210-Day Kinetics of Total, IgG, and Neutralizing Spike Antibodies across a Course of 3 Doses of BNT162b2 mRNA Vaccine
Abstract
:1. Introduction
2. Methods
2.1. Study Participants
2.2. Methods and Materials
2.3. Statistical Analysis
3. Results
3.1. Antibody Responses
3.2. Antibody Kinetics
4. Discussion
- Peak antibody levels after booster vaccination were significantly higher than the second vaccination in all antibody levels except IgM; total S-Ab and N-Ab had the most pronounced increase;
- Total S-Ab, IgG S-Ab, and N-Ab all decline over a period of 210 days after booster vaccination. Antibody titers 210 days after the booster dose were still significantly higher than pre-booster titers;
- The half-lives of IgG and N-Ab were longer post-booster than after the second vaccination.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
S-Ab | Spike antibodies |
N-Ab | Neutralizing antibodies |
AT50 | Half life |
References
- Yamey, G.; Garcia, P.; Hassan, F.; Mao, W.; McDade, K.K.; Pai, M.; Saha, S.; Schellekens, P.; Taylor, A.; Udayakumar, K. It is not too late to achieve global covid-19 vaccine equity. BMJ 2022, 376, e070650. [Google Scholar] [CrossRef]
- Watson, O.J.; Barnsley, G.; Toor, J.; Hogan, A.B.; Winskill, P.; Ghani, A.C. Global impact of the first year of COVID-19 vaccination: A mathematical modelling study. Lancet Infect. Dis. 2022, 22, 1293–1302. [Google Scholar] [CrossRef]
- Mohammed, I.; Nauman, A.; Paul, P.; Ganesan, S.; Chen, K.H.; Jalil, S.M.S.; Jaouni, S.H.; Kawas, H.; Khan, W.A.; Vattoth, A.L.; et al. The efficacy and effectiveness of the COVID-19 vaccines in reducing infection, severity, hospitalization, and mortality: A systematic review. Hum. Vaccin. Immunother. 2022, 18, 2027160. [Google Scholar] [CrossRef]
- Molteni, E.; Canas, L.S.; Klaser, K.; Deng, J.; Bhopal, S.S.; Hughes, R.C.; Chen, L.; Murray, B.; Kerfoot, E.; Antonelli, M.; et al. Post-vaccination infection rates and modification of COVID-19 symptoms in vaccinated UK school-aged children and adolescents: A prospective longitudinal cohort study. Lancet Reg. Health Eur. 2022, 19, 100429. [Google Scholar] [CrossRef]
- Sasso, B.L.; Agnello, L.; Giglio, R.V.; Gambino, C.M.; Ciaccio, A.M.; Vidali, M.; Ciaccio, M. Longitudinal analysis of anti-SARS-CoV-2 S-RBD IgG antibodies before and after the third dose of the BNT162b2 vaccine. Sci. Rep. 2022, 12, 8679. [Google Scholar] [CrossRef]
- Favresse, J.; Bayart, J.L.; Mullier, F.; Elsen, M.; Eucher, C.; Eeckhoudt, S.V.; Roy, T.; Wieers, G.; Laurent, C.; Dogne, J.M.; et al. Antibody titres decline 3-month post-vaccination with BNT162b2. Emerg. Microbes. Infect. 2021, 10, 1495–1498. [Google Scholar] [CrossRef]
- Hall, V.; Foulkes, S.; Insalata, F.; Kirwan, P.; Saei, A.; Atti, A.; Wellington, E.; Khawam, J.; Munro, K.; Cole, M.; et al. Protection against SARS-CoV-2 after Covid-19 Vaccination and Previous Infection. N. Engl. J. Med. 2022, 386, 1207–1220. [Google Scholar] [CrossRef]
- Kustin, T.; Harel, N.; Finkel, U.; Perchik, S.; Harari, S.; Tahor, M.; Caspi, I.; Levy, R.; Leshchinsky, M.; Dror, S.K.; et al. Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2-mRNA-vaccinated individuals. Nat. Med. 2021, 27, 1379–1384. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Interim Clinical Considerations for Use of COVID-19 Vaccines Currently Approved or Authorized in the United States. Available online: https://www.cdc.gov/vaccines/covid-19/clinical-considerations/interim-considerations-us.html (accessed on 26 August 2022).
