Unpacking the Implications of SARS-CoV-2 Breakthrough Infections on COVID-19 Vaccination Programs
Abstract
:1. Introduction
2. SARS-CoV-2 Related Breakthrough Infections
3. COVID-19 Vaccine-Induced Immunity and Waning Immunity
4. The Need for Booster Jabs
5. COVID-19 Vaccine Inequities
6. Vaccine Hesitancy
7. The Need for Enhanced Public Health Messages Related to COVID-19 Vaccines
8. Call to Action: Capacitate Resource-Limited Settings for Vaccine Production, Smooth Vaccine Distribution, and Genomic Sequencing
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). Weekly Epidemiological Update on COVID-19. 11 January 2022. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---11-january-2022 (accessed on 17 January 2022).
- World Health Organization (WHO). Classification of Omicron (B.1.1.529): SARS-CoV-2 Variant of Concern. 2021. Available online: https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern (accessed on 17 January 2022).
- Ball, P. The lightning-fast quest for COVID vaccines—And what it means for other diseases. Nature 2021, 589, 16–18. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef]
- Bergwerk, M.; Gonen, T.; Lustig, Y.; Amit, S.; Lipsitch, M.; Cohen, C.; Mandelboim, M.; Gal Levin, E.; Rubin, C.; Indenbaum, V.; et al. COVID-19 Breakthrough Infections in Vaccinated Health Care Workers. N. Engl. J. Med. 2021, 385, 1474–1484. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zheng, Q.; Madhira, V.; Olex, A.L.; Anzalone, A.J.; Vinson, A.; Singh, J.A.; French, E.; Abraham, A.G.; Mathew, J.; et al. Association between Immune Dysfunction and COVID-19 Breakthrough Infection After SARS-CoV-2 Vaccination in the US. JAMA Intern. Med. 2021. [Google Scholar] [CrossRef] [PubMed]
- Alishaq, M.; Nafady-Hego, H.; Jeremijenko, A.; Al Ajmi, J.A.; Elgendy, M.; Vinoy, S.; Fareh, S.B.; Plaatjies, J.V.; Nooh, M.; Alanzi, N.; et al. Risk factors for breakthrough SARS-CoV-2 infection in vaccinated healthcare workers. PLoS ONE 2021, 16, e0258820. [Google Scholar] [CrossRef]
- Leshem, E.; Nelson, K.; Lopman, B.A. Severe breakthrough COVID-19 infections in Scotland—Implications for immunisation programmes. Lancet Respir. Med. 2021, 9, 1354–1356. [Google Scholar] [CrossRef]
- Gupta, R.K.; Topol, E.J. COVID-19 vaccine breakthrough infections. Science 2021, 374, 1561–1562. [Google Scholar] [CrossRef]
- Schieffelin, J.S.; Norton, E.B.; Kolls, J.K. What should define a SARS-CoV-2 “breakthrough” infection? J. Clin. Investig. 2021, 131. [Google Scholar] [CrossRef]
- Di Fusco, M.; Moran, M.M.; Cane, A.; Curcio, D.; Khan, F.; Malhotra, D.; Surinach, A.; Miles, A.; Swerdlow, D.; McLaughlin, J.M.; et al. Evaluation of COVID-19 vaccine breakthrough infections among immunocompromised patients fully vaccinated with BNT162b2. J. Med. Econ. 2021, 24, 1248–1260. [Google Scholar] [CrossRef]
- Altmann, D.M.; Boyton, R.J. Waning immunity to SARS-CoV-2: Implications for vaccine booster strategies. Lancet Respir. Med. 2021, 9, 1356–1358. [Google Scholar] [CrossRef]
- Crellen, T.; Pi, L.; Davis, E.L.; Pollington, T.M.; Lucas, T.C.D.; Ayabina, D.; Borlase, A.; Toor, J.; Prem, K.; Medley, G.F.; et al. Dynamics of SARS-CoV-2 with waning immunity in the UK population. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376. [Google Scholar] [CrossRef] [PubMed]
- The Immunisation Advisory Centre. Efficacy and Effectiveness. 2020. Available online: https://www.immune.org.nz/vaccines/efficiency-effectiveness (accessed on 18 January 2022).
