Global Policy to Reduce the Incidence of Infection Spreading in Non-Vaccinated Healthcare Workers: A Literature Review
Abstract
:1. Background
2. Methods
3. Results
3.1. Addressing Vaccine Hesitancy
3.2. Non-Pharmaceutical Interventions
3.3. Promoting Action at Individual Level
4. Discussion
- Perceived susceptibility.—This refers to a person’s subjective perception of the risk of acquiring an illness or disease. There is wide variation in a person’s feelings of personal vulnerability to an illness or disease.
- Perceived severity.—This refers to a person’s feelings on the seriousness of contracting an illness or disease (or leaving the illness or disease untreated). There is wide variation in a person’s feelings of severity, and often a person considers the medical consequences (e.g., death, disability) and social consequences (e.g., family life, social relationships) when evaluating the severity.
- Perceived benefits.—This refers to a person’s perception of the effectiveness of various actions available to reduce the threat of illness or disease (or to cure illness or disease). The course of action a person takes in preventing (or curing) illness or disease relies on consideration and evaluation of both perceived susceptibility and perceived benefit, such that the person would accept the recommended health action if it was perceived as beneficial.
- Perceived barriers.—This refers to a person’s feelings on the obstacles to performing a recommended health action. There is wide variation in a person’s feelings of barriers, or impediments, which lead to a cost/benefit analysis. The person weighs the effectiveness of the actions against the perceptions that it may be expensive, dangerous (e.g., side effects), unpleasant (e.g., painful), time-consuming, or inconvenient.
- Cue to action.—This is the stimulus needed to trigger the decision-making process to accept a recommended health action. These cues can be internal (e.g., chest pains, wheezing, etc.) or external (e.g., advice from others, illness of family member, newspaper article).
- Self-efficacy.—This refers to the level of a person’s confidence in his or her ability to successfully perform a behavior. This construct was added to the model most recently in mid-1980. Self-efficacy is a construct in many behavioral theories as it directly relates to whether a person performs the desired behavior.
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maltezou, H.C.; Poland, G.A. Vaccination policies for healthcare workers in Europe. Vaccine 2014, 32, 4876–4880. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Vaccine Tracker Stockholm: ECDC. 2021. Available online: https://vaccinetracker.ecdc.europa.eu/public/extensions/COVID-19/vaccine-tracker.html#uptake-tab (accessed on 27 October 2022).
- Centers for Disease Control and Prevention: COVID Data Tracker. Available online: https://covid.cdc.gov/covid-data-tracker/#vaccinations_vacc-people-onedose-pop-5yr (accessed on 11 April 2022).
- Mbaeyi, S.A. Use of Pfizer-BioNTech COVID-19 Vaccine: Clinical Considerations; ACIP COVID-19 Vaccines Work Group: Atlanta, GA, USA, 2020.
- Larson, H.J.; De Figueiredo, A.; Xiahong, Z.; Schulz, W.S.; Verger, P.; Johnston, I.G.; Cook, A.R.; Jones, N.S. The State of Vaccine Confidence 2016: Global Insights Through a 67-Country Survey. EBioMedicine 2016, 12, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Holzmann-Littig, C.; Braunisch, M.; Kranke, P.; Popp, M.; Seeber, C.; Fichtner, F.; Littig, B.; Carbajo-Lozoya, J.; Allwang, C.; Frank, T.; et al. COVID-19 Vaccination Acceptance and Hesitancy among Healthcare Workers in Germany. Vaccines 2021, 9, 777. [Google Scholar] [CrossRef] [PubMed]
