, 1326–1331. [Google Scholar] [CrossRef] [PubMed]
- Münter, R.; Sørensen, E.; Hasselbalch, R.B.; Christensen, E.; Nielsen, S.D.; Garred, P.; Ostrowski, S.R.; Byndgaard, H.; Iversen, K.K.; Andresen, T.L.; et al. Investigating generation of antibodies against the lipid nanoparticle vector Following COVID-19 vaccination with an mRNA vaccine. Mol Pharm. 2023; Online ahead of print. [Google Scholar] [CrossRef]
- Valsecchi, C.; Gualtierotti, R.; Arcudi, S.; Ciavarella, A.; Schiavone, L.; Novembrino, C.; Siboni, S.M.; Mannucci, P.M.; Payvandi, F. Reduced FVIII recovery associated with anti-FVIII PEG antibodies after BNT162b2 SARS-CoV-2 vaccination. Blood Adv. 2023, 7, 174–177. [Google Scholar] [CrossRef] [PubMed]
- Whiteley, W.N.; Ip, S.; Cooper, J.A.; Bolton, T.; Keene, S.; Walker, V.; Denhholm, R.; Akbari, A.; Omigie, E.; Hollings, S.; et al. Association of COVID-19 vaccines ChAdOx1 and BNT162b2 with major venous, arterial, or thrombocytopenic events: A population-based cohort study of 46 million adults in England. PLoS Med. 2022, 19, e1003926. [Google Scholar] [CrossRef] [PubMed]
- Kalimuddin, S.; Tham, C.Y.L.; Qui, M.; de Alwis, R.; Sim, J.X.Y.; Lim, J.M.E.; Tan, H.C.; Syenina, A.; Zhang, S.L.; Le Bert, N.; et al. Early T cell and binding antibody responses are associated with COVID-19 RNA vaccine efficacy onset. Med 2021, 2, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Rydyznski Moderbacher, C.; Ramirez, S.I.; Dan, J.M.; Grifoni, A.; Hastie, K.M.; Weiskopf, D.; Belanger, S.; Abbott, R.K.; Kim, C.; Choi, J.; et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell 2020, 183, 996–1012. [Google Scholar] [CrossRef]
- Tarke, A.; Coelho, C.H.; Zhang, Z.; Dan, J.M.; Yu, E.D.; Methot, N.; Bloom, N.I.; Goodwin, B.; Phillips, E.; Mallal, S.; et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell 2022, 185, 847–859. [Google Scholar] [CrossRef]
- Tarke, A.; Sidney, J.; Methot, N.; Yu, E.D.; Zhang, Y.; Dan, J.M.; Goodwin, B.; Rubiro, P.; Sutherland, A.; Wang, E.; et al. Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ T cell reactivity in infected or vaccinated individuals. Cell Rep. Med. 2021, 2, 100355. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Kim, Y.; Lee, K.M.; Jang, E.J.; Woo, C.H.; Hong, C.U.; Choi, S.T.; Xayaheuang, S.; Jang, J.G.; Ahn, J.H.; et al. Humoral and cellular responses to COVID-19 vaccines in SARS-CoV-2 infection-naïve and -recovered Korean individuals. Vaccines 2022, 10, 332. [Google Scholar] [CrossRef]
- Shrestha, A.C.; Wijesundara, D.K.; Masavuli, M.G.; Mekonnen, Z.A.; Gowans, E.J.; Grubor-Bauk, B. Cytolytic perforin as an adjuvant to enhance the immunogenicity of DNA vaccines. Vaccines 2019, 7, 38. [Google Scholar] [CrossRef]
- Eusébio, D.; Neves, A.R.; Costa, D.; Biswas, S.; Alves, G.; Cui, Z.; Sousa, Â. Methods to improve the immunogenicity of plasmid DNA vaccines. Drug Discov. Today 2021, 26, 2575–2592. [Google Scholar] [CrossRef]
- Huang, T.; Liu, L.; Lv, Z.; Zhao, K.; Yi, Q.; Zhang, J. Recent advances in DNA vaccines against lung cancer: A mini review. Vaccines 2022, 10, 1586. [Google Scholar] [CrossRef] [PubMed]
