Cytokines and Chemokines in Breastmilk of SARS-CoV-2 Infected or COVID-19 Vaccinated Mothers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Samples Collection
2.3. Analysis of Samples
2.4. Ethical Principles
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Study Groups
3.1.1. The Group of Vaccinated Mothers
3.1.2. The Group of COVID-19 Mothers
3.1.3. The Control Group
3.2. Cytokine Assessment
3.3. Statistical Analysis
3.3.1. Statistical Analysis of the Vaccinated Mothers Group
3.3.2. Statistical Analysis for the Group of Infected Mothers
3.3.3. Statistical Analysis for the Control Group
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basheer, M.; Saad, E.; Shlezinger, D.; Assy, N. Convalescent Plasma Reduces Mortality and Decreases Hospitalization Stay in Patients with Moderate COVID-19 Pneumonia. Metabolites 2021, 11, 761. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.L.; Hou, Y.L.; Li, D.T.; Li, F.Z. Laboratory findings of COVID-19: A systematic review and meta-analysis. Scand. J. Clin. Lab. Investig. 2020, 80, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Perreau, M.; Suffiotti, M.; Marques-Vidal, P.; Wiedemann, A.; Levy, Y.; Laouénan, C.; Ghosn, J.; Fenwick, C.; Comte, D.; Roger, T.; et al. The cytokines HGF and CXCL13 predict the severity and the mortality in COVID-19 patients. Nat. Commun. 2021, 12, 4888. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Bastard, P.; Liu, Z.; Le Pen, J.; Moncada-Velez, M.; Chen, J.; Ogishi, M.; Sabli, I.K.D.; Hodeib, S.; Korol, C.; et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 2020, 370, eabd4570. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, M.I.; Abdelmoneim, A.H.; Mahmoud, E.M.; Makhawi, A.M. Cytokine Storm in COVID-19 Patients, Its Impact on Organs and Potential Treatment by QTY Code-Designed Detergent-Free Chemokine Receptors. Mediat. Inflamm. 2020, 2020, 8198963. [Google Scholar] [CrossRef] [PubMed]
- Rabaan, A.; Al-Ahmed, S.; Muhammad, J.; Khan, A.; Sule, A.; Tirupathi, R.; Mutair, A.; Alhumaid, S.; Al-Omari, A.; Dhawan, M.; et al. Role of Inflammatory Cytokines in COVID-19 Patients: A Review on Molecular Mechanisms, Immune Functions, Immunopathology and Immunomodulatory Drugs to Counter Cytokine Storm. Vaccines 2021, 9, 436. [Google Scholar] [CrossRef]
- Ragab, D.; Eldin, H.S.; Taeimah, M.; Khattab, R.; Salem, R. The COVID-19 Cytokine Storm; What We Know So Far. Front. Immunol. 2020, 11, 1446. [Google Scholar] [CrossRef]
- Abubakar, A.R.; Ahmad, R.; Rowaiye, A.B.; Rahman, S.; Iskandar, K.; Dutta, S.; Oli, A.N.; Dhingra, S.; Tor, M.A.; Etando, A.; et al. Targeting Specific Checkpoints in the Management of SARS-CoV-2 Induced Cytokine Storm. Life 2022, 12, 478. [Google Scholar] [CrossRef]
