Twitter-Based Sentiment Analysis and Topic Modeling of Social Media Posts Using Natural Language Processing, to Understand People’s Perspectives Regarding COVID-19 Booster Vaccine Shots in India: Crucial to Expanding Vaccination Coverage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Cleaning
2.3. Sentiment Analysis
2.4. Topic Modeling
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dhama, K.; Khan, S.; Tiwari, R.; Sircar, S.; Bhat, S.; Malik, Y.S.; Singh, K.P.; Chaicumpa, W.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. Coronavirus Disease 2019-COVID-19. Clin. Microbiol. Rev. 2020, 33, e00028-20. [Google Scholar] [CrossRef] [PubMed]
- Brust, K.B.; Papineni, V.; Columbus, C.; Arroliga, A.C. COVID-19-from emerging global threat to ongoing pandemic crisis. Proc. Bayl. Univ. Med. Cent. 2022, 35, 468–475. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 7 September 2022).
- WHO. Interim Statement on the Use of Additional Booster Doses of Emergency Use Listed mRNA Vaccines Against COVID-19. Available online: https://www.who.int/news/item/17-05-2022-interim-statement-on-the-use-of-additional-booster-doses-of-emergency-use-listed-mrna-vaccines-against-covid-19 (accessed on 17 May 2022).
- Watson, O.J.; Barnsley, G.; Toor, J.; Hogan, A.B.; Winskill, P.; Ghani, A.C. Global impact of the first year of COVID-19 vaccination: A mathematical modelling study. Lancet Infect. Dis. 2022, 22, 1293–1302. [Google Scholar] [CrossRef] [PubMed]
- Locht, C. Vaccines against COVID-19. Anaesth. Crit. Care Pain Med. 2020, 39, 703–705. [Google Scholar] [CrossRef]
- Barouch, D.H. COVID-19 Vaccines–Immunity, Variants, Boosters. N. Engl. J. Med. 2022, 387, 1011–1020. [Google Scholar] [CrossRef]
- Mohapatra, R.K.; El-Shall, N.A.; Tiwari, R.; Nainu, F.; Kandi, V.; Sarangi, A.K.; Mohammed, T.A.; Desingu, P.A.; Chakraborty, C.; Dhama, K. Need of booster vaccine doses to counteract the emergence of SARS-CoV-2 variants in the context of the Omicron variant and increasing COVID-19 cases: An update. Hum. Vaccines Immunother. 2022, 18, 2065824. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Chatterjee, S.; Sharma, A.R.; Lee, S.S.; Chakraborty, C. Delta variant (B.1.617.2) of SARS-CoV-2: Current understanding of infection, transmission, immune escape, and mutational landscape. Folia Microbiol. 2022, 12, 1–12. [Google Scholar] [CrossRef]
- Hadizadeh, N.; Naderi, M.; Khezri, J.; Yazdani, M.; Shamsara, M.; Hashemi, E. Appraisal of SARS-CoV-2 mutations and their impact on vaccination efficacy: An overview. J. Diabetes Metab. Disord. 2022, 22, 1–21. [Google Scholar] [CrossRef]
- Iacobucci, G. COVID-19: Fourth dose of mRNA vaccines is safe and boosts immunity, study finds. BMJ 2022, 377, o1170. [Google Scholar] [CrossRef]
- Khandia, R.; Singhal, S.; Alqahtani, T.; Kamal, M.A.; El-Shall, N.A.; Nainu, F.; Desingu, P.A.; Dhama, K. Emergence of SARS-CoV-2 Omicron (B.1.1.529) variant, salient features, high global health concerns and strategies to counter it amid ongoing COVID-19 pandemic. Environ. Res. 2022, 209, 112816. [Google Scholar] [CrossRef]
- Tareq, A.M.; Emran, T.B.; Dhama, K.; Dhawan, M.; Tallei, T.E. Impact of SARS-CoV-2 delta variant (B.1.617.2) in surging second wave of COVID-19 and efficacy of vaccines in tackling the ongoing pandemic. Hum. Vaccines Immunother. 2021, 17, 4126–4127. [Google Scholar] [CrossRef]
- Gong, W.; Parkkila, S.; Wu, X.; Aspatwar, A. SARS-CoV-2 variants and COVID-19 vaccines: Current challenges and future strategies. Int. Rev. Immunol. 2022, 1–22. [Google Scholar] [CrossRef]
- Zhou, H.; Møhlenberg, M.; Thakor, J.C.; Tuli, H.S.; Wang, P.; Assaraf, Y.G.; Dhama, K.; Jiang, S. Sensitivity to Vaccines, Therapeutic Antibodies, and Viral Entry Inhibitors and Advances To Counter the SARS-CoV-2 Omicron Variant. Clin. Microbiol. Rev. 2022, 35, e0001422. [Google Scholar] [CrossRef]
- Sharun, K.; Dhama, K. COVID-19 Vaccine Diplomacy and Equitable Access to Vaccines Amid Ongoing Pandemic. Arch. Med. Res. 2021, 52, 761–763. [Google Scholar] [CrossRef]
