Developing a Feline Immunodeficiency Virus Subtype B Vaccine Prototype Using a Recombinant MVA Vector
Abstract
:1. Introduction
2. Materials and Methods
2.1. Generation and Production of Recombinant MVA
2.2. Western Blot
2.3. Shelf Life
2.4. Immunization Protocol
2.5. Synthetic Peptide Design
2.6. Intracytoplasmic Cytokines
2.7. Enzyme-Linked Immunosorbent Assay, ELISA
2.8. Splenocytes Proliferation Assay (SPA)
2.9. Statistical Analysis
3. Results
3.1. Generation and In Vivo Characterization of MVA Vectors Encoding the V1–V3 Variable Region of the FIV Envelope Protein
Storage Stability
3.2. Recombinant MVA-FIV Induces Immunological Responses in Mice
3.2.1. Interferon-γ Production in Response to Synthetic Peptides Stimuli
3.2.2. Antibody Responses to Recombinant Protein and Synthetic Peptides
3.2.3. Cell Proliferation Responses to Synthetic Peptide
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szilasi, A.; Dénes, L.; Krikó, E.; Heenemann, K.; Ertl, R.; Mándoki, M.; Vahlenkamp, T.W.; Balka, G. Prevalence of Feline Immunodeficiency Virus and Feline Leukaemia Virus in Domestic Cats in Hungary. J. Feline Med. Surg. Open Rep. 2019, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westman, M.E.; Malik, R.; Hall, E.; Harris, M.; Norris, J.M. The Protective Rate of the Feline Immunodeficiency Virus Vaccine: An Australian Field Study. Vaccine 2016, 34, 4752–4758. [Google Scholar] [CrossRef] [PubMed]
- Hayward, J.J.; Rodrigo, A.G. Molecular Epidemiology of Feline Immunodeficiency Virus in the Domestic Cat (Felis Catus). Vet. Immunol. Immunopathol. 2010, 134, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Martins, N.d.S.; Rodrigues, A.P.d.S.; da Luz, L.A.; Dos Reis, L.d.L.; de Oliveira, R.M.; de Oliveira, R.A.; Abreu-Silva, A.L.; Dos Reis, J.K.P.; Melo, F.A. Feline Immudeficiency Virus Subtypes B and A in Cats from São Luis, Maranhão, Brazil. Arch. Virol. 2018, 163, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Sahay, B.; Yamamoto, J. Lessons Learned in Developing a Commercial FIV Vaccine: The Immunity Required for an Effective HIV-1 Vaccine. Viruses 2018, 10, 277. [Google Scholar] [CrossRef] [Green Version]
- Lacerda, L.C.; Silva, A.N.; Freitas, J.S.; Cruz, R.D.S.; Said, R.A.; Munhoz, A.D. Feline Immunodeficiency Virus and Feline Leukemia Virus: Frequency and Associated Factors in Cats in Northeastern Brazil. Genet. Mol. Res. 2017, 16, 1–8. [Google Scholar] [CrossRef]
- Uhl, E.W.; Martin, M.; Coleman, J.K.; Yamamoto, J.K. Advances in FIV Vaccine Technology. Vet. Immunol. Immunopathol. 2008, 123, 65–80. [Google Scholar] [CrossRef] [Green Version]
- Huisman, W.; Schrauwen, E.J.; Tijhaar, E.; Süzer, Y.; Pas, S.D.; van Amerongen, G.; Sutter, G.; Rimmelzwaan, G.F.; Osterhaus, A.D. Evaluation of Vaccination Strategies against Infection with Feline Immunodeficiency Virus (FIV) Based on Recombinant Viral Vectors Expressing FIV Rev and OrfA. Vet. Immunol. Immunopathol. 2008, 126, 332–338. [Google Scholar] [CrossRef]