- Zanza, C.; Romenskaya, T.; Manetti, A.C.; Franceschi, F.; La Russa, R.; Bertozzi, G.; Maiese, A.; Savioli, G.; Volonnino, G.; Longhitano, Y. Cytokine Storm in COVID-19: Immunopathogenesis and Therapy. Medicina 2022, 58, 144. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Jafarzadeh, A.; Chauhan, P.; Saha, B.; Jafarzadeh, S.; Nemati, M. Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions. Life Sci. 2020, 257, 118102. [Google Scholar] [CrossRef]
- Cardone, M.; Yano, M.; Rosenberg, A.S.; Puig, M. Lessons Learned to Date on COVID-19 Hyperinflammatory Syndrome: Considerations for Interventions to Mitigate SARS-CoV-2 Viral Infection and Detrimental Hyperinflammation. Front. Immunol. 2020, 11, 1131. [Google Scholar] [CrossRef]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Idriss, H.T.; Naismith, J.H. TNF alpha and the TNF receptor superfamily: Structure-function relationship(s). Microsc. Res. Tech. 2000, 50, 184–195. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
- Schroder, K.; Hertzog, P.J.; Ravasi, T.; Hume, D.A. Interferon-gamma: An overview of signals, mechanisms and functions. J. Leukoc. Biol. 2004, 75, 163–189. [Google Scholar] [CrossRef] [Green Version]
- Saraiva, M.; Vieira, P.; O’Garra, A. Biology and therapeutic potential of interleukin-10. J. Exp. Med. 2020, 217, e20190418. [Google Scholar] [CrossRef] [Green Version]
- Haji Abdolvahab, M.; Mofrad, M.R.; Schellekens, H. Interferon Beta: From Molecular Level to Therapeutic Effects. Int. Rev. Cell Mol. Biol. 2016, 326, 343–372. [Google Scholar] [CrossRef]
- Lopez-Castejon, G.; Brough, D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev. 2011, 22, 189–195. [Google Scholar] [CrossRef]
- Malek, T.R. The biology of interleukin-2. Annu. Rev. Immunol. 2008, 26, 453–479. [Google Scholar] [CrossRef]
- Liu, M.; Guo, S.; Hibbert, J.M.; Jain, V.; Singh, N.; Wilson, N.O.; Stiles, J.K. CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev. 2011, 22, 121–130. [Google Scholar] [CrossRef]
- Takatsu, K. Interleukin-5 and IL-5 receptor in health and diseases. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2011, 87, 463–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic; Report of a WHO Consultation, World Health Organization Technical Report Series; World Health Organization: Geneva, Switzerland, 2000. Available online: https://apps.who.int/iris/handle/10665/42330 (accessed on 20 July 2022).
- Rautava, S.; Nanthakumar, N.N.; Dubert-Ferrandon, A.; Lu, L.; Rautava, J.; Walker, W.A. Breastmilk-transforming growth factor-β2 specifically attenuates IL-1β-induced inflammatory responses in the immature human intestine via an SMAD6- and ERK-dependent mechanism. Neonatology 2011, 99, 192–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prokešová, L.; Lodinová-Žádníková, R.; Žižka, J.; Kocourková, I.; Novotná, O.; Petrásková, P.; Šterzl, I. Cytokine levels in healthy and allergic mothers and their children during the first year of life. Pediatr. Allergy Immunol. 2006, 17, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Collado, M.C.; Santaella, M.; Mira-Pascual, L.; Martínez-Arias, E.; Khodayar-Pardo, P.; Ros, G.; Martínez-Costa, C. Longitudinal study of cytokine expression, lipid profile and neuronal growth factors in human breastmilk from term and preterm deliveries. Nutrients 2015, 7, 8577–8591. [Google Scholar] [CrossRef] [PubMed]