- Loubet, P.; Nguyen, C.; Burnet, E.; Launay, O. Influenza vaccination of pregnant women in Paris, France: Knowledge, attitudes and practices among midwives. PLoS ONE 2019, 14, e0215251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wynia, M.K. Mandating Vaccination: What Counts as a “Mandate” in Public Health and When Should They Be Used? Am. J. Bioeth. 2007, 7, 2–6. [Google Scholar] [CrossRef]
- Karafillakis, E.; Dinca, I.; Apfel, F.; Cecconi, S.; Wűrz, A.; Takacs, J.; Suk, J.; Celentano, L.P.; Kramarz, P.; Larson, H.J. Vaccine hesitancy among healthcare workers in Europe: A qualitative study. Vaccine 2016, 34, 5013–5020. [Google Scholar] [CrossRef]
- Aurilio, M.T.; Mennini, F.; Gazzillo, S.; Massini, L.; Bolcato, M.; Feola, A.; Ferrari, C.; Coppeta, L. Intention to Be Vaccinated for COVID-19 among Italian Nurses during the Pandemic. Vaccines 2021, 9, 500. [Google Scholar] [CrossRef]
- Ferrari, C.; Aurilio, M.T.; Mazza, A.; Pietroiusti, A.; Magrini, A.; Balbi, O.; Bolcato, M.; Coppeta, L. Evaluation of Immunity for Mumps among Vaccinated Medical Students. Vaccines 2021, 9, 599. [Google Scholar] [CrossRef]
- Coppeta, L.; Balbi, O.; Baldi, S.; Pietroiusti, A.; Magrini, A. Pre-vaccination IgG screening for mumps is the most cost-effectiveness immunization strategy among Health Care Workers. Hum. Vaccines Immunother. 2019, 15, 1135–1138. [Google Scholar] [CrossRef]
- Coppeta, L.; Somma, G.; Di Giampaolo, L.; Bizzarro, G.; Ippoliti, L.; Borelli, F.; Balbi, O.; Perrone, S.; Pietroiusti, A. Persistence of antibodies for measles among vaccinated medical students in Italy. Infect. Dis. 2020, 52, 593–595. [Google Scholar] [CrossRef]
- Coppeta, L.; Morucci, L.; Pietroiusti, A.; Magrini, A. Cost-effectiveness of workplace vaccination against measles. Hum. Vaccines Immunother. 2019, 15, 2847–2850. [Google Scholar] [CrossRef]
- Coppeta, L.; Ferrari, C.; Iannuzzi, I.; D’Alessandro, I.; Balbi, O.; Pietroiusti, A.; Trabucco Aurilio, M. Rubella Immunity among Italian Female Healthcare Workers: A Serological Study. Int. J. Environ. Res. Public Health 2020, 17, 7992. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Available online: http://www.cdc.gov/niosh/topics/hierarchy/ (accessed on 10 June 2021).
- Chu, D.K.; Akl, E.A.; Duda, S.; Solo, K.; Yaacoub, S.; Schünemann, H.J.; El-Harakeh, A.; Bognanni, A.; Lotfi, T.; Loeb, M.; et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis. Lancet 2020, 395, 1973–1987. [Google Scholar] [CrossRef]
- Coppeta, L.; Somma, G.; Ippoliti, L.; Ferrari, C.; D’Alessandro, I.; Pietroiusti, A.; Trabucco Aurilio, M. Contact Screening for Healthcare Workers Exposed to Patients with COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 9082. [Google Scholar] [CrossRef]
- Protecting Workers: Guidance on Mitigating and Preventing the Spread of COVID-19 in the Workplace, OSHA. 2021. Available online: https://www.osha.gov/coronavirus/safework (accessed on 10 June 2021).
- NHS England. Guidance to Support COVID-19 Vaccine Uptake in Frontline Staff. In Guidance for HR Directors 12 March 2021, 2nd ed.; UK’s NHS: London, UK, 2021. Available online: https://www.england.nhs.uk/coronavirus/publication/guidance-to-support-covid-19-vaccine-uptake-in-frontline-staff/ (accessed on 28 November 2022).