- Hu, Q.-Y.; Fink, E.; Hong, Y.; Wang, C.; Grant, C.K.; Elder, J.H. Fine Definition of the CXCR4-Binding Region on the V3 Loop of Feline Immunodeficiency Virus Surface Glycoprotein. PLoS ONE 2010, 5, e10689. [Google Scholar] [CrossRef] [Green Version]
- Samman, A.; Logan, N.; McMonagle, E.L.; Ishida, T.; Mochizuki, M.; Willett, B.J.; Hosie, M.J. Neutralization of Feline Immunodeficiency Virus by Antibodies Targeting the V5 Loop of Env. J. Gen. Virol. 2010, 91, 242–249. [Google Scholar] [CrossRef]
- Hosie, M.J.; Pajek, D.; Samman, A.; Willett, B.J. Feline Immunodeficiency Virus (FIV) Neutralization: A Review. Viruses 2011, 3, 1870–1890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huisman, W.; Martina, B.E.E.; Rimmelzwaan, G.F.; Gruters, R.A.; Osterhaus, A.D.M.E. Vaccine-Induced Enhancement of Viral Infections. Vaccine 2009, 27, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-S.; Rushlow, K.E.; Issel, C.J.; Cook, R.F.; Cook, S.J.; Raabe, M.L.; Chong, Y.-H.; Costa, L.; Montelaro, R.C. Enhancement of EIAV Replication and Disease by Immunization with a Baculovirus-Expressed Recombinant Envelope Surface Glycoprotein. Virology 1994, 199, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Westman, M.; Malik, R.; Norris, J. Diagnosing Feline Immunodeficiency Virus (FIV) and Feline Leukaemia Virus (FeLV) Infection: An Update for Clinicians. Aust. Vet. J. 2019, 97, 47–55. [Google Scholar] [CrossRef]
- Roca, A.L.; Pecon-Slattery, J.; O’Brien, S.J. Genomically Intact Endogenous Feline Leukemia Viruses of Recent Origin. J. Virol. 2004, 78, 4370–4375. [Google Scholar] [CrossRef] [Green Version]
- Souza, A.P.D.; Haut, L.; Reyes-Sandoval, A.; Pinto, A.R. Recombinant Viruses as Vaccines against Viral Diseases. Braz. J. Med. Biol. Res. 2005, 38, 509–522. [Google Scholar] [CrossRef] [Green Version]
- Caxito, F.A.; Magalhães-Coelho, F.; Pinto, F.F. Study of Feline Immunodeficiency Virus (FIV) in Minas Gerais by Nested PCR-RFLP Analysis of the Gag Gene. In Proceedings of the National Meeting of Virology, Salvador, BA, Brazil, 10 October 2003; Volume 14, p. 209. [Google Scholar]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA Sequencing with Chain-Terminating Inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef] [Green Version]
- Daian e Silva, D.S.O.; Pinho, T.M.G.; Rachid, M.A.; Barbosa-Stancioli, D.F.; Da Fonseca, F.G. The Perennial Use of the Green Fluorescent Protein Marker in a Live Vaccinia Virus Ankara Recombinant Platform Shows No Acute Adverse Effects in Mice. Braz. J. Microbiol. 2019, 50, 347–355. [Google Scholar] [CrossRef]
- Thermo Fisher—WCE Protocol. Available online: https://www.thermofisher.com/br/en/home/references/protocols/cell-and-tissue-analysis/elisa-protocol/elisa-sample-preparation-protocols/nuclear-extraction-method-.html (accessed on 3 October 2022).