- Bell, E.; Brassel, S.; Oliver, E.; Schirrmacher, H.; Arnetorp, S.; Berg, K.; Darroch-Thompson, D.; Pohja-Hutchison, P.; Mungall, B.; Carroll, S.; et al. Estimates of the Global Burden of COVID-19 and the Value of Broad and Equitable Access to COVID-19 Vaccines. Vaccines 2022, 10, 1320. [Google Scholar] [CrossRef]
- Chatterjee, B.; Thakur, S.S. Diverse vaccine platforms safeguarding against SARS-CoV-2 and its variants. Expert Rev. Vaccines 2022, 21, 47–67. [Google Scholar] [CrossRef]
- Fajar, J.K.; Sallam, M.; Soegiarto, G.; Sugiri, Y.J.; Anshory, M.; Wulandari, L.; Kosasih, S.A.P.; Ilmawan, M.; Kusnaeni, K.; Fikri, M.; et al. Global Prevalence and Potential Influencing Factors of COVID-19 Vaccination Hesitancy: A Meta-Analysis. Vaccines 2022, 10, 1356. [Google Scholar] [CrossRef]
- Khairi, L.N.H.M.; Fahrni, M.L.; Lazzarino, A.I. The Race for Global Equitable Access to COVID-19 Vaccines. Vaccines 2022, 10, 1306. [Google Scholar] [CrossRef]
- Park, T.; Hwang, H.; Moon, S.; Kang, S.G.; Song, S.; Kim, Y.H.; Kim, H.; Ko, E.J.; Yoon, S.D.; Kang, S.M.; et al. Vaccines against SARS-CoV-2 variants and future pandemics. Expert Rev. Vaccines 2022, 21, 1363–1376. [Google Scholar] [CrossRef]
- Ghazvini, K.; Keikha, M. Social networks and human monkeypox outbreak 2022: Hazards and opportunities—Correspondence. Int. J. Surg. 2022, 104, 106831. [Google Scholar]
- Martins-Filho, P.R.; Souza Araújo, A.A.; Quintans-Júnior, L.J. Global online public interest in monkeypox compared with COVID-19: Google trends in 2022. J. Travel Med. 2022. [Google Scholar] [CrossRef] [PubMed]
- Praveen, S.V.; Ittamalla, R. An analysis of attitude of general public toward COVID-19 crises—Sentimental analysis and a topic modeling study. Inf. Discov. Deliv. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Sv, P.; Ittamalla, R. Psychological Issues COVID-19 Survivors Face—A Text Analysis Study. J. Loss Trauma 2020, 26, 405–407. [Google Scholar] [CrossRef]
- Sv, P.; Ittamalla, R. What concerns the general public the most about monkeypox virus?—A text analytics study based on Natural Language Processing (NLP). Travel Med. Infect. Dis. 2022, 49, 102404. [Google Scholar] [CrossRef]
- Sv, P.; Tandon, J.; Vikas Hinduja, H. Indian citizen’s perspective about side effects of COVID-19 vaccine—A machine learning study. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 102172. [Google Scholar]
- Praveen, S.V.; Ittamalla, R.; Deepak, G. Analyzing Indian general public’s perspective on anxiety, stress and trauma during COVID-19—A machine learning study of 840,000 tweets. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 667–671. [Google Scholar] [CrossRef]
- Sv, P.; Ittamalla, R. General public’s attitude toward governments implementing digital contact tracing to curb COVID-19—A study based on natural language processing. Int. J. Pervasive Comput. Commun. 2020. ahead-of-print. [Google Scholar]
- Sv, P.; Ittamalla, R. Analyzing Indian citizen’s perspective towards government using wearable sensors to tackle COVID-19 crisis—A Text analytics study. Health Policy Technol. 2021, 10, 100521. [Google Scholar]
- Negara, E.S.; Triadi, D.; Andryani, R. Topic Modelling Twitter Data with Latent Dirichlet Allocation Method. In Proceedings of the 2019 International Conference on Electrical Engineering and Computer Science (ICECOS), Piscataway, NJ, USA, 2–3 October 2019. [Google Scholar]
- Jelodar, H.; Wang, Y.; Yuan, C.; Feng, X.; Jiang, X.; Li, Y.; Zhao, L. Latent Dirichlet allocation (LDA) and Topic Modeling: Models, Applications, a Survey. Multimedia Tools and Applications. Multimed. Tools Appl. 2018, 78, 15169–15211. Available online: https://link.springer.com/article/10.1007/s11042-018-6894-4 (accessed on 28 November 2018). [CrossRef] [Green Version]
- Zhou, L.; Ye, S.; Pearce, P.L.; Wu, M.-Y. Refreshing hotel satisfaction studies by reconfiguring customer review data. International Journal of Hospitality Management. Int. J. Hosp. Manag. 2014, 38, 1–10. Available online: https://www.sciencedirect.com/science/article/pii/S0278431913001801 (accessed on 1 April 2014). [CrossRef]