- Žižka, J.; Kverka, M.; Novotna, O.; Stanková, I.; Lodinová-Žádníková, R.; Kocourkova, I.; Šterzl, I.; Prokešová, L. Perinatal period cytokines related to increased risk of future allergy development. Folia Microbiol. 2007, 52, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, S.; Shimojo, N.; Morita, Y.; Tomiita, M.; Arima, T.; Inoue, Y.; Nakaya, M.; Uehara, N.; Sato, Y.; Mori, C.; et al. Cytokine Biomarker Candidates in Breast Milk Associated with the Development of Atopic Dermatitis in 6-Month-Old Infants. Int. Arch. Allergy Immunol. 2012, 160, 401–408. [Google Scholar] [CrossRef]
- Saso, A.; Blyuss, O.; Munblit, D.; Faal, A.; Moore, S.E.; Le Doare, K. Breastmilk Cytokines and Early Growth in Gambian Infants. Front. Pediatr. 2019, 6, 414. [Google Scholar] [CrossRef]
- Hara, T.; Irie, K.; Saito, S.; Ichijo, M.; Yamada, M.; Yanai, N.; Miyazaki, S. Identification of macrophage colony-stimulating factor in human milk and mammary gland epithelial cells. Pediatr. Res. 1995, 37, 437–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuaillon, E.; Viljoen, J.; Dujols, P.; Cambonie, G.; Rubbo, P.-A.; Nagot, N.; Bland, R.M.; Badiou, S.; Newell, M.-L.; Van de Perre, P. Subclinical mastitis occurs frequently in association with dramatic changes in inflammatory/anti-inflammatory breast milk components. Pediatr. Res. 2016, 81, 556–564. [Google Scholar] [CrossRef]
- Narayanaswamy, V.; Pentecost, B.T.; Schoen, C.N.; Alfandari, D.; Schneider, S.S.; Baker, R.; Arcaro, K.F. Neutralizing Antibodies and Cytokines in Breastmilk after Coronavirus Disease 2019 (COVID-19) mRNA Vaccination. Obstet. Gynecol. 2022, 139, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Pace, R.M.; Williams, J.E.; Järvinen, K.M.; Belfort, M.B.; Pace, C.; Lackey, K.A.; Gogel, A.C.; Nguyen-Contant, P.; Kanagaiah, P.; Fitzgerald, T.; et al. Characterization of SARS-CoV-2 RNA, Antibodies, and Neutralizing Capacity in Milk Produced by Women with COVID-19. mBio 2021, 12, e03192-20. [Google Scholar] [CrossRef] [PubMed]
- Popescu, D.E.; Cîtu, C.; Jura, A.M.C.; Lungu, N.; Navolan, D.; Craina, M.; Semenescu, A.; Gorun, F.; Jura, M.-A.; Belengeanu, V.; et al. The Benefits of Vaccination against SARS-CoV-2 during Pregnancy in Favor of the Mother/Newborn Dyad. Vaccines 2022, 10, 848. [Google Scholar] [CrossRef] [PubMed]
- Trofin, F.; Nastase, E.V.; Iancu, L.S.; Constantinescu, D.; Cianga, C.M.; Lunca, C.; Ursu, R.G.; Cianga, P.; Dorneanu, O.S. Anti-RBD IgA and IgG Response and Transmission in Breastmilk of Anti-SARS-CoV-2 Vaccinated Mothers. Pathogens 2022, 11, 286. [Google Scholar] [CrossRef]
- Hawkes, J.S.; Bryan, D.L.; Gibson, R.A. Cytokine production by human milk cells and peripheral blood mononuclear cells from the same mothers. J. Clin. Immunol. 2002, 22, 338–344. [Google Scholar] [CrossRef]