- Thompson, M.G.; Natarajan, K.; Irving, S.A.; Rowley, E.A.; Griggs, E.P.; Gaglani, M.; Klein, N.P.; Grannis, S.J.; DeSilva, M.B.; Stenehjem, E.; et al. Effectiveness of a Third Dose of mRNA Vaccines Against COVID-19-Associated Emergency Department and Urgent Care Encounters and Hospitalizations Among Adults During Periods of Delta and Omicron Variant Predominance—VISION Network, 10 States, August 2021-January 2022. Morb. Mortal. Wkly. Rep. 2022, 71, 139–145. [Google Scholar] [CrossRef]
- Jara, A.; Undurraga, E.A.; Zubizarreta, J.R.; Gonzalez, C.; Pizarro, A.; Acevedo, J.; Leo, K.; Paredes, F.; Bralic, T.; Vergara, V.; et al. Effectiveness of homologous and heterologous booster doses for an inactivated SARS-CoV-2 vaccine: A large-scale prospective cohort study. Lancet Glob. Health 2022, 10, e798–e806. [Google Scholar] [CrossRef]
- Lau, C.S.; Oh, M.L.H.; Phua, S.K.; Liang, Y.L.; Li, Y.; Huo, J.; Huang, Y.; Zhang, B.; Xu, S.; Aw, T.C. Kinetics of the Neutralizing and Spike SARS-CoV-2 Antibodies following the Sinovac Inactivated Virus Vaccine Compared to the Pfizer mRNA Vaccine in Singapore. Antibodies 2022, 11, 38. [Google Scholar] [CrossRef] [PubMed]
- Ng, O.T.; Marimuthu, K.; Lim, N.; Lim, Z.Q.; Thevasagayam, N.M.; Koh, V.; Chiew, C.J.; Ma, S.; Koh, M.; Low, P.Y.; et al. Analysis of COVID-19 Incidence and Severity Among Adults Vaccinated With 2-Dose mRNA COVID-19 or Inactivated SARS-CoV-2 Vaccines With and Without Boosters in Singapore. JAMA. Netw. Open. 2022, 5, e2228900. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.S.; Phua, S.K.; Liang, Y.L.; Oh, M.L.H.; Aw, T.C. Robust SARS-CoV-2 Antibody Responses in Asian COVID-Naïve Subjects 180 Days after Two Doses of BNT162b2 mRNA COVID-19 Vaccine. Vaccines 2021, 9, 1241. [Google Scholar] [CrossRef]
- Lau, C.S.; Hoo, S.P.; Liang, Y.L.; Phua, S.K.; Aw, T.C. Performance of an automated chemiluminescent immunoassay for SARS-COV-2 IgM and head-to-head comparison of Abbott and Roche COVID-19 antibody assays. Pract. Lab. Med. 2021, 25, e00230. [Google Scholar] [CrossRef]
- Lee, N.; Jeong, S.; Lee, S.K.; Cho, E.J.; Hyun, J.; Park, M.J.; Song, W.; Kim, H.S. Quantitative Analysis of Anti-N and Anti-S Antibody Titers of SARS-CoV-2 Infection after the Third Dose of COVID-19 Vaccination. Vaccines 2022, 10, 1143. [Google Scholar] [CrossRef]
- Liu, X.; Munro, A.P.S.; Feng, S.; Janani, L.; Aley, P.K.; Babbage, G.; Baxter, D.; Bula, M.; Cathie, K.; Chatterjee, K.; et al. Persistence of immunogenicity after seven COVID-19 vaccines given as third dose boosters following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK: Three month analyses of the COV-BOOST trial. J. Infect. 2022, 84, 795–813. [Google Scholar] [CrossRef]
