Clinical Manifestation, Management, and Outcomes in Patients with COVID-19 Vaccine-Induced Acute Encephalitis: Two Case Reports and a Literature Review
Abstract
:1. Introduction
2. Case Presentation
2.1. Case 1
2.2. Case 2
3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baldelli, L.; Amore, G.; Montini, A.; Panzera, I.; Rossi, S.; Cortelli, P.; Guarino, M.; Rinaldi, R.; D’Angelo, R. Hyperacute reversible encephalopathy related to cytokine storm following COVID-19 vaccine. J. Neuroimmunol. 2021, 358, 577661. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Shimizu, T.; Suzuki-Inoue, K.; Ishida, T.; Wada, Y. Aseptic meningitis after vaccination of the BNT162b2 mRNA COVID-19 vaccine. Neurol. Sci. 2021, 42, 4433–4435. [Google Scholar] [CrossRef] [PubMed]
- Vogrig, A.; Janes, F.; Gigli, G.L.; Curcio, F. Acute disseminated encephalomyelitis after SARS-CoV-2 vaccination. Clin. Neurol. Neurosurg. 2021, 208, 106839. [Google Scholar] [CrossRef] [PubMed]
- Al-Mashdali, A.F.; Ata, Y.M.; Sadik, N. Post-COVID-19 vaccine acute hyperactive encephalopathy with dramatic response to methylprednisolone: A case report. Ann. Med. Surg. 2021, 69, 102803. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.T.; Luján, L.; Blank, M.; Shoenfeld, Y. Adjuvants- and vaccines-induced autoimmunity: Animal models. Immunol. Res. 2017, 65, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Salemi, S.; D’Amelio, R. Could autoimmunity be induced by vaccination? Int. Rev. Immunol. 2010, 29, 247–269. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, Z.; Wang, P.; Li, X.M.; Shuai, Z.W.; Ye, D.Q.; Pan, H.F. New-onset autoimmune phenomena post-COVID-19 vaccination. Immunology 2022, 165, 386–401. [Google Scholar] [CrossRef]
- Venkatesan, A.; Tunkel, A.R.; Bloch, K.C.; Lauring, A.S.; Sejvar, J.; Bitnun, A.; Stahl, J.-P.; Mailles, A.; Drebot, M.; Rupprecht, C.E.; et al. Case definitions, diagnostic algorithms, and priorities in encephalitis: Consensus statement of the international encephalitis consortium. Clin. Infect. Dis. 2013, 57, 1114–1128. [Google Scholar] [CrossRef] [Green Version]
- Graus, F.; Titulaer, M.J.; Balu, R.; Benseler, S.; Bien, C.G.; Cellucci, T.; Cortese, I.; Dale, R.C.; Gelfand, J.M.; Geschwind, M.; et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 2016, 15, 391–404. [Google Scholar] [CrossRef] [Green Version]
- Zavala-Jonguitud, L.F.; Pérez-García, C.C. Delirium triggered by COVID-19 vaccine in an elderly patient. Geriatr. Gerontol. Int. 2021, 21, 540. [Google Scholar] [CrossRef]
- Salinas, M.R.; Dieppa, M. Transient akathisia after the SARS-Cov-2 vaccine. Clin. Park. Relat. Disord. 2021, 4, 100098. [Google Scholar] [CrossRef]
- Liu, B.D.; Ugolini, C.; Jha, P. Two Cases of Post-Moderna COVID-19 Vaccine Encephalopathy Associated with Nonconvulsive Status Epilepticus. Cureus 2021, 13, e16172. [Google Scholar] [CrossRef]
- Torrealba-Acosta, G.; Martin, J.C.; Huttenbach, Y.; Garcia, C.R.; Sohail, M.R.; Agarwal, S.K.; Wasko, C.; Bershad, E.M.; Hirzallah, M.I. Acute encephalitis, myoclonus and Sweet syndrome after mRNA-1273 vaccine. BMJ Case Rep. 2021, 14, e243173. [Google Scholar] [CrossRef]