- Bäuerl, C.; Randazzo, W.; Sánchez, G.; Selma-Royo, M.; García Verdevio, E.; Martínez, L.; Parra-Llorca, A.; Lerin, C.; Fumadó, V.; Crovetto, F.; et al. SARS-CoV-2 RNA and antibody detection in breastmilk from a prospective multicentre study in Spain. Arch. Dis. Child. Fetal Neonatal Ed. 2022, 107, 216–221. [Google Scholar] [CrossRef]
- Rouw, E.; von Gartzen, A.; Weißenborn, A. Bedeutung des Stillens für das Kind [The importance of breastfeeding for the infant]. Bundesgesundheitsblatt Gesundh. Gesundh. 2018, 61, 945–951. [Google Scholar] [CrossRef]
- Shamir, R. The Benefits of Breast Feeding. Nestle Nutr. Inst. Workshop Ser. 2016, 86, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Garofalo, R. Cytokines in human milk. J. Pediatr. 2010, 156 (Suppl. S2), S36–S40. [Google Scholar] [CrossRef]
- Pavel-Tanasa, M.; Constantinescu, D.; Cianga, C.M.; Anisie, E.; Mereuta, A.I.; Tuchilus, C.G.; Cianga, P. Adipokines, and not vitamin D, associate with antibody immune responses following dual BNT162b2 vaccination within individuals younger than 60 years. Front. Immunol. 2022, 13, 1000006. [Google Scholar] [CrossRef]
- Timpau, A.S.; Miftode, R.S.; Petris, A.O.; Costache, I.I.; Miftode, I.L.; Rosu, F.M.; Anton-Paduraru, D.T.; Leca, D.; Miftode, E.G. Mortality Predictors in Severe COVID-19 Patients from an East European Tertiary Center: A Never-Ending Challenge for a No Happy Ending Pandemic. J. Clin. Med. 2021, 11, 58. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Zhang, H.; Dauphars, D.J.; He, Y.W. A Potential Role of Interleukin 10 in COVID-19 Pathogenesis. Trends Immunol. 2021, 42, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Burch, J.; Karmaus, W.; Gangur, V.; Soto-Ramírez, N.; Yousefi, M.; Goetzl, L.M. Pre- and perinatal characteristics and breastmilk immune markers. Pediatr. Res. 2013, 74, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Hale, T.W.; Siddiqui, A.A.; Baker, T.E. Transfer of interferon β-1a into human breastmilk. Breastfeed. Med. Off. J. Acad. Breastfeed. Med. 2012, 7, 123–125. [Google Scholar] [CrossRef]
- Dawod, B.; Marshall, J.S. Cytokines and Soluble Receptors in Breastmilk as Enhancers of Oral Tolerance Development. Front. Immunol. 2019, 10, 16. [Google Scholar] [CrossRef]
- World Health Organization. Breastfeeding and COVID-19. Available online: https://www.who.int/news-room/commentaries/detail/breastfeeding-and-covid-19 (accessed on 26 July 2022).
- ABM Statement on Coronavirus 2019 (COVID-19). Available online: https://www.bfmed.org/abm-statement-coronavirus (accessed on 26 July 2022).
- UNICEF. Infant and Young Child Feeding in the Context of COVID-19 (2020). Available online: https://www.unicef.org/media/68281/file/IYCF-Programming-COVID19-Brief.pdf (accessed on 26 July 2022).
- Society for Maternal-Fetal Medicine. Available online: https://www.smfm.org/covidclinical (accessed on 26 July 2022).