- Gilboa, M.; Regev-Yochay, G.; Mandelboim, M.; Indenbaum, V.; Asraf, K.; Fluss, R.; Amit, S.; Mendelson, E.; Doolman, R.; Afek, A.; et al. Durability of Immune Response After COVID-19 Booster Vaccination and Association With COVID-19 Omicron Infection. JAMA. Netw. Open. 2022, 5, e2231778. [Google Scholar] [CrossRef]
- Goel, R.R.; Apostolidis, S.A.; Painter, M.M.; Mathew, D.; Pattekar, A.; Kuthuru, O.; Gouma, S.; Hicks, P.; Meng, W.; Rosenfeld, A.M.; et al. Distinct antibody and memory B cell responses in SARS-CoV-2 naïve and recovered individuals following mRNA vaccination. Sci. Immunol. 2021, 6, eabi6950. [Google Scholar] [CrossRef]
- Wei, J.; Pouwels, K.B.; Stoesser, N.; Matthews, P.C.; Diamond, I.; Studley, R.; Rourke, E.; Cook, D.; Bell, J.I.; Newton, J.N.; et al. Antibody responses and correlates of protection in the general population after two doses of the ChAdOx1 or BNT162b2 vaccines. Nat. Med. 2022, 28, 1072–1082. [Google Scholar] [CrossRef]
- Goldblatt, D.; Fiore-Gartland, A.; Johnson, M.; Hunt, A.; Bengt, C.; Zavadska, D.; Snipe, H.D.; Brown, J.S.; Workman, L.; Zar, H.J.; et al. Towards a population-based threshold of protection for COVID-19 vaccines. Vaccine 2022, 40, 306–315. [Google Scholar] [CrossRef]
- Feng, S.; Philips, D.J.; White, T.; Sayal, H.; Aley, P.K.; Bibi, S.; Dold, C.; Fuskova, M.; Gilbert, S.C.; Hirsch, I.; et al. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 2032–2040. [Google Scholar] [CrossRef] [PubMed]
- Plebani, M.; Galli, C. The never-ending quest for antibody assays standardization and appropriate measurement units. Clin. Chem. Lab. Med. 2022, 60, 959–960. [Google Scholar] [CrossRef] [PubMed]
- Muecksch, F.; Wise, H.; Templeton, K.; Batchelor, B.; Squires, M.; McCance, K.; Jarvis, L.; Malloy, K.; Furrie, E.; Richardson, C.; et al. Longitudinal variation in SARS-CoV-2 antibody levels and emergence of viral variants: A serological analysis. Lancet Microbe. 2022, 3, e493–e502. [Google Scholar] [CrossRef]
- Meschi, S.; Matusali, G.; Colavita, F.; Lapa, D.; Bordi, L.; Puro, V.; Leoni, B.D.; Galli, C.; Capobianchi, M.R.; Castilletti, C.; et al. Predicting the protective humoral response to a SARS-CoV-2 mRNA vaccine. Clin. Chem. Lab. Med. 2021, 59, 2010–2018. [Google Scholar] [CrossRef]
- Regev-Yochay, G.; Gonen, T.; Gilboa, M.; Mandelboim, M.; Indenbaum, V.; Amit, S.; Meltzer, L.; Asraf, K.; Cohen, C.; Fluss, R.; et al. Efficacy of a Fourth Dose of Covid-19 mRNA Vaccine against Omicron. N. Engl. J. Med. 2022, 386, 1377–1380. [Google Scholar] [CrossRef]
- Belik, M.; Jalkanen, P.; Lundberg, R.; Reinholm, A.; Laine, L.; Vaisanen, E.; Skon, M.; Tahtinen, P.A.; Ivaska, L.; Pakkanen, S.H.; et al. Comparative analysis of COVID-19 vaccine responses and third booster dose-induced neutralizing antibodies against Delta and Omicron variants. Nat. Commun. 2022, 13, 2476. [Google Scholar] [CrossRef]