- Mazur, C.; Reis, J.K.P.; Leite, R.C.; Danelli, M.d.G.M.; Hagiwara, M.K.; de Góes, A.C.M.A.; Medeiros, M.A. Evaluation of a Recombinant P24 Antigen for the Detection of Feline Immunodeficiency Virus-Specific Antibodies. Pesqui. Vet. Bras. 2010, 30, 877–880. [Google Scholar] [CrossRef]
- Kosinska, A.D.; Festag, J.; Mück-Häusl, M.; Festag, M.M.; Asen, T.; Protzer, U. Immunogenicity and Antiviral Response of Therapeutic Hepatitis B Vaccination in a Mouse Model of HBeAg-Negative, Persistent HBV Infection. Vaccines 2021, 9, 841. [Google Scholar] [CrossRef]
- Quinan, B.R.; Flesch, I.E.; Pinho, T.M.; Coelho, F.M.; Tscharke, D.C.; da Fonseca, F.G. An Intact Signal Peptide on Dengue Virus E Protein Enhances Immunogenicity for CD8+ T Cells and Antibody When Expressed from Modified Vaccinia Ankara. Vaccine 2014, 32, 2972–2979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quah, B.J.; Warren, H.S.; Parish, C.R. Monitoring Lymphocyte Proliferation In Vitro and In Vivo with the Intracellular Fluorescent Dye Carboxyfluorescein Diacetate Succinimidyl Ester. Nat. Protoc. 2007, 2, 2049–2056. [Google Scholar] [CrossRef]
- Yamamoto, J.K.; Okuda, T.; Ackley, C.D.; Louie, H.; Pembroke, E.; Zochlinski, H.; Munn, R.J.; Gardner, M.B. Experimental Vaccine Protection Against Feline Immunodeficiency Virus. AIDS Res. Hum. Retroviruses 1991, 7, 911–922. [Google Scholar] [CrossRef] [PubMed]
- Elyar, J.S.; Tellier, M.C.; Soos, J.M.; Yamamoto, J.K. Perspectives on FIV Vaccine Development. Vaccine 1997, 15, 1437–1444. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, C.; Yu, X.; Lou, C.; Zhao, D.; Wu, Y.; Jin, Y.; Liu, C.; Kong, W. Immunogenicity of Lyophilized MVA Vaccine for HIV-1 in Mice Model. Chem. Res. Chin. Univ. 2007, 23, 329–332. [Google Scholar] [CrossRef]
- Frey, S.E.; Wald, A.; Edupuganti, S.; Jackson, L.A.; Stapleton, J.T.; El Sahly, H.; El-Kamary, S.S.; Edwards, K.; Keyserling, H.; Winokur, P.; et al. Comparison of Lyophilized versus Liquid Modified Vaccinia Ankara (MVA) Formulations and Subcutaneous versus Intradermal Routes of Administration in Healthy Vaccinia-Naive Subjects. Vaccine 2015, 33, 5225–5234. [Google Scholar] [CrossRef]
- Aranyos, A.M.; Roff, S.R.; Pu, R.; Owen, J.L.; Coleman, J.K.; Yamamoto, J.K. An Initial Examination of the Potential Role of T-Cell Immunity in Protection against Feline Immunodeficiency Virus (FIV) Infection. Vaccine 2016, 34, 1480–1488. [Google Scholar] [CrossRef] [Green Version]
- Ando, Y.; Yasuoka, C.; Mishima, T.; Ikematsu, T.; Uede, T.; Matsunaga, T.; Inobe, M. Concanavalin A-Mediated T Cell Proliferation Is Regulated by Herpes Virus Entry Mediator Costimulatory Molecule. In Vitro Cell. Dev. Biol.—Anim. 2014, 50, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Pu, R.; Omori, M.; Okada, S.; Rine, S.L.; Lewis, B.A.; Lipton, E.; Yamamoto, J.K. MHC-Restricted Protection of Cats against FIV Infection by Adoptive Transfer of Immune Cells from FIV-Vaccinated Donors. Cell. Immunol. 1999, 198, 30–43. [Google Scholar] [CrossRef]
- Omori, M.; Pu, R.; Tanabe, T.; Hou, W.; Coleman, J.K.; Arai, M.; Yamamoto, J.K. Cellular Immune Responses to Feline Immunodeficiency Virus (FIV) Induced by Dual-Subtype FIV Vaccine. Vaccine 2004, 23, 386–398. [Google Scholar] [CrossRef]