- Coronavirus Disease (COVID-19) and Breastfeeding. Available online: https://www.cdc.gov/breastfeeding/breastfeeding-special-circumstances/maternal-or-infant-illnesses/covid-19-and-breastfeeding.html (accessed on 26 July 2022).
Cytokine | Concentrations of Cytokines in Breastmilk (pg/mL) | Blood Reference Concentrations (Luminex Kit Insert) (pg/mL) | Range of Concentrations in Our Assay (pg/mL) | Mean Concentration in Our Assay (pg/mL) | Standard Deviation in Our Assay (pg/mL) | Median Concentration in Our Assay (pg/mL) | Notes for the Present Study |
---|---|---|---|---|---|---|---|
IFN-γ | 0.7–175 | <40.33 | 0.8–40.33 | 7.48 | 4.32 | 5.99 | All samples were <40.33 pg/mL. |
IL-1β | 0.028–23 | <14.81 | 0.06–1836 | 33.89 | 184.5 | 5.82 | 84.5% of all samples were < 14.81 pg/mL; 1836 pg/mL was an extreme, isolated value recorded in one of the infected mothers. |
IL-5 | 6.2–142 | <7.08 | <7.08 | 1.54 | 0.79 | 1.52 | All samples were <7.08 pg/mL. |
IL-6 | 3.5–148.6 | <3.7 | 0.21–2087 | 38.62 | 225.35 | 0.95 | 93.1% of all samples were <142 pg/mL. 74.1% of all samples were <3.7 pg/mL. 2087 pg/mL was an extreme, isolated concentration recorded in the same sample as the extreme IL-1β. |
IL-10 | 0–246 | <4.2 | 0.8–8.7 | 2.18 | 1.28 | 1.79 | 86.2% of all samples were <4.2 pg/mL. |
TNF | 4.4–58 | <6.85 (TNF-α) | 0.02–168 (TNF-α) | 5.05 (TNF-α) | 21.81 (TNF-α) | 1.07 (TNF-α) | 89.7% of all samples were <6.85 pg/mL. |
GM-CSF | 1.6 | <12.72 | 0.2–180.4 | 9.31 | 21.5 | 4.78 | 84.5% of all samples were <12.72 pg/mL. |
IFN-β | <16.05 | 2.84–20.65 | 3.87 | 1.73 | 3.65 | ||
IL-2 | <31.65 | 2.46–429.46 | 11.26 | 52.56 | 3.69 | ||
IP-10 | 3.50 | 7.37–1948.83 | 395.79 | 455.38 | 194.01 |
TNF-α (pg/mL) | IL-6 (pg/mL) | IFN-β (pg/mL) | IL-10 (pg/mL) | IL-1β (pg/mL) | IFN-γ (pg/mL) | IL-2 (pg/mL) | GM-CSF (pg/mL) | IL-5 (pg/mL) | IP-10 (pg/mL) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Percentiles | 25 | 0.7614 | 0.6518 | 3.2402 | 1.5047 | 4.6550 | 5.3323 | 3.2787 | 3.5425 | 1.3034 | 73.2166 |
50 | 1.0659 | 0.9547 | 3.6452 | 1.7941 | 5.8187 | 5.9988 | 3.6885 | 4.7809 | 1.5207 | 194.0144 | |
75 | 1.3704 | 3.1942 | 4.0502 | 2.2281 | 7.1922 | 7.9984 | 4.0983 | 8.2413 | 1.5207 | 544.2318 |
Tested Cytokines/Study Groups | The Group of Vaccinated Mothers | The Group of COVID-19 Mothers | The Control Group |
---|---|---|---|
TNF-α | 1 (3.85%) | 5 (22.7%) | 0 |
IL-6 | 6 (23.1%) | 6 (27.3%) | 3 (30%) |
IL-10 | 5 (19.2%) | 5 (22.7%) | 0 |
IL-1β | 4 (15.4%) | 5 (22.7%) | 0 |
IL-2 | 0 | 1 | 0 |
GM-CSF | 2 (7.7%) | 7 (31.8%) | 0 |
IP-10 | 26 (100%) | 22 (100%) | 10 (100%) |
IFN-β | 0 | 0 | 0 |
IFN-γ | 0 | 0 | 0 |
IL-5 | 0 | 0 | 0 |
Variables | TNF-α | IL-2 | IFN-β | IL-5 | IL-6 | GM-CSF | IP-10 |
---|---|---|---|---|---|---|---|
Affiliation to each characteristic group | p = 0.005 r = 0.361 | p = 0.022 r = 0.301 | p = 0.031 r = 0.314 | p = 0.010 r = 0.372 | p = 0.114 r = 0.234 | p = 0.650 r = 0.061 | p = 0.670 r = 0.057 |