- Bensouna, I.; Caudwell, V.; Kubab, S.; Acquaviva, S.; Pardon, A.; Vittoz, N.; Bozman, D.F.; Hanafi, L.; Faucon, A.L.; Housset, P. SARS-CoV-2 Antibody Response After a Third Dose of the BNT162b2 Vaccine in Patients Receiving Maintenance Hemodialysis or Peritoneal Dialysis. Am. J. Kidney. Dis. 2022, 79, 185–192.e1. [Google Scholar] [CrossRef]
- Kwon, S.R.; Kim, N.; Park, H.; Minn, D.; Park, S.; Roh, E.Y.; Yoon, J.H.; Shin, S. Strong SARS-CoV-2 Antibody Response After Booster Dose of BNT162b2 mRNA Vaccines in Uninfected Healthcare Workers. J. Korean. Med. Sci. 2022, 37, e135. [Google Scholar] [CrossRef]
- Melgoza-Gonzalez, E.A.; Hinojosa-Trujillo, D.; Resendiz-Sandoval, M.; Mata-Haro, V.; Hernandez-Valenzuela, S.; Garcia-Vega, M.; Bravo-Parra, M.; Arvizu-Flores, A.A.; Valenzuela, O.; Velazquez, E.; et al. Analysis of IgG, IgA and IgM antibodies against SARS-CoV-2 spike protein S1 in convalescent and vaccinated patients with the Pfiz-er-BioNTech and CanSinoBio vaccines. Transbound. Emerg. Dis. 2022, 69, e734–e745. [Google Scholar] [CrossRef]
- Fraley, E.; LeMaster, C.; Geanes, E.; Banerjee, D.; Khanal, S.; Grundberg, E.; Selva-rangan, R.; Bradley, T. Humoral immune responses during SARS-CoV-2 mRNA vac-cine administration in seropositive and seronegative individuals. BMC. Med. 2021, 19, 169. [Google Scholar] [CrossRef]
- Menni, C.; May, A.; Polidori, L.; Louca, P.; Wolf, J.; Capdevila, J.; Hu, C.; Ourselin, S.; Steves, C.J.; Valdes, A.M.; et al. COVID-19 vaccine waning and effectiveness and side-effects of boosters: A prospective community study from the ZOE COVID Study. Lancet Inf. Dis. 2022, 22, 1002–1010. [Google Scholar] [CrossRef]
- Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; Gallagher, E.; Gower, C.; Kall, M.; Groves, N.; O’Connell, A.M.; et al. Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N. Engl. J. Med. 2022, 386, 1532–1546. [Google Scholar] [CrossRef] [PubMed]
- Patalon, T.; Saciuk, Y.; Peretz, A.; Perez, G.; Lurie, Y.; Maor, Y.; Gazit, S. Waning effectiveness of the third dose of the BNT162b2 mRNA COVID-19 vaccine. Nat. Commun. 2022, 13, 3203. [Google Scholar] [CrossRef] [PubMed]
- Lagerqvist, N.; Maleki, K.T.; Verner-Carlsson, J.; Olausson, M.; Dillner, J.; Bystrom, J.W.; Monsen, T.; Forsell, M.; Eriksson, J.; Bogdanovic, G.; et al. Evaluation of 11 SARS-CoV-2 antibody tests by using samples from patients with defined IgG antibody titers. Sci. Rep. 2022, 11, 7614. [Google Scholar] [CrossRef]
Time Point | Roche Total Spike Antibodies | Abbott IgG Spike Antibodies | Snibe Neutralizing Antibodies | Abbott IgM Spike Antibodies | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | Mean (BAU/mL) | Median (BAU/mL) | Range (BAU/mL) | n | Mean (BAU/mL) | Median (BAU/mL) | Range (BAU/mL) | n | Mean (ug/mL) | Median (ug/mL) | Range (ug/mL) | n | Mean (COI) | Median (COI) | Range (COI) | |
Baseline | 73 | 0.40 | 0.39 | 0.39–3.60 | 72 | 0.64 | 0.62 | 0.04–21.1 | 53 | 0.016 | 0.018 | 0–0.11 | 73 | 0.043 | 0.030 | 0.01–0.77 |