- Kelly, C.; Dutheil, F.; Haniez, P.; Boudet, G.; Rouffiac, K.; Traore, O.; Chamoux, A. Analysis of motivations for antiflu vaccination of the Clermont-Ferrand University Hospital staff. Med. Mal. Infect. 2008, 38, 574–585. [Google Scholar] [CrossRef]
- Qureshi, A.M.; Hughes, N.J.M.; Murphy, E.; Primrose, W.R. Factors influencing uptake of influenza vaccination among hospital-based health care workers. Occup. Med. 2004, 54, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Bonaccorsi, G.; Lorini, C.; Santomauro, F.; Guarducci, S.; Pellegrino, E.; Puggelli, F.; Balli, M.; Bonanni, P. Predictive factors associated with the acceptance of pandemic and seasonal influenza vaccination in healthcare workers and students in Tuscany, Central Italy. Hum. Vaccines Immunother. 2013, 9, 2603–2612. [Google Scholar] [CrossRef] [Green Version]
- Wicker, S.; Rabenau, H.F.; Doerr, H.W.; Allwinn, R. Influenza vaccination compliance among healthcare workers in a German university hospital. Infection 2009, 37, 197–202. [Google Scholar] [CrossRef]
- Rubin, G.J.; Potts, H.; Michie, S. Likely uptake of swine and seasonal flu vaccines among healthcare workers. A cross-sectional analysis of UK telephone survey data. Vaccine 2011, 29, 2421–2428. [Google Scholar] [CrossRef]
- Raftopoulos, V. Attitudes of nurses in Greece towards influenza vaccination. Nurs. Stand. 2008, 23, 35–42. [Google Scholar] [CrossRef]
- Maconachie, M.; Lewendon, G. Immunising children in primary care in the UK—What are the concerns of principal immunisers? (Special issue: Health promotion and public health across the UK). Health Educ. J. 2004, 63, 40–49. [Google Scholar] [CrossRef]
- Barrière, J.; Vanjak, D.; Kriegel, I.; Otto, J.; Peyrade, F.; Estève, M.; Chamorey, E. Acceptance of the 2009 A(H1N1) influenza vaccine among hospital workers in two French cancer centers. Vaccine 2010, 28, 7030–7034. [Google Scholar] [CrossRef] [PubMed]
- Verger, P.; Fressard, L.; Collange, F.; Gautier, A.; Jestin, C.; Launay, O.; Raude, J.; Pulcini, C.; Peretti-Watel, P. Vaccine Hesitancy Among General Practitioners and Its Determinants During Controversies: A National Cross-sectional Survey in France. eBioMedicine 2015, 2, 891–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Facilitating COVID-19 Vaccination Acceptance and Uptake in the EU/EEA; ECDC Technical Report: Solna, Sweden. 2021. Available online: https://www.ecdc.europa.eu/en/publications-data/facilitating-covid-19-vaccination-acceptance-and-uptake (accessed on 27 October 2022).
- Report of the SAGE Working Group on Vaccine Hesitancy. Available online: https://www.who.int/immunization/sage/meetings/2014/october/1_Report_WORKING_GROUP_vaccine_hesitancy_final.pdf (accessed on 20 May 2021).
- Dube, E.; Laberge, C.; Guay, M.; Bramadat, P.; Roy, R.; Bettinger, J. Vaccine hesitancy: An overview. Hum. Vaccin. Immunother. 2013, 9, 1763–1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larson, H.J.; Jarrett, C.; Eckersberger, E.; Smith, D.M.D.; Paterson, P. Understanding Vaccine Hesitancy around Vaccines and Vaccination from a Global Perspective: A Systematic Review of Published Literature, 2007–2012. Vaccine 2014, 32, 2150–2159. [Google Scholar] [CrossRef] [PubMed]
- ECDC Guidance for Adjusting Non-Pharmaceutical Interventions Based on Vaccination Status. Available online: https://www.ecdc.europa.eu/en/publications-data/covid-19-guidelines-non-pharmaceutical-interventions (accessed on 28 November 2022).
- Li, Y.; Campbell, H.; Kulkarni, D.; Harpur, A.; Nundy, M.; Wang, X.; Nair, H.; Usher Network for COVID-19 Evidence Reviews (UNCOVER) Group. The temporal association of introducing and lifting non-pharmaceutical interventions with the time-varying reproduction number (R) of SARS-CoV-2: A modelling study across 131 countries. Lancet Infect. Dis. 2021, 21, 193–202. [Google Scholar] [CrossRef]
- Manica, M.; Guzzetta, G.; Riccardo, F.; Valenti, A.; Poletti, P.; Marziano, V.; Trentini, F.; Andrianou, X.; Mateo-Urdiales, A.; del Manso, M.; et al. Impact of tiered restrictions on human activities and the epidemiology of the second wave of COVID-19 in Italy. Nat. Commun. 2021, 12, 4570. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Guidelines for the Use of Non-Pharmaceutical Measures to Delay and Mitigate the Impact of 2019-nCoV; ECDC: Stockholm, Sweden, 2020.
- World Health Organization (WHO). WHO Guidelines on Hand Hygiene in Health Care: A Summary; WHO: Geneva, Switzerland, 2009. Available online: https://www.who.int/gpsc/5may/tools/who_guidelines-handhygiene_summary.pdf (accessed on 7 September 2020).
- Shindo, N.; Briand, S. Influenza at the beginning of the 21st century. Bull. World Health Organ. 2012, 90, 247-247A. [Google Scholar] [CrossRef]
- Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020, 323, 1843–1844. [Google Scholar] [CrossRef] [Green Version]
- Loeb, M.; McGeer, A.; Henry, B.; Ofner, M.; Rose, D.; Hlywka, T.; Levie, J.; McQueen, J.; Smith, S.; Moss, L.; et al. SARS among Critical Care Nurses, Toronto. Emerg. Infect. Dis. 2004, 10, 251–255. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. N95 Respirators and Surgical Masks; NIOSH Science Blog; U.S. Department of Health & Human Services: Washington, DC, USA, 2009.