Vaccine | Developer | Development Phase | Dose per Vaccination | Dosing Regimen | Delivery Device | Mechanism |
---|---|---|---|---|---|---|
ZyCoV-D | Zydus | Authorized (India) | 2 mg | 0–4–8 weeks | PharmaJet® | NFIS |
INO-4800 | Inovio | Phase 3 | 2 mg | 0–4 weeks | Cellectra® | EP |
COVID-eVax | Takis | Phase 2 | 2 mg | 0–4 weeks | Cliniporator® | EP |
AG0302 | AnGes | Phase 3 | 0.4 mg | 0–2 weeks | Pyro-drive jet injector | NFIS |
GX-19N | Genexine | Phase 2 | 3 mg | 0–4 weeks | Elimtek EP | EP |
GLS-5310 | GeneOne | Phase 2 | 1.2 mg | 0–8 weeks | GeneDerm® | Suction |
ZyCoV-D | INO-4800 | COVID-eVax | AG0302 | GX-19N | GLS-5310 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dose (mg) > Device > Schema (wks) > | 1 mg Inj 0–4–8 | 1 mg NFIS 0–4–8 | 2 mg Inj 0–4–8 | 2 mg NFIS 0–4–8 | 1 mg 3P 0–4 | 2 mg 3P 0–4 | 2 mg ClinEP 0–4 | 0.4 mg Pyro-jet 0–2 | 3.0 mg Elimtek 0–4 | 0.6 mg GD 0–8 | 1.2 mg GD 0–8 | 1.2 mg GD 0–12 |
Binding antibody end point titer | 39 | 96 | 748 | 884 | 331.2 | 691.4 | 6 IU/mL | 324.9 | 201.6 | 708.0 | 645.5 | 241.4 |
Responder | 36% | 33% | 100% | 80% | 74% | 100% | 80% | NR | 75% | 93% | 93% | 93% |
Neutralizing antibody end point titer | 8.5 | 12.0 | 14.1 | 39.2 | 44.4 | 34.9 | 10 | 7.6 | 24 | 25 | 15 | 25 |
Responder | 18% | 17% | 50% | 80% | 78% | 84% | 10% | NR | 100% | 33% | 73% | 60% |
SFU/106 cells | 10 | 70 | 16 | 64 | 26.2 | 71.1 | 150 | 61.8 | 750 | 576 | 1090 | 482 |
Responder | 100% | 100% | 100% | 100% | 74% | 100% | 90% | NR | 52% | 93% | 93% | 93% |
EP | NFIS | Suction | |
---|---|---|---|
User considerations | |||
Training needs | High | Medium | Low |
Intuitive design | Low | Low | High |
User feedback for successful use | Medium | Low | High |
Ability to reapply device if error | No | No | Yes |
Pain, discomfort | High | Medium | Low |
Time of application and readiness for next use | |||
Recharging requirement | Yes | No | Yes |
Cost considerations | |||
Device cost | High | Medium | Low |
Disposables cost per use (estimated) | $5 | ~$1 | $0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maslow, J.N.; Kwon, I.; Kudchodkar, S.B.; Kane, D.; Tadesse, A.; Lee, H.; Park, Y.K.; Muthumani, K.; Roberts, C.C. DNA Vaccines for Epidemic Preparedness: SARS-CoV-2 and Beyond. Vaccines 2023, 11, 1016. https://doi.org/10.3390/vaccines11061016
Maslow JN, Kwon I, Kudchodkar SB, Kane D, Tadesse A, Lee H, Park YK, Muthumani K, Roberts CC. DNA Vaccines for Epidemic Preparedness: SARS-CoV-2 and Beyond. Vaccines. 2023; 11(6):1016. https://doi.org/10.3390/vaccines11061016
Chicago/Turabian StyleMaslow, Joel N., Ijoo Kwon, Sagar B. Kudchodkar, Deborah Kane, Amha Tadesse, Hyojin Lee, Young K. Park, Kar Muthumani, and Christine C. Roberts. 2023. "DNA Vaccines for Epidemic Preparedness: SARS-CoV-2 and Beyond" Vaccines 11, no. 6: 1016. https://doi.org/10.3390/vaccines11061016
APA StyleMaslow, J. N., Kwon, I., Kudchodkar, S. B., Kane, D., Tadesse, A., Lee, H., Park, Y. K., Muthumani, K., & Roberts, C. C. (2023). DNA Vaccines for Epidemic Preparedness: SARS-CoV-2 and Beyond. Vaccines, 11(6), 1016. https://doi.org/10.3390/vaccines11061016