- Scott, J.; Richterman, A.; Cevik, M. COVID-19 vaccination: Evidence of waning immunity is overstated. BMJ 2021, 374, n2320. [Google Scholar] [CrossRef] [PubMed]
- Hamami, D.; Cameron, R.; Pollock, K.G.; Shankland, C. Waning Immunity Is Associated with Periodic Large Outbreaks of Mumps: A Mathematical Modeling Study of Scottish Data. Front. Physiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberg, Y.; Mandel, M.; Bar-On, Y.M.; Bodenheimer, O.; Freedman, L.; Haas, E.J.; Milo, R.; Alroy-Preis, S.; Ash, N.; Huppert, A. Waning Immunity after the BNT162b2 Vaccine in Israel. N. Engl. J. Med. 2021, 385, e85. [Google Scholar] [CrossRef] [PubMed]
- Levin, E.G.; Lustig, Y.; Cohen, C.; Fluss, R.; Indenbaum, V.; Amit, S.; Doolman, R.; Asraf, K.; Mendelson, E.; Ziv, A.; et al. Waning Immune Humoral Response to BNT162b2 COVID-19 Vaccine over 6 Months. N. Engl. J. Med. 2021, 385, e84. [Google Scholar] [CrossRef]
- Tartof, S.Y.; Slezak, J.M.; Fischer, H.; Hong, V.; Ackerson, B.K.; Ranasinghe, O.N.; Frankland, T.B.; Ogun, O.A.; Zamparo, J.M.; Gray, S.; et al. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: A retrospective cohort study. Lancet 2021, 398, 1407–1416. [Google Scholar] [CrossRef]
- Kolarić, B.; Ambriović-Ristov, A.; Tabain, I.; Vilibić-Čavlek, T. Waning immunity six months after BioNTech/Pfizer COVID-19 vaccination among nursing home residents in Zagreb, Croatia. Croat. Med. J. 2021, 62, 630–633. [Google Scholar] [CrossRef]
- Ghebreyesus, T.A. Five steps to solving the vaccine inequity crisis. PLoS Glob. Public Health 2021, 1, e0000032. [Google Scholar] [CrossRef]
- Rubin, R. COVID-19 Vaccine Makers Plan for Annual Boosters, but It’s Not Clear They’ll Be Needed. JAMA 2021, 326, 2247. [Google Scholar] [CrossRef]
- Ray, G.T.; Lewis, N.; Klein, N.P.; Daley, M.F.; Wang, S.V.; Kulldorff, M.; Fireman, B. Intraseason Waning of Influenza Vaccine Effectiveness. Clin. Infect. Dis. 2019, 68, 1623–1630. [Google Scholar] [CrossRef] [PubMed]
- Richterman, A.; Scott, J.; Cevik, M. COVID-19 vaccines, immunity, and boosters. BMJ 2021, n3105. [Google Scholar] [CrossRef] [PubMed]
- Bower, E. Gap between COVID Vaccine Doses Cut as Government Plans to Scrap Restrictions in England. Gponline 2021. Available online: https://www.gponline.com/gap-covid-vaccine-doses-cut-government-plans-scrap-restrictions-england/article/1721374 (accessed on 17 January 2022).
- BBC News. Delta Variant: NI Reduces Time between COVID-19 Vaccine Doses. 2021. Available online: https://www.bbc.co.uk/news/uk-northern-ireland-57424707 (accessed on 17 January 2022).
- Bar-On, Y.M.; Goldberg, Y.; Mandel, M.; Bodenheimer, O.; Freedman, L.; Kalkstein, N.; Mizrahi, B.; Alroy-Preis, S.; Ash, N.; Milo, R.; et al. Protection of BNT162b2 Vaccine Booster against COVID-19 in Israel. N. Engl. J. Med. 2021, 385, 1393–1400. [Google Scholar] [CrossRef] [PubMed]
- Mahase, E. COVID-19: Omicron and the need for boosters. BMJ 2021, 375, n3079. [Google Scholar] [CrossRef]
- GOV.UK. Vaccinations in United Kingdom. 2021. Available online: https://coronavirus.data.gov.uk/details/vaccinations (accessed on 22 December 2021).
- Zhong, D.; Xiao, S.; Debes, A.K.; Egbert, E.R.; Caturegli, P.; Colantuoni, E.; Milstone, A.M. Durability of Antibody Levels after Vaccination with mRNA SARS-CoV-2 Vaccine in Individuals With or Without Prior Infection. JAMA 2021, 326, 2524. [Google Scholar] [CrossRef]
- Mahase, E. COVID-19: Antibody boost after third dose varies greatly by vaccine, study finds. BMJ 2021, n3011. [Google Scholar] [CrossRef]
- Kreier, F. ‘Unprecedented achievement’: Who received the first billion COVID vaccinations? Nature 2021. Available online: http://www.nature.com/articles/d41586-021-01136-2 (accessed on 17 January 2022).
- OXFAM International. Rich Countries Have Received More Vaccines in Run-Up to Christmas than African Countries Have All Year. 2021. Available online: https://www.oxfam.org/en/press-releases/rich-countries-have-received-more-vaccines-run-christmas-african-countries-have-all (accessed on 30 December 2021).