- Brosseau, L.; Ann, R.B. N95 Respirators and Surgical Masks; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2009.
- Food and Drug Administration. N95 Respirators and Surgical Masks (Face Masks); Food and Drug Administration: Silver Spring, MD, USA, 2020.
- Krah, J.; Novak, D.; Stradtman, L. Preparedness through Daily Practice: The Myths of Respiratory Protection in Healthcare; U.S Department of Health & Human Services: Washington, DC, USA, 2016.
- Rosenstock, L. 42 CFR Part 84: Respiratory protective devices implications for tuberculosis protection. Infect. Control Hosp. Epidemiol. 1995, 16, 529–531. [Google Scholar] [CrossRef]
- Brosseau, L.; Ann, R.B. N95 Respirators and Surgical Masks. NIOSH Science Blog. Available online: https://blogs.cdc.gov/niosh-science-blog/2009/10/14/n95 (accessed on 3 April 2020).
- Clayton, M.; Vaughan, N. Fit for purpose? The role of fit testing in respiratory protection. Ann. Occup. Hyg. 2005, 49, 545–548. [Google Scholar] [CrossRef] [Green Version]
- Leung, N.H.L.; Chu, D.K.W.; Shiu, E.Y.C.; Chan, K.-H.; McDevitt, J.J.; Hau, B.J.P.; Yen, H.-L.; Li, Y.; Ip, D.K.M.; Peiris, J.S.M.; et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat. Med. 2020, 26, 676–680. [Google Scholar] [CrossRef] [Green Version]
- Brooks, J.T.; Beezhold, D.H.; Noti, J.D.; Coyle, J.P.; Derk, R.C.; Blachere, F.M.; Lindsley, W.G. Maximizing Fit for Cloth and Medical Procedure Masks to Improve Performance and Reduce SARS-CoV-2 Transmission and Exposure, 2021. MMWR. Morb. Mortal. Wkly. Rep. 2021, 70, 254–257. [Google Scholar] [CrossRef]
- Tian, L.; Li, X.; Qi, F.; Tang, Q.Y.; Tang, V.; Liu, J.; Li, Z.; Cheng, X.; Li, X.; Shi, Y.; et al. Calibrated intervention and containment of the COVID-19 pandemic. arXiv 2020, arXiv:2003.07353v4. [Google Scholar]
- Rizza, S.; Coppeta, L.; Grelli, S.; Ferrazza, G.; Chiocchi, M.; Vanni, G.; Bonomo, O.C.; Bellia, A.; Andreoni, M.; Magrini, A.; et al. High body mass index and night shift work are associated with COVID-19 in health care workers. J. Endocrinol. Investig. 2020, 44, 1097–1101. [Google Scholar] [CrossRef]
- FAQ. COVID-19, Domande e Risposte/Vaccini Anti COVID-19, Ministero della Salute Italiano. Available online: https://www.salute.gov.it/portale/nuovocoronavirus/dettaglioFaqNuovoCoronavirus.jsp?lingua=italiano&id=255 (accessed on 28 November 2022).