- Román, G.C.; Gracia, F.; Torres, A.; Palacios, A.; Gracia, K.; Harris, D. Acute Transverse Myelitis (ATM):Clinical Review of 43 Patients With COVID-19-Associated ATM and 3 Post-Vaccination ATM Serious Adverse Events With the ChAdOx1 nCoV-19 Vaccine (AZD1222). Front. Immunol. 2021, 12, 653786. [Google Scholar] [CrossRef]
- Malhotra, H.S.; Gupta, P.; Prabhu, V.; Garg, R.K.; Dandu, H.; Agarwal, V. COVID-19 vaccination-associated myelitis. QJM 2021, 114, 591–593. [Google Scholar] [CrossRef]
- Zlotnik, Y.; Gadoth, A.; Abu-Salameh, I.; Horev, A.; Novoa, R.; Ifergane, G. Case Report: Anti-LGI1 Encephalitis Following COVID-19 Vaccination. Front. Immunol. 2021, 12, 813487. [Google Scholar] [CrossRef]
- Sluyts, Y.; Arnst, Y.; Vanhemelryck, T.; De Cauwer, H. COVID-19-booster vaccine-induced encephalitis. Acta Neurol. Belg. 2022, 122, 579–581. [Google Scholar] [CrossRef]
- Takata, J.; Durkin, S.M.; Wong, S.; Zandi, M.S.; Swanton, J.K.; Corrah, T.W. A case report of ChAdOx1 nCoV-19 vaccine-associated encephalitis. BMC Neurol. 2021, 21, 485. [Google Scholar] [CrossRef]
- Klein, N.P.; Lewis, N.; Goddard, K.; Fireman, B.; Zerbo, O.; Hanson, K.E.; Donahue, J.G.; Kharbanda, E.O.; Naleway, A.; Nelson, J.C.; et al. Surveillance for Adverse Events After COVID-19 mRNA Vaccination. JAMA 2021, 326, 1390–1399. [Google Scholar] [CrossRef]
- Patone, M.; Handunnetthi, L.; Saatci, D.; Pan, J.; Katikireddi, S.V.; Razvi, S.; Hippisley-Cox, J. Neurological complications after first dose of COVID-19 vaccines and SARS-CoV-2 infection. Nat. Med. 2021, 27, 2144–2153. [Google Scholar] [CrossRef]
- Garg, R.K.; Paliwal, V.K. Spectrum of neurological complications following COVID-19 vaccination. Neurol. Sci. 2022, 43, 3–40. [Google Scholar] [CrossRef]
- Paterson, R.W.; Brown, R.L.; Benjamin, L.; Nortley, R.; Wiethoff, S.; Bharucha, T.; Jayaseelan, D.L.; Kumar, G.; Raftopoulos, R.E.; Zambreanu, L.; et al. The emerging spectrum of COVID-19 neurology: Clinical, radiological and laboratory findings. Brain 2020, 143, 3104–3120. [Google Scholar] [CrossRef]
- Román, G.C.; Spencer, P.S.; Reis, J.; Buguet, A.; Faris, M.E.A.; Katrak, S.M.; Láinez, M.; Medina, M.T.; Meshram, C.; Mizusawa, H.; et al. The neurology of COVID-19 revisited: A proposal from the Environmental Neurology Specialty Group of the World Federation of Neurology to implement international neurological registries. J. Neurol. Sci. 2020, 414, 116884. [Google Scholar] [CrossRef]
- Miller, E.R.; Moro, P.L.; Cano, M.; Shimabukuro, T.T. Deaths following vaccination: What does the evidence show? Vaccine 2015, 33, 3288–3292. [Google Scholar] [CrossRef] [Green Version]
- Gust, J.; Ponce, R.; Liles, W.C.; Garden, G.A.; Turtle, C.J. Cytokines in CAR T Cell-Associated Neurotoxicity. Front. Immunol. 2020, 11, 577027. [Google Scholar] [CrossRef]