- Berezina, K.; Bilgihan, A.; Cobanoglu, C.; Okumus, F. Understanding Satisfied and Dissatisfied Hotel Customers: Text Mining of Online Hotel Reviews. J. Hosp. Mark. Manag. 2015, 25, 1–24. [Google Scholar] [CrossRef]
- Sv, P.; Ittamalla, R.; Subramanian, D. How optimistic do citizens feel about digital contact tracing?—Perspectives from developing countries. Int. J. Pervasive Comput. Commun. 2020. ahead-of-print. [Google Scholar] [CrossRef]
- Sv, P.; Ittamalla, R.; Subramanian, D. Challenges in successful implementation of Digital contact tracing to curb COVID-19 from global citizen’s perspective: A text analysis study. Int. J. Pervasive Comput. Commun. 2020. ahead-of-print. [Google Scholar] [CrossRef]
- Praveen, S.V.; Ittamalla, R. Post COVID-19 Attitude of Consumers towards Processed Food—A Study Based on Natural Language Processing. In Intelligent Systems Design and Applications; Springer: Cham, Switzerland, 2020; pp. 863–868. [Google Scholar] [CrossRef]
- Sv, P.; Ittammala, R.; Spoorthi, K. A Study of People’s Perception of Childhood Trauma Using Text Analysis Techniques. J. Loss Trauma 2022, 27, 773–775. [Google Scholar]
- Praveen, S.V.; Ittamalla, R.; Deepak, G. Analyzing the attitude of Indian citizens towards COVID-19 vaccine—A text analytics study. Diabetes Metab. Syndr. 2021, 15, 595–599. [Google Scholar] [CrossRef]
Month | Total Tweets | Positive | % | Neutral | % | Negative | % |
---|---|---|---|---|---|---|---|
March 2022 | 10,997 | 1409 | 11.7 | 4754 | 19.6 | 4834 | 11.8 |
April 2022 | 10,997 | 1572 | 13.0 | 3736 | 15.4 | 5689 | 13.9 |
May 2022 | 10,997 | 1417 | 11.7 | 3057 | 12.6 | 6523 | 16.0 |
June 2022 | 10,997 | 1680 | 13.9 | 2699 | 11.1 | 6618 | 16.2 |
July 2022 | 10,997 | 1945 | 16.1 | 3612 | 14.8 | 5440 | 13.3 |
August 2022 | 10,997 | 2058 | 17.1 | 3057 | 12.6 | 5882 | 14.4 |
September 2022 | 10,997 | 1937 | 16.11 | 3327 | 13.7 | 5733 | 14.0 |
76,979 | 12,018 | 24,242 | 40,719 |
Topic Label | Top Words |
---|---|
Feeling that young people don’t need booster doses Not healthy to take booster dose Skepticism towards big Pharma Fear of illness COVID-19 vaccines not trustworthy Feeling already immune enough Fear of side effects Negative perceptions created by media Chest pain Feeling not necessary | Age, dose, young, waste, booster, first Dose, booster, higher, risk, condition, health BioNTech, news, pharma, shit, profit, dose data booster, risk, COVID, severe, ill, mrna vaccines, COVID, taken, even, reinfect, distrust person, require, immune, vaccine, enough, taken pain, hand, tired, vaccine, work, high article, booster, media, news, negative, can booster, COVID, chest, pain, will, infect immune, new, healthy, food, nature, develop |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
SV, P.; Lorenz, J.M.; Ittamalla, R.; Dhama, K.; Chakraborty, C.; Kumar, D.V.S.; Mohan, T. Twitter-Based Sentiment Analysis and Topic Modeling of Social Media Posts Using Natural Language Processing, to Understand People’s Perspectives Regarding COVID-19 Booster Vaccine Shots in India: Crucial to Expanding Vaccination Coverage. Vaccines 2022, 10, 1929. https://doi.org/10.3390/vaccines10111929
SV P, Lorenz JM, Ittamalla R, Dhama K, Chakraborty C, Kumar DVS, Mohan T. Twitter-Based Sentiment Analysis and Topic Modeling of Social Media Posts Using Natural Language Processing, to Understand People’s Perspectives Regarding COVID-19 Booster Vaccine Shots in India: Crucial to Expanding Vaccination Coverage. Vaccines. 2022; 10(11):1929. https://doi.org/10.3390/vaccines10111929
Chicago/Turabian StyleSV, Praveen, Jose Manuel Lorenz, Rajesh Ittamalla, Kuldeep Dhama, Chiranjib Chakraborty, Daruri Venkata Srinivas Kumar, and Thivyaa Mohan. 2022. "Twitter-Based Sentiment Analysis and Topic Modeling of Social Media Posts Using Natural Language Processing, to Understand People’s Perspectives Regarding COVID-19 Booster Vaccine Shots in India: Crucial to Expanding Vaccination Coverage" Vaccines 10, no. 11: 1929. https://doi.org/10.3390/vaccines10111929