- Sutter, G.; Wyatt, L.S.; Foley, P.L.; Bennink, J.R.; Moss, B. A Recombinant Vector Derived from the Host Range-Restricted and Highly Attenuated MVA Strain of Vaccinia Virus Stimulates Protective Immunity in Mice to Influenza Virus. Vaccine 1994, 12, 1032–1040. [Google Scholar] [CrossRef]
- Sánchez-Sampedro, L.; Perdiguero, B.; Mejías-Pérez, E.; García-Arriaza, J.; Di Pilato, M.; Esteban, M. The Evolution of Poxvirus Vaccines. Viruses 2015, 7, 1726–1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daian e Silva, D.S.d.O.; da Fonseca, F.G. The Rise of Vectored Vaccines: A Legacy of the COVID-19 Global Crisis. Vaccines 2021, 9, 1101. [Google Scholar] [CrossRef] [PubMed]
- Manning, N.M.; Bachanek-Bankowska, K.; Mertens, P.P.C.; Castillo-Olivares, J. Vaccination with Recombinant Modified Vaccinia Ankara (MVA) Viruses Expressing Single African Horse Sickness Virus VP2 Antigens Induced Cross-Reactive Virus Neutralising Antibodies (VNAb) in Horses When Administered in Combination. Vaccine 2017, 35, 6024–6029. [Google Scholar] [CrossRef]
- Rollier, C.S.; Hill, A.V.; Reyes-Sandoval, A. Influence of Adenovirus and MVA Vaccines on the Breadth and Hierarchy of T Cell Responses. Vaccine 2016, 34, 4470–4474. [Google Scholar] [CrossRef]
- Crawford, P.C.; Levy, J.K. New Challenges for the Diagnosis of Feline Immunodeficiency Virus Infection. Vet. Clin. N. Am. Small Anim. Pract. 2007, 37, 335–350. [Google Scholar] [CrossRef]
- Miller, C.; Abdo, Z.; Ericsson, A.; Elder, J.; VandeWoude, S. Applications of the FIV Model to Study HIV Pathogenesis. Viruses 2018, 10, 206. [Google Scholar] [CrossRef]
Storage Time | Viral Title (UFP/mL) |
---|---|
MVA/FIV-B stored at −80 °C | 7.3 × 109 |
MVA/FIV-B after lyophilization | 7.2 × 109 |
MVA/FIV-B lyophilized and after 3 months at 4–8 °C | 2.7 × 109 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade, L.A.F.; Versiani, A.F.; Barbosa-Stancioli, E.F.; dos Reis, J.K.P.; dos Reis, J.G.A.C.; da Fonseca, F.G. Developing a Feline Immunodeficiency Virus Subtype B Vaccine Prototype Using a Recombinant MVA Vector. Vaccines 2022, 10, 1717. https://doi.org/10.3390/vaccines10101717
Andrade LAF, Versiani AF, Barbosa-Stancioli EF, dos Reis JKP, dos Reis JGAC, da Fonseca FG. Developing a Feline Immunodeficiency Virus Subtype B Vaccine Prototype Using a Recombinant MVA Vector. Vaccines. 2022; 10(10):1717. https://doi.org/10.3390/vaccines10101717
Chicago/Turabian StyleAndrade, Luis A. F., Alice F. Versiani, Edel F. Barbosa-Stancioli, Jenner K. P. dos Reis, Jordana Grazziela A. C. dos Reis, and Flavio G. da Fonseca. 2022. "Developing a Feline Immunodeficiency Virus Subtype B Vaccine Prototype Using a Recombinant MVA Vector" Vaccines 10, no. 10: 1717. https://doi.org/10.3390/vaccines10101717
APA StyleAndrade, L. A. F., Versiani, A. F., Barbosa-Stancioli, E. F., dos Reis, J. K. P., dos Reis, J. G. A. C., & da Fonseca, F. G. (2022). Developing a Feline Immunodeficiency Virus Subtype B Vaccine Prototype Using a Recombinant MVA Vector. Vaccines, 10(10), 1717. https://doi.org/10.3390/vaccines10101717