- Perrin, P.; Collongues, N.; Baloglu, S.; Bedo, D.; Bassand, X.; Lavaux, T.; Gautier-Vargas, G.; Keller, N.; Kremer, S.; Fafi-Kremer, S.; et al. Cytokine release syndrome-associated encephalopathy in patients with COVID-19. Eur. J. Neurol. 2021, 28, 248–258. [Google Scholar] [CrossRef]
- Buzhdygan, T.P.; DeOre, B.J.; Baldwin-Leclair, A.; Bullock, T.A.; McGary, H.M.; Khan, J.A.; Ramirez, S.H. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood-brain barrier. Neurobiol. Dis. 2020, 146, 105131. [Google Scholar] [CrossRef]
- Cani, I.; Barone, V.; D’Angelo, R.; Pisani, L.; Allegri, V.; Spinardi, L.; Malpassi, P.; Fasano, L.; Rinaldi, R.; Fanti, S.; et al. Frontal encephalopathy related to hyperinflammation in COVID-19. J. Neurol. 2021, 268, 16–19. [Google Scholar] [CrossRef]
Parameter | Result | Unit | Normal Range |
---|---|---|---|
BUN | 15.2 | mg/dL | 7–25 |
Creatinine | 0.68 | mg/dL | F: 0.44–1.03; M: 0.64–1.27 |
eGFR | 94.5 | ml/min/1.732 m2 | |
Sodium | 140.8 | mmol/L | 136–146 |
Potassium | 4.1 | mmol/L | 3.5–5.1 |
Calcium | 8.6 | mg/dL | 8.6–10.3 |
Chloride | 105.9 | mmol/L | 101–109 |
GOT | 17 | mmol/L | Adult: ≤34 |
GPT | 21 | mmol/L | Adult: ≤36 |
Total bilirubin | 0.87 | mmol/L | 0.3–1.2 (5 days-60 y) |
Glucose | 102.9 | mg/dL | AC: 74–100 (≥18 y)PC: <140 (≥18 y) |
White blood cell count | 8.01 | 103/µl | M: 3.9–10.6; F: 3.5–11 |
Red blood cell count | 4.5 | 106/µl | M: 4.5–5.9; F: 4.0–5.2 |
Hemoglobin | 14.1 | g/dL | M: 13.5–17.5; F: 12–16 |
Hematocrit | 44.4 | % | M: 41–53; F36–46 |
MCV | 98.7 | fl | 80–100 |
MCH | 31.3 | pg | 26–34 |
MCHC | 31.8 | g/dl | 31–37 |
Platelet count | 194 | 103/mm | 150–400 |
Parameter | Result | Unit | Normal Range |
---|---|---|---|
White blood cells | 40 | count/μL | 0–5 |
Neutrophils | 0 | % | |
Eosinophils | 0 | % | |
Monocytes | 41 | % | |
Lymphocytes | 59 | % | |
Red blood cells | 26 | count/μL | 0–5 |
pH | 7.28 | 7.35–7.4 | |
Total protein | 82.9 | mg/dL | 15–45 |
LDH | 16.1 | U/L | <40 |
Chloride | 126.5 | mmol/L | 118–132 |
Glucose | 61.7 | mg/dL | 40–70 |
Albumin | 55.1 | mg/dL | 10–30 |
CSF/serum albumin ratio (× 10−3) | 19.7 | 5–8 | |
IgG index | 0.32 | 0–0.7 | |
HSV 1 PCR | Not detected | ||
HSV 2 PCR | Not detected | ||
VDRL test | Negative | ||
CSF bacterial culture | No growth | ||
Gram stain | Negative | ||
Indian Ink | Not found | ||
TB PCR DNA | Negative | ||
Acid-Fast Stain | Not found | ||
TB culture | Negative | ||
Anti-NMDR | Negative | ||
Anti-AMPAR1 | Negative | ||
Anti-AMPAR2 | Negative | ||
Anti-GABABR | Negative | ||
Anti-LGI1 | Negative | ||
Anti-CASPR2 | Negative |
Parameter | Result | Unit | Normal Range |
---|---|---|---|
HSV-1 IgG | Negative | ||
HSV-1 IgM | Negative | ||
HSV-2 IgG | Negative | ||
HSV-2 IgM | Negative | ||
CMV IgM | Negative | ||
EB-VCA IgM | Negative | ||
HBsAg | Nonreactive | ||
Anti-HCV | Nonreactive | ||
RSV screening test | Not detected | ||
Adenovirus Ag | Not detected | ||
Rotavirus Ag | Not detected | ||
PRP | Nonreactive | ||
TPPA | Nonreactive | ||
Cryptococcus Ag | Not detected | ||
Blood culture (2 sets) | No growth | ||
ANA | 1:80 | ||
Anti-dsDNA | 1.4 | U/mL | < 92.6 |