- Joshi, A.; Kaur, M.; Kaur, R.; Grover, A.; Nash, D.; El-Mohandes, A. Predictors of COVID-19 Vaccine Acceptance, Intention, and Hesitancy: A Scoping Review. Front. Public Health 2021, 9, 698111. [Google Scholar] [CrossRef]
- Tran, V.D.; Pak, T.V.; Gribkova, E.I.; Galkina, G.A.; Loskutova, E.E.; Dorofeeva, V.V.; Dewey, R.S.; Nguyen, K.T.; Pham, D.T. Determinants of COVID-19 vaccine acceptance in a high infection-rate country: A cross-sectional study in Russia. Pharm. Pract. 2021, 19, 2276. [Google Scholar] [CrossRef]
- Jennings, W.; Stoker, G.; Bunting, H.; Valgarðsson, V.; Gaskell, J.; Devine, D.; McKay, L.; Mills, M. Lack of Trust, Conspiracy Beliefs, and Social Media Use Predict COVID-19 Vaccine Hesitancy. Vaccines 2021, 9, 593. [Google Scholar] [CrossRef]
- Woolf, K.; McManus, I.C.; Martin, C.A.; Nellums, L.B.; Guyatt, A.L.; Melbourne, C.; Bryant, L.; Gogoi, M.; Wobi, F.; Al-Oraibi, A.; et al. Ethnic differences in SARS-CoV-2 vaccine hesitancy in United Kingdom healthcare workers: Results from the UK-REACH prospective nationwide cohort study. Lancet Reg. Health Eur. 2021, 9, 100180. [Google Scholar] [CrossRef]
- Umakanthan, S.; Bukelo, M.M.; Gajula, S.S. The Commonwealth Caribbean COVID-19: Regions Resilient Pathway during Pandemic. Front. Public Health 2022, 10, 844333. [Google Scholar] [CrossRef] [PubMed]
- Paterlini, M. COVID-19: Italy makes vaccination mandatory for healthcare workers. Bmj 2021, 373, n905. [Google Scholar] [CrossRef] [PubMed]
- France COVID: Vaccinations Mandatory for All Health Workers. BBC News, 13 July 2021. Available online: https://www.bbc.co.uk/news/world-europe-57814163(accessed on 28 November 2022).
- Greece orders COVID-19 vaccinations as infections rise. Reuters, 12 July 2021. Available online: https://www.reuters.com/world/europe/greece-rolls-out-covid-19-vaccinations-those-aged-15-17-2021-07-12/(accessed on 28 November 2022).
- Galanakis, E.; Jansen, A.; Lopalco, P.L.; Giesecke, J. Ethics of mandatory vaccination for healthcare workers. Eurosurveillance 2013, 18, 20627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Court of Human Rights (ECHR). Press Release (Issued by the Registrar of the Court): Court’s First Judgment on Compulsory Childhood Vaccination: No Violation of the Convention. ECHR 116 (2021) 08.04.2021. Available online: https://www.statewatch.org/news/2021/april/echr-court-s-first-judgment-on-compulsory-childhood-vaccination-no-violation-of-the-convention/ (accessed on 28 November 2022).
- European Centre for Disease Prevention and Control. Interim Guidance on the Benefits of Full Vaccination against COVID-19 for Transmission Risks and Implications for Non-Pharmaceutical Interventions—21 April 2021; ECDC: Stockholm, Sweden, 2021.
- Di Guilmi, C.; Galanis, G.; Baskozos, G. A Behavioural SIR Model and Its Implications for Physical Distancing. Rev. Behav. Econ. 2021. Available online: http://hdl.handle.net/10453/150156 (accessed on 28 November 2022).
- Flaschel, P.; Galanis, G.; Tavani, D.; Venezian, R. Pandemics and Aggregate Demand: A Framework for Policy Analysis [Internet]; Centre for Applied Macroeconomic Analysis, The Australian National University: Canberra, Australia, 2021; Available online: https://cama.crawford.anu.edu.au/publication/cama-working-paper-series/18348/pandemics-and-aggregate-demand-framework-policy-analysis (accessed on 23 September 2021).
- Prem, K.; Liu, Y.; Russell, T.W.; Kucharski, A.J.; Eggo, R.M.; Davies, N.; Jit, M.; Klepac, P.; Flasche, S.; Clifford, S.; et al. The Effect of Control Strategies to Reduce Social Mixing on Outcomes of the COVID-19 Epidemic in Wuhan, China: A Modelling Study. Lancet Public Health 2020, 5, e261–e270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kissler, S.M.; Tedijanto, C.; Goldstein, E.; Grad, Y.H.; Lipsitch, M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 2020, 368, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.M.; Heesterbeek, H.; Klinkenberg, D.; Hollingsworth, T.D. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet 2020, 395, 931–934. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, N.; Laydon, D.; Nedjati Gilani, G.; Imai, N.; Ainslie, K.; Baguelin, M.; Bhatia, S.; Boonyasiri, A.; Cucunuba Perez, Z.; Cuomo-Dannenburg, G.; et al. Report 9: Impact of Non-Pharmaceutical Interventions (NPIs) to Reduce COVID19 Mortality and Healthcare Demand [Internet]. 2020. Available online: http://spiral.imperial.ac.uk/handle/10044/1/77482 (accessed on 14 April 2020).