Child’s age | p = 0.991 r = −0.002 | p = 0.932 r = 0.011 | p = 0.167 r = 0.205 | p = 0.979 r = 0.004 | p = 0.017 r = 0.347 | p = 0.148 r = 0.192 | p = 0.015 r = 0.354 |
Mother’s parity | p = 0.411 r = −0.110 | p = 0.719 r = −0.048 | p = 0.731 r = −0.052 | p = 0.620 r = −0.074 | p = 0.415 r = −0.122 | p = 0.015 r = −0.318 | p = 0.042 r = −0.267 |
Mother’s age | p = 0.046 r = −0.263 | p = 0.145 r = −0.194 | p = 0.256 r = −0.169 | p = 0.923 r = 0.015 | p = 0.845 r = 0.029 | p = 0.170 r = −0.183 | p = 0.199 r = −0.171 |
Variables | GM-CSF | IP-10 | TNF-α | IL-6 | IFN-β | IL-1β | IL-5 |
---|---|---|---|---|---|---|---|
Child’s age | p = 0.030 r = 0.427 | p = 0.005 r = 0.536 | p = 0.012 r = 0.484 | p = 0.010 r = 0.495 | p = 0.036 r = 0.414 | p = 0.353 r = 0.190 | p = 0.996 r = 0.008 |
Mother’s parity | p = 0.002 r = −0.572 | p = 0.001 r = −0.609 | p = 0.017 r = −0.464 | p = 0.090 r = −0.339 | p = 0.096 r = −0.389 | p = 0.712 r = −0.076 | p = 0.189 r = −0.266 |
Type of birth | p = 0.397 r = 0.173 | p = 0.351 r = 0.191 | p = 0.188 r = 0.267 | p = 0.343 r = 0.194 | p = 0.102 r = 0.328 | p = 0.039 r = 0.407 | p = 0.027 r = 0.434 |
TNF-α | IL-6 | IFN-β | IL-10 | IL-1β | IFN-γ | IL-2 | GM-CSF | IL-5 | IP-10 | |
---|---|---|---|---|---|---|---|---|---|---|
Child’s age | 0.420 | 0.973 | 0.705 | 0.633 | 0.550 | 0.376 | 0.605 | 0.690 | 0.226 | 0.992 |
Mother’s parity | 0.973 | 0.974 | 0.435 | 0.921 | 0.920 | 0.947 | 0.710 | 0.644 | 0.731 | 0.948 |
Mother’s age | 0.598 | 0.540 | 0.061 | 0.900 | 0.560 | 0.550 | 0.664 | 0.792 | 0.983 | 0.836 |
Type of birth | 0.615 | 0.766 | 0.973 | 0.333 | 0.329 | 0.123 | 0.202 | 0.466 | 0.265 | 0.286 |
Vaccination prior COVID-19 | 0.562 | 0.278 | 0.662 | 0.543 | 0.102 | 1.000 | 0.397 | 0.593 | 0.824 | 0.943 |
Symptoms | 0.922 | 0.295 | 0.843 | 0.897 | 0.845 | 0.491 | 0.550 | 0.898 | 0.544 | 0.872 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trofin, F.; Dorneanu, O.S.; Constantinescu, D.; Nastase, E.V.; Luncă, C.; Iancu, L.S.; Andrioaie, I.-M.; Duhaniuc, A.; Cianga, C.M.; Pavel-Tanasa, M.; et al. Cytokines and Chemokines in Breastmilk of SARS-CoV-2 Infected or COVID-19 Vaccinated Mothers. Vaccines 2022, 10, 2001. https://doi.org/10.3390/vaccines10122001
Trofin F, Dorneanu OS, Constantinescu D, Nastase EV, Luncă C, Iancu LS, Andrioaie I-M, Duhaniuc A, Cianga CM, Pavel-Tanasa M, et al. Cytokines and Chemokines in Breastmilk of SARS-CoV-2 Infected or COVID-19 Vaccinated Mothers. Vaccines. 2022; 10(12):2001. https://doi.org/10.3390/vaccines10122001
Chicago/Turabian StyleTrofin, Felicia, Olivia Simona Dorneanu, Daniela Constantinescu, Eduard Vasile Nastase, Cătălina Luncă, Luminița Smaranda Iancu, Ioana-Maria Andrioaie, Alexandru Duhaniuc, Corina Maria Cianga, Mariana Pavel-Tanasa, and et al. 2022. "Cytokines and Chemokines in Breastmilk of SARS-CoV-2 Infected or COVID-19 Vaccinated Mothers" Vaccines 10, no. 12: 2001. https://doi.org/10.3390/vaccines10122001