TSH | 0.262 | μL/U/mL | 0.35–4.94 |
T3 | 0.66 | ng/mL | 0.64–1.52 |
Free T4 | 1.7 | ng/mL | 0.89–1.79 |
Anti-TPO Ab | <5 | IU/mL | <5 |
Anti-thyroglobulin Ab | <15 | IU/mL | <115 |
Anti-mitochondrial Ab | Negative |
Parameter | Result | Unit | Normal Range |
---|---|---|---|
BUN | 12.8 | mg/dL | 7–25 |
Creatinine | 0.92 | mg/dL | F: 0.44–1.03; M: 0.64–1.27 |
eGFR | 109.3 | ml/min/1.732 m2 | |
Sodium | 136.2 | mmol/L | 136–146 |
Potassium | 4.2 | mmol/L | 3.5–5.1 |
GOT | 20.9 | mmol/L | Adult: ≤34 |
GPT | 33.5 | mmol/L | Adult: ≤36 |
CRP | 2.68 | ng/mL | <5 |
Glucose | 103.0 | mg/dL | AC: 74–100 (≥18 y); PC: <140 (≥18 y) |
White blood cells | 5.23 | 103/µL | M: 3.9–10.6; F: 3.5–11 |
Red blood cells | 5.38 | 106/µL | M: 4.5–5.9; F: 4.0–5.2 |
Hemoglobin | 15.1 | g/dL | M: 13.5–17.5; F: 12–16 |
Hematocrit | 45.8 | % | M: 41–53; F: 36–46 |
MCV | 85.1 | fl | 80–100 |
MCH | 28.1 | pg | 26–34 |
MCHC | 33.0 | g/dL | 31–37 |
Platelet count | 241 | 103/mm | 150–400 |
Parameter | Result | Unit | Normal Range |
---|---|---|---|
White blood cells | <5 | count/μL | 0–5 |
Red blood cells | 15 | count/μL | 0–5 |
pH | 7.33 | 7.35–7.4 | |
Total protein | 65.5 | mg/dL | 15–45 |
LDH | 16.0 | U/L | <40 |
Chloride | 125.7 | mmol/L | 118–132 |
Glucose | 76.7 | mg/dL | 40–70 |
Albumin | 37.0 | mg/dL | 10–30 |
CSF/serum albumin ratio (× 10−3) | 8 | 5–8 | |
IgG index | 0.60 | 0–0.7 | |
HSV 1 PCR | Not detected | ||
HSV 2 PCR | Not detected | ||
Influenza A | Not detected | ||
Influenza B | Not detected | ||
VDRL test | Negative | ||
CSF bacterial culture | No growth | ||
Gram stain | Negative | ||
Indian Ink | Not found | ||
TB PCR DNA | Negative | ||
Acid-Fast Stain | Not found | ||
TB culture | Negative | ||
Anti-NMDR | Negative | ||
Anti-AMPAR1 | Negative | ||
Anti-AMPAR2 | Negative | ||
Anti-GABABR | Negative | ||
Anti-LGI1 | Negative | ||
Anti-CASPR2 | Negative |
Parameter | Result | Unit | Normal Range |
---|---|---|---|
HSV-1 IgG | Negative | ||
HSV-1 IgM | Negative | ||
HSV-2 IgG | Negative | ||
HSV-2 IgM | Negative | ||
CMV IgM | Negative | ||
EB-VCA IgM | Negative | ||
Varicella zoster IgG | Negative | ||
Blood culture (2 sets) | Negative | ||
ANA | 1:40 (negative) | ||
Anti-dsDNA | 0.5 | U/mL | <92.6 |
TSH | 0.113 | µl/U/mL | 0.35–4.94 |
Free T4 | 1.43 | ng/mL | 0.89–1.79 |
Anti-Thyroglobulin Ab | 15 | IU/mL | <115 |
Ref. | Diagnosis/ Clinical Feature | Vaccine/ Age and Sex/ Duration after Vaccination | Relevant Laboratory Data | Examinations/Images | Treatment |
---|---|---|---|---|---|
[2] | Aseptic meningitis
| 1st Comirnaty® BNT162b2 (BioNTech and Pfizer) 42 F/7 days | CSF exam:
Microbiological studies: negative | EEG: (-) CT: (-) MRI: (-) | Acyclovir and methylprednisolone 500 mg/day (3rd day)
|
[3] | Acute disseminated encephalomyelitis
| 1st Comirnaty®; BNT162b2 (BioNTech and Pfizer) 56 F/14 days | CSF exam
Microbiological studies: negative AE antibodies: negative Demyelinating disorder-related antigens: negative | EEG: normal CT: (-) MRI (FLAIR): hyperintensity involving the left cerebellar peduncle and supratentorial areas | Prednisone: 75 mg/day