- Flaxman, S.; Mishra, S.; Gandy, A.; Unwin, H.J.T.; Mellan, T.A.; Coupland, H.; Whittaker, C.; Zhu, H.; Berah, T.; Eaton, J.W.; et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 2020, 584, 257–261. [Google Scholar] [CrossRef]
- Galanis, G.; Hanieh, A. Incorporating Social Determinants of Health into Modelling of COVID-19 and other Infectious Diseases: A Baseline Socio-economic Compartmental Model. Soc. Sci. Med. 2021, 274, 113794. [Google Scholar] [CrossRef]
- Gouzoulis, G.; Galanis, G. The impact of financialisation on public health in times of COVID-19 and beyond. Sociol. Health Illn. 2021, 43, 1328–1334. [Google Scholar] [CrossRef]
- Broucke, S.V.D. Why health promotion matters to the COVID-19 pandemic, and vice versa. Health Promot. Int. 2020, 35, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Champion, V.L.; Skinner, C.S. The health belief model. In Health Behavior and Health Education: Theory, Research, and Practice; Glanz, K., Rimer, B.K., Viswanath, K., Eds.; Jossey-Bass: San Francisco, CA, USA, 2008; pp. 45–65. [Google Scholar]
- Prentice-Dunn, S.; Rogers, R.W. Protection motivation theory and preventive health: Beyond the health belief model. Health Educ. Res. 1986, 1, 153–161. [Google Scholar] [CrossRef]
- Vitiello, A.; Ferrara, F.; Troiano, V.; La Porta, R. COVID-19 vaccines and decreased transmission of SARS-CoV-2. Inflammopharmacology 2021, 29, 1357–1360. [Google Scholar] [CrossRef]
- Callaway, E. Delta coronavirus variant: Scientists brace for impact. Nature 2021, 595, 17–18. [Google Scholar] [CrossRef]
- Levine-Tiefenbrun, M.; Yelin, I.; Katz, R.; Herzel, E.; Golan, Z.; Schreiber, L.; Wolf, T.; Nadler, V.; Ben-Tov, A.; Kuint, J.; et al. Initial report of decreased SARS-CoV-2 viral load after inoculation with the BNT162b2 vaccine. Nat. Med. 2021, 27, 790–792. [Google Scholar] [CrossRef]
- Petter, E.; Mor, O.; Zuckerman, N.; Oz-Levi, D.; Younger, A.; Aran, D.; Erlich, Y. Initial real world evidence for lower viral load of individuals who have been vaccinated by BNT162b2. medRxiv 2021. [Google Scholar] [CrossRef]
- Thompson, M.G.; Burgess, J.L.; Naleway, A.L.; Tyner, H.L.; Yoon, S.K.; Meece, J.; Olsho, L.E.; Caban-Martinez, A.J.; Fowlkes, A.; Lutrick, K.; et al. Interim Estimates of Vaccine Effectiveness of BNT162b2 and mRNA-1273 COVID-19 Vaccines in Preventing SARS-CoV-2 Infection Among Health Care Personnel, First Responders, and Other Essential and Frontline Workers—Eight U.S. Locations, December 2020–March 2021. MMWR. Morb. Mortal. Wkly. Rep. 2021, 70, 495–500. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrari, C.; Somma, G.; Ippoliti, L.; Magrini, A.; Di Giampaolo, L.; Coppeta, L. Global Policy to Reduce the Incidence of Infection Spreading in Non-Vaccinated Healthcare Workers: A Literature Review. Vaccines 2022, 10, 2058. https://doi.org/10.3390/vaccines10122058
Ferrari C, Somma G, Ippoliti L, Magrini A, Di Giampaolo L, Coppeta L. Global Policy to Reduce the Incidence of Infection Spreading in Non-Vaccinated Healthcare Workers: A Literature Review. Vaccines. 2022; 10(12):2058. https://doi.org/10.3390/vaccines10122058
Chicago/Turabian StyleFerrari, Cristiana, Giuseppina Somma, Lorenzo Ippoliti, Andrea Magrini, Luca Di Giampaolo, and Luca Coppeta. 2022. "Global Policy to Reduce the Incidence of Infection Spreading in Non-Vaccinated Healthcare Workers: A Literature Review" Vaccines 10, no. 12: 2058. https://doi.org/10.3390/vaccines10122058
APA StyleFerrari, C., Somma, G., Ippoliti, L., Magrini, A., Di Giampaolo, L., & Coppeta, L. (2022). Global Policy to Reduce the Incidence of Infection Spreading in Non-Vaccinated Healthcare Workers: A Literature Review. Vaccines, 10(12), 2058. https://doi.org/10.3390/vaccines10122058