- Cirillo, N. Do health-care workers need a COVID-19 vaccine booster? Lancet Infect. Dis. 2022, 22, 20. [Google Scholar] [CrossRef]
- Ai, J.; Zhang, H.; Zhang, Y.; Lin, K.; Zhang, Y.; Wu, J.; Wan, Y.; Huang, Y.; Song, J.; Zhangfan, F.; et al. Omicron variant showed lower neutralizing sensitivity than other SARS-CoV-2 variants to immune sera elicited by vaccines after boost. Emerg. Microbes Infect. 2021, 1–24. [Google Scholar] [CrossRef]
- Talic, S.; Shah, S.; Wild, H.; Gasevic, D.; Maharaj, A.; Ademi, Z.; Xu, W.; Theodoratou, E.; Motee, A.; Ilic, D. Effectiveness of public health measures in reducing the incidence of COVID-19, SARS-CoV-2 transmission, and COVID-19 mortality: Systematic review and meta-analysis. BMJ 2021, 375, e068302. [Google Scholar]
- Dzinamarira, T.; Murewanhema, G.; Musuka, G. Different SARS-CoV-2 variants, same prevention strategies. Public Health Pract. 2022, 3, 100223. [Google Scholar] [CrossRef]
- Zewude, B.; Melese, B.; Addis, E.; Solomon, W. Changing Patterns of Compliance with Protective Behavioral Recommendations in the Post First-Round COVID-19 Vaccine Period among Healthcare Workers in Southern Ethiopia. Risk Manag. Healthc. Policy 2021, 14, 3575–3587. [Google Scholar] [CrossRef] [PubMed]
- Puri, N.; Coomes, E.A.; Haghbayan, H.; Gunaratne, K. Social media and vaccine hesitancy: New updates for the era of COVID-19 and globalized infectious diseases. Hum. Vaccines Immunother. 2020, 16, 2586–2593. [Google Scholar] [CrossRef] [PubMed]
- Sallam, M. COVID-19 Vaccine Hesitancy Worldwide: A Concise Systematic Review of Vaccine Acceptance Rates. Vaccines 2021, 9, 160. [Google Scholar] [CrossRef] [PubMed]
- Aw, J.; Seng, J.J.B.; Seah, S.S.Y.; Low, L.L. COVID-19 Vaccine Hesitancy—A Scoping Review of Literature in High-Income Countries. Vaccines 2021, 9, 900. [Google Scholar] [CrossRef]
- Rutten, L.J.F.; Zhu, X.; Leppin, A.L.; Ridgeway, J.L.; Swift, M.D.; Griffin, J.M.; Sauver, J.L.S.; Virk, A.; Jacobson, R.M. Evidence-Based Strategies for Clinical Organizations to Address COVID-19 Vaccine Hesitancy. Mayo Clin. Proc. 2021, 96, 699–707. [Google Scholar] [CrossRef]
- Merkley, E.; Loewen, P.J. Assessment of Communication Strategies for Mitigating COVID-19 Vaccine-Specific Hesitancy in Canada. JAMA Netw. Open 2021, 4, e2126635. [Google Scholar] [CrossRef]
- UNICEF. Vaccine Messaging Guide. 2020. Available online: https://www.unicef.org/media/93661/file/Vaccinemessagingguide.pdf (accessed on 17 January 2022).
- Dzinamarira, T.; Mukwenha, S.; Mukandavire, Z.; Cuadros, D.F.; Murewanhema, G.; Madziva, R.; Musuka, G. Insights from Zimbabwe’s SARS-CoV-2 Genomic Surveillance. Lancet Glob. Health 2021, 9, e1624–e1625. [Google Scholar] [CrossRef]
- Dzobo, M.; Musuka, G.; Mashe, T.; Dzinamarira, T. Inadequate SARS-CoV-2 Genetic Sequencing capacity in Zimbabwe: A call to urgently address this key gap to control current and future waves. IJID Reg. 2021, 1, 3–4. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzinamarira, T.; Tungwarara, N.; Chitungo, I.; Chimene, M.; Iradukunda, P.G.; Mashora, M.; Murewanhema, G.; Rwibasira, G.N.; Musuka, G. Unpacking the Implications of SARS-CoV-2 Breakthrough Infections on COVID-19 Vaccination Programs. Vaccines 2022, 10, 252. https://doi.org/10.3390/vaccines10020252
Dzinamarira T, Tungwarara N, Chitungo I, Chimene M, Iradukunda PG, Mashora M, Murewanhema G, Rwibasira GN, Musuka G. Unpacking the Implications of SARS-CoV-2 Breakthrough Infections on COVID-19 Vaccination Programs. Vaccines. 2022; 10(2):252. https://doi.org/10.3390/vaccines10020252
Chicago/Turabian StyleDzinamarira, Tafadzwa, Nigel Tungwarara, Itai Chitungo, Munashe Chimene, Patrick Gad Iradukunda, Moreblessing Mashora, Grant Murewanhema, Gallican Nshogoza Rwibasira, and Godfrey Musuka. 2022. "Unpacking the Implications of SARS-CoV-2 Breakthrough Infections on COVID-19 Vaccination Programs" Vaccines 10, no. 2: 252. https://doi.org/10.3390/vaccines10020252