|
[10] | Delirium
| 1st Comirnaty®; BNT162b2 (BioNTech and Pfizer) 89 M/1 day | CSF exam: (-) Microbiological studies: (-) | EEG: (-) CT: (-) MRI: (-) | Quetiapine: 12.5 mg HS
|
[11] | Movement disorder
| 2nd Comirnaty®; BNT162b2 (BioNTech and Pfizer) 36 F/12 h | CSF exam: (-) Microbiological studies: (-) | EEG: (-) CT: (-) MRI: (-) | Ibuprofen
|
[4] | Encephalopathy
| 1st SPIKEVAX™ mRNA-1273 (Moderna) 32 M/2 days | CSF exam:
Microbiological studies: negative AE antibodies: negative | EEG: slowed background activity CT: (-) MRI: normal | Ceftriaxone, acyclovir and methylprednisolone 1 g/day (6th day)
|
[12] | Encephalopathy
| 1st SPIKEVAX™ mRNA-1273 (Moderna) 86 F/7 days | CSF exam: (-) Microbiological studies: negative | EEG: nonconvulsive focal status epilepticus CT: normal MRI: normal | Ceftriaxone, lorazepam (2nd day) and fosphenytoin (2nd day)
|
[12] | Encephalopathy
| 1st SPIKEVAX™ mRNA-1273 (Moderna) 73 M/7 days | CSF exam: (-) Microbiological studies: negative | EEG: nonconvulsive status epilepticus CT: normal MRI: normal | Ceftriaxone, lorazepam, and levetiracetam
|
[13] | Encephalitis Sweet’s syndrome
| 1st SPIKEVAX™ mRNA-1273 (Moderna) 77 M/1 day | CSF exam:
Microbiological studies: negative AE antibodies: negative | EEG: generalized slow background in the theta range, with state changes and reactivity but no sleep features CT: normal MRI: normal | Vancomycin, ampicillin cefepime, ceftriaxone doxycycline, acyclovir and methylprednisolone 1 g/day
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shyu, S.; Fan, H.-T.; Shang, S.-T.; Chan, J.-S.; Chiang, W.-F.; Chiu, C.-C.; Chen, M.-H.; Shyu, H.-Y.; Hsiao, P.-J. Clinical Manifestation, Management, and Outcomes in Patients with COVID-19 Vaccine-Induced Acute Encephalitis: Two Case Reports and a Literature Review. Vaccines 2022, 10, 1230. https://doi.org/10.3390/vaccines10081230
Shyu S, Fan H-T, Shang S-T, Chan J-S, Chiang W-F, Chiu C-C, Chen M-H, Shyu H-Y, Hsiao P-J. Clinical Manifestation, Management, and Outcomes in Patients with COVID-19 Vaccine-Induced Acute Encephalitis: Two Case Reports and a Literature Review. Vaccines. 2022; 10(8):1230. https://doi.org/10.3390/vaccines10081230
Chicago/Turabian StyleShyu, Shiuan, Hua-Tung Fan, Shih-Ta Shang, Jenq-Shyong Chan, Wen-Fang Chiang, Chih-Chien Chiu, Ming-Hua Chen, Hann-Yen Shyu, and Po-Jen Hsiao. 2022. "Clinical Manifestation, Management, and Outcomes in Patients with COVID-19 Vaccine-Induced Acute Encephalitis: Two Case Reports and a Literature Review" Vaccines 10, no. 8: 1230. https://doi.org/10.3390/vaccines10081230
APA StyleShyu, S., Fan, H. -T., Shang, S. -T., Chan, J. -S., Chiang, W. -F., Chiu, C. -C., Chen, M. -H., Shyu, H. -Y., & Hsiao, P. -J. (2022). Clinical Manifestation, Management, and Outcomes in Patients with COVID-19 Vaccine-Induced Acute Encephalitis: Two Case Reports and a Literature Review. Vaccines, 10(8), 1230. https://doi.org/10.3390/vaccines10081230