Dose 1 D10 | 78 | 3.70 | 3.29 | 0.39–677 | 78 | 19.9 | 17.8 | 0.78–850 | 74 | 0.062 | 0.068 | 0–1.71 | 76 | 0.33 | 0.38 | 0.02–7.55 |
Dose 2 D20 | 72 | 2048 | 2219 | 146–11,194 | 72 | 2101 | 2270 | 217–7764 | 69 | 3.61 | 3.52 | 0.51–30 | 70 | 2.02 | 2.11 | 0.13–13.6 |
Dose 2 D40 | 51 | 1438 | 1695 | 274–3633 | 50 | 1443 | 1547 | 185–5963 | 51 | 2.77 | 2.84 | 0.39–30 | 51 | 1.21 | 1.32 | 0.09–15.8 |
Dose 2 D60 | 51 | 1315 | 1454 | 226–4353 | 51 | 887 | 941 | 111–2549 | 50 | 2.34 | 2.35 | 0.74–6.93 | 50 | 0.72 | 0.86 | 0.07–2.96 |
Dose 2 D90 | 40 | 1132 | 1259 | 233–4318 | 40 | 496 | 542 | 110–1482 | 40 | 1.76 | 1.95 | 0.45–7.14 | 38 | 0.36 | 0.39 | 0.06–1.99 |
Dose 2 D120–150 | 32 | 1025 | 1275 | 219–2852 | 29 | 234 | 246 | 74.7–733 | 31 | 1.24 | 1.64 | 0.37–2.83 | 28 | 0.19 | 0.15 | 0.02–1.92 |
Dose 2 D180–210 | 16 | 637 | 695 | 114–2936 | 14 | 158 | 141 | 27.0–2452 | 16 | 0.81 | 0.93 | 0.19–1.92 | 14 | 0.12 | 0.10 | 0.02–1.57 |
Dose 2 D240–PreD3 | 71 | 521 | 502 | 39.0–2804 | 71 | 103 | 102 | 13.2–680 | 70 | 0.62 | 0.61 | 0.09–2.48 | 63 | 0.12 | 0.10 | 0.02–3.48 |
Dose 3 D20–30 | 42 | 19,150 | 19,551 | 3803–357,552 | 41 | 2634 | 2932 | 128–6084 | 40 | 20.9 | 26.4 | 1.41–185 | 25 | 0.29 | 0.23 | 0.06–4.33 |
Dose 3 D60 | 9 | 12,968 | 14,992 | 1730–45,830 | 9 | 2201 | 2659 | 267–6296 | 9 | 15.9 | 20.6 | 2.34–35.1 | 2 | 0.18 | 0.18 | 0.05–0.64 |
Dose 3 D90 | 63 | 7739 | 7532 | 1157–31,000 | 59 | 1154 | 1276 | 254–4520 | 59 | 11.3 | 12.5 | 2.45–40.7 | – | – | – | – |
Dose 3 D120–150 | 18 | 4970 | 6349 | 1009–16,636 | 18 | 694 | 873 | 98.8–2208 | 17 | 7.81 | 9.73 | 0.98–21.9 | – | – | – | – |
D3D180–210 | 50 | 3498 | 3353 | 460–51,539 | 43 | 490 | 401 | 27.0–2452 | 47 | 5.81 | 5.41 | 0.88–33.2 | – | – | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lau, C.S.; Oh, M.L.H.; Phua, S.K.; Liang, Y.-L.; Aw, T.C. 210-Day Kinetics of Total, IgG, and Neutralizing Spike Antibodies across a Course of 3 Doses of BNT162b2 mRNA Vaccine. Vaccines 2022, 10, 1703. https://doi.org/10.3390/vaccines10101703
Lau CS, Oh MLH, Phua SK, Liang Y-L, Aw TC. 210-Day Kinetics of Total, IgG, and Neutralizing Spike Antibodies across a Course of 3 Doses of BNT162b2 mRNA Vaccine. Vaccines. 2022; 10(10):1703. https://doi.org/10.3390/vaccines10101703
Chicago/Turabian StyleLau, Chin Shern, May Lin Helen Oh, Soon Kieng Phua, Ya-Li Liang, and Tar Choon Aw. 2022. "210-Day Kinetics of Total, IgG, and Neutralizing Spike Antibodies across a Course of 3 Doses of BNT162b2 mRNA Vaccine" Vaccines 10, no. 10: 1703. https://doi.org/10.3390/vaccines10101703
APA StyleLau, C. S., Oh, M. L. H., Phua, S. K., Liang, Y.-L., & Aw, T. C. (2022). 210-Day Kinetics of Total, IgG, and Neutralizing Spike Antibodies across a Course of 3 Doses of BNT162b2 mRNA Vaccine. Vaccines, 10(10), 1703. https://doi.org/10.3390/vaccines10101703